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Abstract

This project introduces IGSR, an iterative refinement
scheme to enhance Gaussian Splatting models from limited-
view datasets. While existing methods have solved this
problem of 3D reconstruction from limited viewpoints, they
rely upon heavy computational requirements and large
models. I propose a novel method that chains the most ef-
ficient modern models together to improve efficiency across
the entire pipeline of 3D scene reconstruction on a single
16GB NVIDIA T4 GPU. The developments from this project
are three-fold: (1) a custom and simple denoiser model
designed to reduce noise characteristic of poor Gaussian
Splatting models, (2) an iterative process that incorporates
this denoiser to augment the dataset with new views that
extend the periphery of initial dataset, and (3) experimen-
tation that compares the effect of initialization and data se-
lection for augmentation, with synthetic and real data. The
results indicate that the denoiser model, as trained, is gen-
eralizing to new scenes and even real data, but it is subop-
timally denoising unseen views for the IGSR pipeline. The
methods show promise, but the denoiser architecture served
to be a weak-link in the process.

1. Introduction and Related Work
Modeling a 3D scene from limited views is useful across

many applications such as robotic navigation, low radiation
dosage medical imaging, surgical planning, and historical
scene reconstruction. However, as expected, this is a dif-
ficult task that often results in poor quality results. This
project aims to investigate an iterative approach to improve
the quality of limited-view 3D reconstruction using state of
the art methods including DUSt3R [1] to preprocess images
for 3D reconstruction, Gaussian Splatting [2] as the method
of 3D reconstruction to synthesize novel views, and a su-
pervised learning pipeline for denoising unseen views.

Gaussian Splatting [2] is a method used to represent a
complete 3D scene explicitly with a set of 3D Gaussians,
constructed from a finite number of input views. The ulti-

mate task that this accomplishes is novel-view synthesis, or
being able to extract unseen views from limited data, which
has been used in a wide variety of computer vision tasks
across applications [3]. Gaussian Splatting is not the only
way to achieve this task–beyond traditional explicit repre-
sentations such as voxel grids, pointclouds, and meshes, a
recently popular implicit representation is through Neural
Radiance Fields (NeRFs) [4]. NeRFs employ a multi-layer
perceptron representation of the scene, but unlike Gaussian
Splatting, NeRFs generally face a tradeoff between effi-
ciency and quality since they rely upon a neural representa-
tion.

Each Gaussian that composes a Gaussian Splatting
model is parameterized by a three-dimensional mean µ and
covariance Σ matrix (Eqn. 1), opacity, and a set of spherical
harmonic coefficients (to capture the view-dependent color
of real scenes). Given points from a Structure from Mo-
tion (SfM) [5] pipeline, the Gaussians go through a fully
differentiable process to fit the inputted 2D images onto 3D
space. There is also an adaptive density control segment
that selectively adds or prunes Gaussians based on a heuris-
tic [2].

G(x) =
1

(2π)3/2
√

|Σ|
exp−1

2
(x− µ)⊤Σ−1(x− µ) (1)

COLMAP [5] is the SfM preprocessing pipeline used in
vanilla Gaussian Splatting, to estimate camera poses and
generate a 3D point cloud from 2D images. This process
relies on a series of independent engineering problems in-
cluding feature extraction, point correspondence matching,
triangulation, and bundle adjustment, which have each been
researched extensively and optimized. However, none of
these steps can be performed with consistent perfection (for
example, the bundle adjustment step relies on an estimate
of camera intrinsics, which are difficult to gauge exactly),
and hence errors propagate throughout the entire SfM pro-
cess. DUSt3R, or Dense Unconstrained Stereo 3D Recon-
struction [1], was created to address this issue. In DUSt3R,
all of the steps used in COLMAP are combined in an end-
to-end transformer-based framework that can consistently
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generate accurate 3D point reconstructions from any set of
sparse images. For the task of multi-view depth estimation,
the best DUSt3R results are obtained over 1000x faster than
COLMAP [1].

This DUSt3R process does not rely on camera intrin-
sics and generally relaxes the hard requirements involved
in traditional pose estimation. In their framework, images
are handled in a pairwise manner, where each image of the
pair is fed through an identical ViT encoder. Then, the la-
tent representations are passed through two transformer de-
coders which share information with cross-attention (this
is the primary mechanism to achieve correspondances be-
tween the images). From this, there is a regression head
to output (1) a pointmap ∈ RW×H×3 for each image, that
maps image pixels to a 3D position, and (2) confidence
∈ RW×H for each image, that associates the confidence
of the network’s 3D position mapping for each pixel. The
pointmap is generated in the coordinate frame of the first
image. The encoder used in DUSt3R relies upon a pre-
trained CroCo ViT [6], which uses Masked Image Model-
ing (MIM) as its self-supervision mechanism. MIM is par-
ticularly suited to generate effective features in DUSt3R’s
downstream reconstruction task since it helps encode the
context information necessary to ultimately identify corre-
spondances within pairs of images in the decoder step.

In InstantSplat [7], DUSt3R is incorporated to replace
the COLMAP preprocessing step for generating Gaussian
Splatting models from pose-free and sparse-view image
data. Using DUSt3R further enables several optimizations
to the overall Gaussian Splatting process, such as eliminat-
ing the complicated adaptive density control heuristic and
implementing a faster optimization scheme that leverages
the richer point-cloud models from DUSt3R (as opposed to
sparse models from COLMAP). With these optimizations,
the paper impressively cites that the process takes under
one minute on an Nvidia A100 GPU. This indicates that
DUSt3R can be used as an effective preprocessing step for
limited view Gaussian Splatting.

Note that despite the DUSt3R preprocessing step, we can
still expect a subpar 3D reconstruction when the input view-
points are too sparse and points are predicted with low con-
fidence values. Hence, this is an active area of research. In
GANeRF [8], the authors propose an adversarial framework
by incorporating a discriminator to encourage the NeRF to
encode a better 3D representation in order to produce more
realistic views that do not contain artificial artifacts. This
work is mainly intended to increase NeRF quality and was
not necessarily designed for limited-viewpoint situations;
still, as described in the Methods section, my project de-
rives inspiration from GANeRF by experimenting with a
GAN-based denoiser enhanced with an LPIPS loss [9], [10],
[11]. Moreover, in ReconFusion [12], the authors intend to
achieve a similar task of creating better NeRF representa-

tions, but by leveraging diffusion models instead of GAN
frameworks. In ReconFusion, the authors specifically in-
vestigate limited-view situations and demonstrate success-
ful reconstructions with as few as three viewpoints. Finally,
in ZeroNVS [13], Sargent et al. demonstrate 360-degree
view synthesis from a single image during inference, also
leveraging generative diffusion models. This is the current
state-of-the-art.

As described, there are existing state-of-the-art methods
for modeling a 3D scene from limited views. However, they
are exceptionally data intensive, have long training times,
and are computationally expensive. For this project, I use
a compact 16GB RAM Nvidia T4 GPU, and I focus on de-
veloping a simple denoiser to achieve limited-view 3D re-
construction. This project proposes a strategy that sequen-
tially augments an initial limited-view dataset with denoised
unseen views from a Gaussian Splatting model. Through-
out the proposed pipeline, I have experimented with the
current state-of-the-art methods in terms of efficiency in-
cluding DUSt3R for the SfM preprocessing step, Gaussian
Splatting for the 3D reconstruction, and a simple supervised
learning framework for denoising. The overall pipeline can
be visualized in Figure 1 and is further described in the
Methods section.

2. Methods

2.1. Iterative Gaussian Splatting Refinement

As discussed, this project aims to investigate methods
to increase the accuracy of 3D Gaussian Splatting mod-
els from limited-viewpoint image inputs. In the Iterative
Gaussian Splatting Refinement (IGSR) pipeline, the inputs
are raw images of a single object from limited viewpoints
(Dataset described below). These inputs get pre-processed
through DUSt3R [1] for camera pose estimation and sparse
3D point-cloud generation, producing an output identical in
form to what COLMAP [5] traditionally creates. This will
then serve as the input for Gaussian Splatting [2] to create
an initial model of the entire scene, from which we will de-
rive unseen images. The process so far is adapted from [14].

Figure 1. Pipeline for the proposed Iterative Gaussian Splatting
Refinement (IGSR) process.
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Figure 2. Representative synthetically-noisy images from all 8 scenes from the NeRF Synthetic dataset including ”chair,” ”drums,” ”ficus,”
”hotdog,” ”lego,” ”materials,” ”mic,” and ”ship.” The former four scenes form the training data, the ”lego” scene forms the validation data,
and the latter three scenes form the test data.

At this stage, the model is expected to be a poor repre-
sentation of the scene, since it was initialized with limited
viewpoints. From here, we can extract many views from
different poses across the Gaussian Splatting model, includ-
ing those in areas we have little information about the scene.
These images go through a denoising process (described
below), and the Top-K most realistic images are selected
to augment the initial pool of limited-view images. From
here, the process is repeated as many times as desired until
a Gaussian Splatting model that adequately represents the
full 3D scene is created. It is predicted that the quality of the
Gaussian Splatting model will be improved each time this
pipeline is repeated, as measured by peak signal-to-noise ra-
tio (PSNR), structural similarity index measure (SSIM), and
learned perceptual image patch similarity (LPIPS) metrics
between Gaussian Splatting generated views and ground
truth views (these metrics are standard for image quality
assessment). This pipeline is summarized in Figure 1.

Regarding the Top-K selection of the most realistic im-
ages after denoising, I use the LPIPS metric, which relies
upon access to ground truth images at each denoised pose.
This is suboptimal as elaborated in the Future Work section,
but it is sufficient for the aim of this project to demonstrate
efficacy of the methods. After evaluating LPIPS metrics,
there are two options for how we choose the Top-K im-
ages. Top-K Improvement chooses the images that show the
greatest decrease in LPIPS after denoising, corresponding
to the greatest increase in realism. Top-K Absolute chooses
the images that have the lowest LPIPS value overall, corre-
sponding to the images with the most realism, either pre- or
post-denoising. Evaluation of these two options is described
in the Experiments section.

Moreover, throughout the pipeline, a single 16GB
NVIDIA T4 GPU is utilized. Gaussian Splatting [2] is

performed with 5000 iterations for every model created.
DUSt3R [1] was limited by memory, only being able to
only process 15 images at a time. This is due to the use
of a heavy-duty transformer backbone and because images
are fed in pairs (all pair combinations are tested), as de-
scribed in the Introduction. Note that COLMAP [5] did not
provide effective pose estimates since it is difficult to find
correspondences across sparse images. DUSt3R is able to
produce good pose estimates for reasons mentioned in the
Introduction, and it employs a confidence threshold that was
tuned in [14] to mask out image regions with poor confi-
dence.

So far, the denoising model is described as a black box.
We cannot describe the denoising model until we describe
the dataset.

2.2. Dataset for Denoising

The primary dataset that this project relies on is a NeRF
Synthetic Dataset from [4] that contains 8 synthetically-
generated scenes with 300 800x800 images per scene.
There was significant preprocessing required before this
dataset was ready to train the denoiser. Since I wanted to
deploy a supervised learning framework, I has to gener-
ate noisy images with associated ground truth label images.
The final result of this preprocessing effort can be seen in
Figure 2.

It was important that the particular ”noise” applied to
the images was representative of the noise to be used in the
downstream task of Gaussian Splatting refinement. Hence, I
first ran a three-view DUSt3R-to-Gaussian-Splatting-model
pipeline (similar to what was described above), synthesized
novel views, and understood what ”noise” looks like in a
poorly rendered Gaussian Splatting model, as seen in the
left image of Figure 3. There were also, as expected, com-
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pletely garbage views in areas of the scene that the three-
view input did not cover, but I chose to ignore these areas,
since it would be difficult to train a good-enough genera-
tor to hallucinate accurate representations of these areas of
the scene with the limited data that I have decided to work
with. This is acceptable since the denoiser is proposed to
be used in an iterative manner, where we can selectively
use it in areas that are on the periphery of the known view,
and ultimately grow it with each iteration. The effectiveness
of the denoiser is evaluated in the Experiments section be-
low, where I investigate the effect of a scattered vs localized
limited-view initialization.

Figure 3. Zoomed-in noisy view from a poor limited-view Gaus-
sian Splatting model (left) and a similar synthetic-noise view
(right) of the ”chair” scene.

Hence, knowing what the noisy images should roughly
look like, I found that the synthetic nature of the dataset be-
ing used lent itself well to manual noising. That is, I simply
chose a subset of camera poses (20 out of 200) and added
Gaussian noise (µ = 0, σ = 0.01) to all the transform matri-
ces. Then, after training for 5000 iterations upon the 20 im-
ages corresponding to the noised poses, I rendered unseen
views (which had associated ground-truth poses) for each
scene, and found that the noise looks qualitatively repre-
sentative of noise in a poorly-initialized Gaussian Splatting
model as shown in Figure 3, and I was even able to generate
random artifacts in the scene. Note that some views were
noisier than others based on their closeness to the 20 ini-
tial poses, and there was a good diversity in the images (see
Figure 2). I predicted that this will be useful in avoiding
overfitting when we train the denoiser.

In arriving at this, notice that there are several param-
eters: noise σ, number of camera poses, specific camera
poses chosen (scattered or localized), and number of iter-
ations to train the Gaussian Splatting model. I recognized
that the desired noise could be generated in two ways: (1) if
we train with many scattered images and some noise, but for
a short number of iterations, or (2) with a few images and
some noise, but for a longer number of iterations. The for-
mer led to blurry images, but not noisy in the way that was
desired. Hence, the latter paradigm was selected and the pa-
rameters described in the previous paragraph were found to
be the most representative.

For each scene (8), were 300 noisy images generated,
with associated ground-truth label images. Five scenes were

were used for training, one scene for validation, and three
scenes for testing, as described in Figure 2.

This overall dataset preprocessing pipeline is summa-
rized in Figure 4.

Figure 4. Pipeline for dataset preprocessing to train the denoiser.

2.3. Denoising Model

Now that I have described the data used to train the de-
noising model, I can provide details behind the architec-
ture. Qualitatively, the goal of the denoiser is to ”know”
what the noise looks like in a Gaussian Splatting model, re-
move it, and fill in the gaps by generating an image that not
only looks real, but also agrees with the other images in the
dataset and the pose from which it was acquired. Initially, I
was exploring existing super-resolution models that are in-
tended to increase the quality of low-resolution images, for
fine-tuning purposes. However, I decided not to go down
this path for two reasons: (1) these were extremely large
models, so it went against my overall goal to develop a low-
computation solution, and (2) after running an image from
my dataset through the super-resolution model, I realized
that the idea of super-resolution does not align with the idea
of denoising for Gaussian Splatting models since it is not
built to add structure to the model, only modify it.

Hence, I next explored architectures to train from
scratch. I recognized that I did not have a large enough
dataset to train a highly generalizable denoiser, but it would
serve as a proof-of-concept in my overall IGSR pipeline.
The first model I trained was a Generative Adversarial Net-
work (GAN) [9] architecture, since we would be able to
leverage the adversarial nature of a generator/discriminator
framework to encourage the generator to produce images
that have ”realness.” The hope was that with enough data,
the generator would be able to hallucinate structures in the
image that are occluded by noise. I used the vanilla gen-
erator and discriminator loss functions from [9] as shown
below, where z is the noisy image and x is the ground truth
image at that same pose.

lG = −Ez pdata
[logD(G(z))] (2)

lD = −Ex pdata
[logD(x)]− Ez p(z)[log(1−D(G(z)))]

(3)
Noticing that the resulting colors from the GAN were

completely off, I incorporated a perceptual loss by adding
an LPIPS loss [10] to the generator loss function.

lG = −(1− a)Ez pdata
[logD(G(z))] + aLPIPS(z, x)

(4)
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Figure 5. Ground truth (top), GAN denoised output (middle), and LPIPS network denoised output (bottom).

Here, a is a hyperparameter that weighs the two losses
accordingly, and LPIPS(z, x) is defined below.

LPIPS(z, x) =
∑
l

αl||F̂l(z)− F̂l(x)||22 (5)

The goal of LPIPS is to understand the similarity of two
images in a deep network’s feature representation. In Equa-
tion 5, F̂ is the normalized feature representation of an im-
age in layer l and αl are the learned weights of a pre-trained
deep network (several deep network backbones are compat-
ible, including VGG [15] and AlexNet [16]).

From initial experimentation when I was trying to over-
fit a small subset of data (300 noisy and ground truth im-
ages from the ”lego” scene), I noticed that the colors only
qualitatively looked right when the hyperparameter a was
set near 1, meaning that the network is primarily learning
through just the LPIPS loss, not the adversarial mechanism
of the GAN. I wanted to conduct a study between using a
purely LPIPS loss network vs a GAN/LPIPS loss network
with a = 0.9, so I trained the model for 5 epochs on the
”lego” scene, with a batch size of 4 (this was the maximum
that my single 16GB T4 GPU could support).

Qualitative results are shown in Figure 5. Not only is the
pure-LPIPS loss producing qualitatively closer colors to the
ground truth, but the structural details and general denoising
capabilities are also better than that from the GAN/LPIPS
loss. In addition, the training loss is extremely sporadic in
the GAN-based network compared to the stable, converging
pure LPIPS network (specific training loss curves are pro-
vided Appendix Figure 8 if the reader is interested). Hence,
I decided to move forward with training the pure LPIPS net-
work.

I selected hyperparameters using data from four scenes
(”chair,” ”drums,” ”ficus,” and ”hotdog”) as the training set,
and one scene (”lego”) as the validation set. I performed
several experiments with different hyperparameters. With
the Adam optimizer [17], a learning-rate of 1e-3 with be-
tas 0.9 and 0.999 yielded the best validation loss. For the
LPIPS loss function itself, the VGG backbone instead of the
AlexNet backbone yielded the best validation loss. A total
of 2 epochs for training yielded a very good validation loss,
with diminishing improvements in loss with further epochs

(see Appendix Figure 9 for the training and validation loss
of the final network). Since my dataset is not very large,
I was worried about overfitting, so I erred on the side of
choosing the lowest possible number of epochs (2 epochs),
while still achieving low loss.

3. Experiments, Results, and Discussion
3.1. Denoising Model Evaluation

To characterize the performance of the denoiser, after
being trained as described in the previous section, I eval-
uated PSNR, SSIM, and LPIPS metrics on all available
data before and after denoising, as summarized in Table
1. Note that average results from the scenes processed in
InstantSplat [7] are provided as a baseline for what really
good Gaussian Splatting results should look like. If the de-
noiser was perfect, the post-denoising metrics should be in
the same ballpark as the InstantSplat results, but we can see
that this is not the case. These quantitative results capture
high-level information across all scenes. Qualitative images
to visualize the denoiser outputs are provided in Appendix
Figures 10 and 11 if the reader is interested.

As expected, since the denoiser was trained on an LPIPS
metric, the LPIPS value decreased for all scenes, except the
”ship” test scene. Low LPIPS value is associated with high
image realism, correlating with human visual judgement
[10]. Similarly, SSIM increased for all scenes, except the
”ship” test scene. Like LPIPS, SSIM is also good at mea-
suring human-like visual similarity across images because
it assigns high scores to images that have similar structure,
and structure has been found to be the most important to hu-
mans when assessing the similarity of images. Since LPIPS
improved, it is not surprising that SSIM improved too. Fi-
nally, PSNR consistently decreased across all cases. PSNR
is a direct, pixel-wise comparison metric that is not well-
suited for human visual realism, but it is effective at cap-
turing the fine-grained similarity of pixel values between
images. As seen in the Appendix Figures, the denoised im-
ages tend to have a faded tint about them, explaining the
worsening of PSNR values.

Through this analysis, we can clearly see that the de-
noiser is not achieving its goal of filtering out the noise of
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Table 1. PSNR, SSIM, and LPIPS metrics evaluated on all 300 images from all 8 scenes before and after denoising (compared with known
ground truth images).

Scene Before Denoising After Denoising
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Train

Chair 18.867 0.814 0.187 17.284 0.832 0.176
Drums 14.078 0.727 0.311 13.301 0.773 0.261
Ficus 17.757 0.829 0.160 16.525 0.845 0.138

Hot Dog 18.694 0.829 0.260 15.114 0.831 0.224
Val Lego 16.258 0.716 0.281 13.610 0.731 0.258

Test
Materials 12.579 0.722 0.295 11.249 0.751 0.261

Mic 16.103 0.860 0.160 14.859 0.874 0.148
Ship 13.107 0.634 0.401 10.468 0.613 0.412

InstantSplat [7] Avg. Results 28.58 0.89 0.13 — — —

renders from a poor Gaussian Splatting model. Our denois-
ing model has learned how to improve LPIPS, but it does so
in a way that does not actually increase realism or accuracy
compared to ground truth. This is a limitation of the de-
noiser model, and potential modifications are discussed in
the Future Work section. Still, it is evident that the model,
as trained, does generalize across scenes, and is consistently
improving LPIPS, even for scenes that were not included in
the training set. This is with the exception of the ”ship”
scene, which is likely because the σ = 0.01 Gaussian noise
applied to all scenes may have been too much for this par-
ticular scene (this can be seen in the noisy ”ship” image in
Appendix Figure 11).

Overall, I will use this denoiser model as-is for future
experiments, since I can still use it to characterize other as-
pects of IGSR, while recognizing that the denoiser is sub-
optimal.

3.2. Limited-View Initialization

One aspect of the IGSR pipeline that is worth investi-
gating is the effect of initialization upon the overall results.
That is, for the initial Gaussian Splatting model (i = 0 in
Figure 1) whose renders are ultimately denoised for the iter-
ative process, I investigate whether a localized or scattered
initialization is more effective. In addition, this experiment
has an additional variable of using Top-2 Improvement vs
Top-2 Absolute selection criteria for dataset augmentation
(as described in the IGSR Methods section).

A localized initialization would be one where all im-
ages are from a similar viewpoint/camera pose (this was de-
termined qualitatively for the purpose of this experiment).
This type of initialization would ultimately lend itself best
towards single-view Gaussian Splatting. A practical exam-
ple of this type of initialization is in a single-robot naviga-
tion scenario, where the robot may only be able to capture
images from a limited viewpoint and would like to perform
state estimation and navigation within a Gaussian Splatting
environment. On the other hand, a scattered initialization is
one where all images are from completely different view-
points/camera poses (this was also determined qualitatively

for this experiment). This type of initialization is expected
to perform better within IGSR since there would be a bet-
ter representation of the overall scene. A practical exam-
ple of this type of initialization is in a scenario where there
are multiple, but sparse cameras to capture a snapshot of a
changing environment.

For this experiment, I manually held-out a single evalu-
ation dataset of 15 images that represented a wide-variety
of viewpoints across the scene. Metrics were computed for
camera poses corresponding to these 15 images as found
through DUSt3R [1] for consistency (recall that 15 images
was the max that DUSt3R could support without running
out of memory). Since we identified several shortcomings
of the denoiser in the previous section, I began with a scene
that was directly used for training the denoiser (”chair”
scene), I used 10 images from this scene as initialization,
and I only ran one iteration, for the best chance of mak-
ing IGSR work. If positive results were recovered, I would
proceed to evaluate test scenes and experiment with differ-
ent numbers of iterations and initial images. The overall
pipeline, the two selected images (the two small box pairs
in the figure) from the Top-2 Improvement and Top-2 Ab-
solute criteria, and qualitative results of an arbitrary ground
truth pose from the evaluation set, is summarized in Figure
6. Quantitative results containing PSNR, SSIM, and LPIPS
are shown in Table 2. Note that Iteration 1.1 and 1.2 cor-
respond to the Top-2 Improvement and Top-2 Absolute se-
lection criteria of unseen views for data augmentation, re-
spectively (these unseen views are different views than the
held-out evaluation set).

From Table 2, we can see that the only improvement in
metrics after an iteration are for PSNR and SSIM for local-
ized initialization, using the Top-2 Improvement selection
criteria. However, these values are poor compared to those
in InstantSplat. Also, the LPIPS metric worsened after an
iteration of IGSR. Even though the denoiser is known to
effectively improve LPIPS for a given image as found in
the previous section, it did not contribute to an improve-
ment in LPIPS of the overall evaluation in the framework
of IGSR. As discussed in the previous section, high PSNR
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Table 2. PSNR, SSIM, and LPIPS metrics for the ”chair” scene, evaluated on a subset of 15 held-out ground truth images, for a single
iteration. Iteration 1.1 and 1.2 correspond to using the Top-2 Improvement and Top-2 Absolute selection criteria, respectively, for dataset
augmentation of the next iteration. This table corresponds to the quantitative data associated with Figure 6.

Iteration 0 Iteration 1.1 Iteration 1.2
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Localized Initialization 11.259 0.567 0.427 12.555 0.590 0.448 11.140 0.561 0.431
Scattered Initialization 12.523 0.752 0.312 12.402 0.731 0.343 12.236 0.727 0.344

InstantSplat [7] (avg. results) 28.58 0.89 0.13 — — — — — —

Figure 6. IGSR with localized initialization vs scattered initializa-
tion of 10 images, for 1 iteration. Top-2 Improvement and Top-
2 Absolute selection are compared for dataset augmentation (se-
lected images are shown in small boxes). Note that the selected
ground truth image is from the evaluation set, independent of the
Top-2 selection criteria.

indicates strong correlation with the ground truth evaluation
poses at the pixel-level, and high SSIM indicates a similar
image structure to the ground truth. However, from Figure
6, we can see that neither of these is the case for any im-
age after an iteration of IGSR, and it can be deduced that
the increase in PSNR and SSIM values for localized initial-
ization and Top-2 Improvement selection criteria for data
augmentation was a matter of coincidence, where the faded
tint effect happened to help these metrics. For this reason,
the Top-2 Absolute criteria is actually preferred, since it en-
ables data augmentation with the best possible unseen ren-
dered images (pre- or post-denoising). Top-2 Improvement
criteria could only work better if the denoiser was accurate
to begin with.

Contrary to expectations, the scattered initialization per-
formed more poorly than the localized initialization, both
quantitatively and qualitatively. In fact, for the chosen
ground truth pose in Figure 6, it is apparent that the ren-
der from the initial Gaussian Splatting model that uses the
scattered initialization is completely wrong, and even out of

frame. This indicates that despite having better coverage of
the entire scene, DUSt3R had a hard time with extracting
camera poses due to the sparse nature of the inputs. As a re-
sult, the Top-2 selected poses from both criteria (shown as
the small images in Figure 6) were meaningless after being
denoised, since they were out of view and out of focus to
begin with. For this reason, localized initialization is pre-
ferred over scattered initialization.

Overall, a localized initialization and the use of the Top-
2 Absolute criteria is preferred. Note that the localized ini-
tialization case enjoyed the best LPIPS value overall for an
unseen image (pre-denoising) because DUSt3R was able to
generate higher confidence camera poses of the localized
region, leading to a more accurate Gaussian Splatting rep-
resentation in that region, and a higher chance that we could
augment the data with a good render (ideally on the pe-
riphery of our localized region). However, if not carefully
done, IGSR could propagate errors across iterations, espe-
cially since the Gaussian Splatting model was observed to
be extremely poor and noisy in regions that we did not have
an initialization image. With localized initialization, the
model does not know how to wrap around an object, and
it instead appears to have a warping/flattening effect. (With
scattered initialization, the model’s unseen poses were just
out-of-view or out-of-focus.)

3.3. Real Data Iteration

Since positive results were not recovered in the previous
experiment, further experimentation with number of itera-
tions and initialization images was not performed for the
synthetic scenes. To produce an additional datapoint, I de-
cided to not only test with fewer initialization images and
an additional iteration, but I also tested with real images of
an Apple AirPod taken on my iPhone 12. This experiment
is set up in the exact same way as the previous experiment,
taking 4 localized images for initialization, with 7 scattered
held-out evaluation images and 6 scattered ”unseen” images
(we extract unseen images at the pose associated with these
images). Top-1 Absolute is used as the selection criteria for
data augmentation, and for both iterations, this additional
image comes from the pre-denoised set.

Qualitative results are provided in Figure 7 (notice there
are white patches in the image because of the DUSt3R
[1] confidence thresholding described previously). Renders
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Figure 7. IGSR with localized initialization of 4 images for two iterations with real images of an Apple AirPod, taken on an iPhone 12
camera. Top-1 Absolute selection criteria was used for dataset augmentation for each iteration.

Table 3. PSNR, SSIM, and LPIPS metrics for a real data scene of an Apple AirPod, evaluated on a subset of 7 held-out images, for two
iterations. The Top-2 Absolute selection criteria was used throughout the process for dataset augmentation of the subsequent iteration.

Iteration 0 Iteration 1 Iteration 2
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Real Scene 15.448 0.707 0.573 15.216 0.724 0.575 14.195 0.677 0.597
InstantSplat [7] (avg. results) 28.58 0.89 0.13 — — — — — —

from the arbitrary ground truth image in the evaluation set
are shown at each iteration, and we can see that the renders
are at the wrong pose, though they do appear to become
slightly denoised with each iteration. As discussed with the
previous experiment, it appears this incorrect pose error is
propagated through IGSR iterations, though it is promising
how the images become less noisy over time. Quantitative
results are provided in Table 3, where all metrics are mov-
ing adversely across iterations, except for there being a brief
benefit in SSIM from at iteration 1. This is likely attributed
to the fact that the selected Top-1 Absolute image being in
the same distribution as the localized initialization images.

4. Conclusion and Future Work

In this project, I have designed an Iterative Gaussian
Splatting Refinement (IGSR) scheme that incorporates a
simple denoiser trained with an LPIPS loss upon a cus-
tom dataset that models noise in a poorly initialized Gaus-
sian Splatting model. Experimentation demonstrates that
a localized initialization and the Top-K Absolute selection
criteria (selecting the an unseen view with the best LPIPS
value pre- or post-denoising for data augmentation in the
next iteration) are preferred for IGSR, though error propa-
gation effects are observed when applied on real and syn-
thetic datasets.

In the future, since the weakest link is the denoiser, I
have many ideas to experiment with: incorporate a pixel-
wise loss during training since PSNR was the only metric
that degraded after denoising, backprop through a few lay-
ers of the LPIPS deep network backbone, test regularization
in the loss function or through dropout, use self-attention so

that the denoiser can attend over the entire batch so that the
generated image is self-consistent with the dataset. Though
unrelated to this specific project, when I was determining
how to construct the dataset, I noticed that training with an
abundance of images, but for only a short period of time,
resulted in a blurry dataset; this blur is alleviated with more
training, but perhaps using a super-resolution model instead
of longer training could result in faster overall training.

Finally, there are some important future considerations
before bringing IGSR to fruition. First, as noted in the scat-
tered initialization experiment, DUSt3R does not perform
as well, and it leads to faulty camera pose estimation. I
fear that the evaluation dataset camera poses may also have
suffered from this effect, so I would like to try generating
an evaluation dataset with significantly more data to verify
my results. Since DUSt3R is GPU limited, this would re-
quire a stronger GPU. Second, the current Top-K method
relies upon having access to ground truth images for met-
ric evaluation—this is not deployable in the wild, and we
could instead modify the selection criteria to be by close-
ness to existing poses, since IGSR will work best by ex-
tending the periphery of localized regions, as discussed.
Third, I am interested to explore how the denoiser works
at scale—maybe after nailing down a performant denoiser,
we could constructing a foundation model level Gaussian
Splatting denoiser, potentially leveraging diffusion models
in a way similar to [13] or [18]. Finally, I would like to test
on more scenes in the wild, perhaps using the Temples and
Tanks dataset [19] used in InstantSplat [7], or even extend-
ing to dynamic scenes.
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6. Appendix
6.1. Loss Plots

Figure 8. For the case of overfitting the ”lego” scene for 5 epochs, the top plot shows the GAN Training losses, with blue representing the
generator + LPIPS loss and orange representing the discriminator loss. The bottom plot represents the pure LPIPS network training loss.

Figure 9. Final training loss and validation loss of the LPIPS network after hyperparameter tuning. The validation loss was only calculated
once per epoch. The batch size was 4 and the number of training examples was 1200.
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6.2. Qualitative Images for Denoising Experiment

Figure 10. Ground truth (left), noised (middle), and denoised (right) images for ”chair,” ”drums,” ”ficus,” and ”hotdog” scenes. These
scenes were used for training the denoiser.
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Figure 11. Ground truth (left), noised (middle), and denoised (right) images for ”lego,” ”materials,” ”mic,” and ”ship” scenes. These scenes
were not used for training the denoiser (though the ”lego” scene was used as a validation scene for hyperparameter tuning).
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