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Abstract

In this paper, we propose a novel generative adversar-
ial network (GAN) based model for image colorization.
Our model incorporates semantic features extracted from
a pre-trained Inception-ResNet-v2 model to enhance the re-
alism of the colorized images. We compare our approach
to two baseline models: a convolutional neural network
(CNN) based model with semantic feature extraction (Deep
Koalarization by Baldassarre et al.) and a conditional GAN
model (pix2pix by Isola et al.) [4, 7]. Our experimental re-
sults demonstrate that our proposed method achieves strong
performance in terms of both quantitative metrics (PSNR
and SSIM) and visual quality.

1. Introduction
Image colorization is the process of assigning color val-

ues to each pixel of a grayscale image to obtain a colorized
version. Colorized images provide a better visual represen-
tation of reality. The ability to give color to grayscale im-
ages is therefore a highly desirable application of computer
vision. It has applications in the movie animation industry,
allows for efficient compression of security footage, and it
has also been used to colorize historical photographs [9].
Image colorization is a multi-modal problem: one target
can have multiple appropriate colors. A T-shirt, for exam-
ple, can be reasonably be colored blue, red or virtually any
color. The task to give a computer a black and white image
and produce a plausible colorization that could potentially
fool a human observer remains and interesting and complex
problem as well as an ongoing area of research.

For this project, we seek to develop a model that can col-
orize black and white images in a way that is realistic to the
human eye. We will do so by building a generative adverse-
rial network (GAN) that incorporates semantic features. We
will use the Inception-ResNet-v2 with pretrained weights to
extract high-level semantic features, and incorporate those
features into a U-Net generator. We will do this with the
purpose of enhancing existing colorization techniques.

The input to our algorithm is a 1-channel grayscale im-

age. We then use our GAN model to output a predicted
colored image with 3-channels.

2. Related Works
Several approaches to colorizing black and white images

have been proposed across the years, including the use of
convolutional neural networks (CNNs), generative adver-
sarial networks (GANs), and transformers [9].

Colorization models learn prediction functions from
large datasets of color images at training time, posing the
problem as either regression onto continuous color space [8]
or classification of individual pixels into quantized color
values which are then trained to minimize the error between
the output and the ground truth [4].

2.1. Convolutional Neural Networks

CNN-based colorization models frame the colorization
problem as a classification task [8]. They use a Euclidian
(L2) loss to label each pixel in a grayscale image (L) to its
corresponding color values (a, b) labels [13, 8].

CNNs with a naive pixel-wise loss function of this kind
show moderate success. Although this method performs
well for natural image colorization, its application is largely
limited by the need to use reference images [9]. Addition-
ally, the loss is not robust to the multimodal nature of the
colorization problem, these models tend to assign only one
color to the same object, whereas in practice there are mul-
tiple potential colors [8]. Models with these types of loss
functions will generate blurry, grayish results and bland out-
puts in an effort to minimize the Euclidean distance between
the predicted and ground truth pixel value [7].

CNN-based colorization methods usually require a large-
scale dataset of reference images to train the learning model
to realize image colorization. However, it is difficult to ob-
tain the image dataset containing all the objects to train the
neural network model in the actual training process, which
greatly limits the performance of this method [9].

2.2. Generative Adversarial Networks

GANs, first proposed in 2014 [5], show promising re-
sults in addressing multimodal problems. GANs consist
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of two neural networks—a generator and a discrimina-
tor—trained adversarially. The generator network takes in
random noise as input and trains to create outputs that can-
not be distinguished from “real” outputs by the adversari-
ally trained discriminator. The discriminator is trained to
detect the generator’s “fakes” as best it can. This adversarial
training allows the generator to learn and produce increas-
ingly realistic data samples.

Generative models such as conditional GANs have thus
entered the field as a general-purpose solution to image-to-
image translation and that is particularly suitable for im-
age colorization [9, 8]. Instead of generating images from
random noise, conditional GANs are given a condition to
generate an output image [6]. In colorization models, the
grayscale image is the condition for colorization. Pix2Pix
is a conditional-GAN that exclusively takes images as the
condition [7]. It is a widely used model used to adress
image-to-image translation problem like colorization [11].
This seminal paper not only motivated us to adopt a cGAN
approach for our model but also provided valuable insights
for our implementation.

GAN-based colorization models generally produced re-
sults that were more vibrant and lifelike outcomes com-
pared to convolutional neural networks (CNNs) [7].

2.3. Incorporating Semantic Meaning into CNN

Several papers noted that extracting semantic informa-
tion from the models input could be valuable in producing
more realistic outputs [8, 7]. The semantics of the scene
and its surface texture can provide ample cues for how to
colorize different regions of an image. Grass is typically
green, the sky is typically blue, and tree trunks are always
brown. Even in cases where many possible colors exist, an
object semantics can provide some guidance: cars can be
white, blue, red and many other colors, but they are sel-
dom pink or orange. Baldassarre et al. created a model
that uses explicit semantic feature extraction to insert into
the model [4]. Their approach involves fusing the Incep-
tion embedding with the output of the convolutional layers
of the encoder, effectively inserting these embeddings in the
center of the U-Net structure. Their model was often able
to produce convincing results, but still struggled to color
objects with a wider range of acceptable colorings, and as-
signed these grayish tones [4].

3. Problem Statement
The goal for this project is to generate realistic coloriza-

tion of black and white images to the human eye. We aim to
do so by developing a a GAN model that also incorporates
semantic features by combining a deep convolution neural
network.

We will train this model from scratch with high-level
features extracted from the Inception-ResNet-v2 pre-trained

model. Our generator will be based on the model outlined
by Baldassarre et al., the ”Deep Koalarization” model [4],
which employs CNNs and Inception-ResNet-v2.

To our knowledge, the combination of a generative ad-
verserial network with semantic feature extraction via the
Inception-ResNet-v2 has not been implemented for the pur-
pose of colorization before. We aim to implement such a
model with the purpose of improving the realism of col-
orization.

4. Data and Features
4.1. COCO Dataset

We will train this model on the COCO dataset. The
COCO (Common Objects in Context) dataset is a large-
scale dataset containing 330,000 images with annotations
for object detection, segmentation, and captioning. It is
widely used for training and evaluating computer vision
models, particularly in object detection, segmentation, and
captioning tasks. The dataset includes over 1.5 million ob-
ject instances across 80 object categories and each image
has 5 different captions describing the scene.

4.2. Inception-ResNet-v2

Inception-ResNet-v2 is a deep convolutional neural net-
work architecture that combines the Inception network
with residual connections, replacing the filter concatena-
tion stage of the Inception architecture first proposed by re-
searchers at Google in 2016. The network is pre-trained
on the ImageNet dataset, allowing it to classify images into
1000 object categories. Inception-ResNet-v2 can be used
for various computer vision tasks, such as image classifica-
tion, object detection, and transfer learning.

4.3. DeepLabV3-ResNet50

DeepLabV3-ResNet50 is a fully concolutional neural
network designed for semantic segmentation. It uses pre-
trained ResNet models as the backbone feature extractor, as
well as the Atrous Spatial Pyramid Pooling (ASPP) module
to robustly segment objects at multiple scales. DeepLabV3-
ResNet50 also uses dilated convolutions to capture multi-
scale information and control the resolution of feature maps.
DeepLabV3-ResNet50 model we are using is trained on
a subset of COCO, using only the 20 categories that are
present in the Pascal VOC dataset.

4.4. Data Pre-processing

In order to train the GAN model on our images to follow
this mapping we preprocess the data as follows: we resize
the images to be of width and height 256 × 256; perform a
random horizontal flip on training images as a way of aug-
menting the data; convert each RGB image into Lab color
space; generate training data in the form of pairs of images
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{L, ab}, where L and ab are two different depictions of the
same underlying scene; L is the grayscale version of the im-
age and ab are the two corresponding color channels; con-
vert L to [−1, 1]; convert a, b to [−1, 1].

4.5. CIE L*a*b* Color Cpace

The images in the datasets are RGB. However, The col-
orization problem is generally posed in the CIE L*a*b*
color space. In this colorspace, grayscale images can be
represented using a singular channel, the channel L. Mean-
while, RGB requires all three of its channels to represent the
image in color and in grayscale. A colorization model in the
CIE L*a*b* color space, converts an input XL ∈ RH×W×1

into an output XL ∈ RH×W×3 creating a mapping F such
that F : XL → (Xa, Xb) allowing the colorization problem
to be posed as a one-to-two mapping as opposed to three-
to-three.

5. Methods
For this project, we aim to improve the quality of col-

orization of black and white images. We will develop a
cGAN based on the pix2pix model. We will edit the gener-
ator structure to incorporate semantic meaning based on the
model created by Baldassare et al. [4], which combines a
CNN with the Inception-ResNet-v2 pre-trained model (Fig-
ure 1). We will use Baldassare et al.’s ”Deep Koalarization”
model as a baseline model with which to compare our re-
sults [4].

5.1. Baseline method 1: "Deep Koalarization" by
Baldassare et al.

The model created by Baldassarre et al. inserts explicit
semantic feature into their model by combining a deep Con-
volutional Neural Network trained from scratch with high-
level features extracted from the Inception-ResNet-v2 pre-
trained model. It is a U-Net generator with an Inception-
ResNet-v2 fused into the layer between the encoder and de-
coder (Figure 1).

They find the optimal model parameters by minimizing
an objective function defined over the estimated output and
the target output. To quantify the model loss, Mean Square
Error is employed between the estimated pixel colors in
a*b* space and their real value. For a picture X, MSE is
calculated as described in equation (1).

C(X,θ) =
1

2HW

∑
k∈{a,b}

H∑
i=1

W∑
j=1

(
Xki,j

− X̃ki,j

)2

(1)

θ represents all model parameters, Xki,j and X̃ki,j de-
note the i, j-th pixel value of the k-th component of the tar-
get and reconstructed image, respectively. This can easily

Figure 1. An overview of the generator network architecture

be extended to a batch B by averaging the cost among all
images in the batch, i.e. 1

|B|
∑

X∈B C(X, θ).
While training, this loss is backpropagated to update the

model parameters θ using Adam Optimizer [3] with an ini-
tial learning rate η = 0.001. During training, they impose a
fixed input image size to allow for batch processing.

Their model was often able to produce convincing re-
sults, but still struggled to color objects with a wider range
of acceptable colorings, assigning these grayish tones. The
models success-cases showed that semantic information can
be a useful addition to colorization models as suggested by
literature [8, 7]. Its often bland outputs and underperfor-
mance in coloring objects with multiple possible colorings
inspired our research to see whether an adversarially trained
model would fare better. This paper informed our decision
to choose the Inception-ResNet-v2 pre-trained model as a
feature extractor to incorporate into our model, its techni-
cal implementation of the fusion has also informed the way
we envision incorporating semantic meaning into our GAN
generator. Baldassare et al.’s model will serve as the base-
line against which we compare our results.

5.2. Baseline method 2: pix2pix by Isola et al.

Isola et al.’s seminal pix2pix model paper is widely used
in generative image-to-image tasks [9]. It is particularly
popular because it is not application specific, and is there-
fore well suited for a variety of tasks [7]. pix2pix is a con-
ditional GAN that uses a skip-connections generator with a
“U-Net” based architecture and a convolutional PatchGAN
classifier as a discriminator [7]. It uses concatenated skip
connections to pass on low-level information between the
input and output in the generator. The PatchGan descrim-
inator only penalizes structure at the scale of patches We
will be adapting the general-application pix2pix model and
adapt it to our colorization task, incorporating into it our
generator with embedded semantic information. The model
uses an adversarial loss which can be expressed as:

LcGAN (G,D) = Ex,y[logD(x, y)]+

Ex,z[log(1D(x, G(x, z))]
(2)

The model additionally utilizes an L1 loss, to also train
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Table 1. A summary of the network structure for the generator,
influenced by Baldassare et al. LEFT: the encoder network, MID-
DLE: fusion network, RIGHT: decoder network. Each convolu-
tional layer utilizes a ReLu activation function, except for the final
layer which utilizes a hyperbolic tangent function. The feature
extraction branch mirrors the architecture of Inception-Resnet-v2,
excluding the last softmax layer. Our model’s additional layer is
highlighted in red.

the model to minimize distance from the ground truth:

LL1
(G) = Ex,y[|| y −G(x, z) ||1] (3)

The final objective of the pix2pix model, to minimize the
sum of the two losses, can be defined as follows:

G = arg min
G

max
D

LcGAN(G,D) + LL1
(G) (4)

5.3. Our method: Inception-GAN Architecture

In the above section, we detailed the architecture of the
GAN for our baseline model. This section will delve into
the specifics of the model we developed, comprised of a
1) U-Net generator with an Inception-ResNet-v2 fused into
the layer between the encoder and decoder 2) a PatchGAN
descriminator.

5.3.1 Architecture of the Generator Network

The generator comprises four primary elements: an en-
coder, a decoder, a fusion layer, and a high-level feature ex-
tractor. For the latter, we’ve opted for the Inception-ResNet-
v2 model, leveraging pretrained weights trained on the Im-
ageNet dataset (Figure 1).

5.3.2 Encoder

After data is preprocessed, the Encoder processes grayscale
images of dimension H × W . It outputs a H/8 × W/8 ×
512 feature representation. In order to do this, it utilizes 9
convolutional layers with 3 × 3 kernels. The encoder uses
padding to preserve the layer’s input size. Before the first
layer, it resizes the images to 256 × 256 pixels and stack
three of them to get three channels, it subsequently inte-
grates integrated the COCO ResNet model, which contains
21 classes to produce a tensor of dimensions 24×256×256.
Layers number 2, 4 and 6 apply a stride of 2, which halves
the dimension of their output and decreases the number of
required computations. The addition of the COCO ResNet

model at the beginning of the network and the first 24×3×3
convolutional layer is original to this model (see Table 1).

5.3.3 Feature Extractor

Higher-level features, such as ”outdoor scenery” or ”night-
time setting,” provide valuable image details utilized during
the colorization procedure. To derive an image embedding,
we utilized a pre-trained Inception-ResNet-v2 model. The
feature extractor resizes the images to 299× 299 pixels and
stack three of them to get three channels as input to the In-
ception model. The modified image is fed into the network
and the output from the final layer preceding the softmax
function is retrieved. This process yields a 1001 × 1 × 1
embedding.

5.3.4 Fusion

The fusion layer integrates the feature vector extracted by
Inception by replicating it HW/82 times and appending it
to the feature volume produced by the encoder along the
depth axis (Fig. 3). This results in a unified volume con-
taining both the encoded image and mid-level features, with
a shape of H/8 ×W/8 × 1257. This repetition and fusion
across the volume of the encoder output ensures a uniform
distribution of the semantic information across all spatial
regions of the image. Finally, we apply 256 convolutional
kernels with dimensions of 1×1, yielding a feature volume
of H/8×H/8× 256.

5.3.5 Decoder

Ultimately, the decoder processes this H/8×H/8×256 vol-
ume through a sequence of convolutional and up-sampling
layers to yield a final layer measuring H × W × 2 in di-
mensions. Up-sampling is achieved using a straightforward
nearest neighbor approach, effectively doubling the height
and width of the output compared to the input.

5.4. PatchGAN (Markovian) discriminator

To model high-frequencies, we use a discriminator archi-
tecture called PatchGAN or Markovian Discriminator that
only penalizes structure at the scale of patches. The dis-
criminator attempts to classify each patch as real or fake. It
operates convolutionally across the image, aggregating re-
sponses to produce the final output of D. The discriminator
treats the image as a Markov random field, assuming inde-
pendence between pixels separated by more than a patch di-
ameter. While L1 and L2 loss tend to produce blurry results
in image generation problems [1] and generally fail to pro-
duce high-frequency sharpness, they do often capture low
frequencies accurately. This is why the GAN discrimina-
tor focuses on solely represent high-frequency patterns, de-
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Figure 2. Results from Batch 16 training on test set

Figure 3. Training loss. Discriminator training faster than GAN
before changes

pending on an L1 term to ensure accuracy in low-frequency
components (Eqn. 4).

5.5. Pretraining the generator

Inspired by Youssef [12] and Ledig et al. [2], we chose
to separately pretrain the generator in a supervised and de-
terministic way. We did this to avoid the problem of ”the
blind leading the blind” that can occur in GANs, where
at when training starts, neither generator nor discrimina-
tor have learnt to do their tasks well. The generator is pre-
trained with L1 loss to colorize images. It is trained for 20
epochs with a learning rate of 1e-4.

5.6. Optimization

To optimize our networks we alternate training D, and G.
As suggested in the original GAN paper G is trained to max-
imize log D(x, G(x, z)) instead of to minimize log(1 - D(x,
G(x, z)). For every 5 gradient descent steps that G takes,
D takes one. This is meant to slow down the rate at which
D learns relative to G. We train on 10,000 randomly chosen
images (training = 8,000, validation = 2,000) for 15 epochs
and use minibatch SGD using the Adam optimization algo-
rithm, with a learning rate of 2e-4 for both the generator and
the discriminator, and momentum parameters 1 = 0.5, 2 =
0.999.

Figure 4. Ablation studies and comparison to baseline on test-set
(64 batches and trained for 15 epochs on 10,000 COCO images)

Table 2. PSNR and channel-wise SSIM for ablation studies and
comparison to baseline

5.7. Experiments

During training, we noticed the discriminator outpaced
the generator. We attempted to change the learning rate
but found this to be ineffective, likely because we used the
Adam optimizer which is a self-tuning algorithm [3]. Be-
cause of this, we retained Baldassare et al.’s recommended
rates (2e-4 learning rate, betas of 0.5 and 0.999) for both
generator and discriminator and slowed the discriminator
by altering the frequency of discriminator updates relative
to the generator. Updating the discriminator once for ev-
ery five generator updates yielded optimal results. Batch
sizes of 16 and 64 were tested for pre-training and train-
ing, with 64 proving most effective. The original pix2pix
model, which uses noise via dropout layers in the generator
architecture [7]. We trained the model with dropout layers
with probability 0.2 and 0.5 and with no dropout and ulti-
mately found that the model worked best without dropout.
Recent research by the author suggests dropout isn’t essen-
tial for colorization models. They noted the grayscale input
still provides ample information for the generator to pro-
duce compelling results, but that the outputs are more de-
terministic [7, 10]. We also experimented with adding con-
catenating information from DeepLabV3 trained on COCO
before an initial convolutional, which seemed to help with
color droplets on the produced images.
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Table 3. Losses for batches at first and last epoch

6. Discussion

6.1. Quantitative Evaluation of the Results

While ultimately the performance of the model is best
judged by the visual quality of the results, quantitative met-
rics can act as a helpful proxy to help us evaluate or model
and observe macro trends in its behavior. We can see the
from the table above that using a 64 batch was able to keep
the discriminator at a loss of around 0.5, which is the opti-
mal since the discriminator should assign equal probability
(0.5) to real and generated (fake) samples. We can also see
that the generator loss is much lower for batch 64, and we
can observe this qualitatively in the quality of the results
as well (Figure 2). The image quality assessment metrics
were used as a quantitative measure of colorization accu-
racy. We chose the SSIM (Structural Similarity Index Mea-
sure) and PSNR (Peak-Signal Noise Ration) for their pop-
ularity amongst other colorization research papers, though
many noted that manual inspection was the best assessment
method for colorization results [7, 9]. We took the average
channel-wise SSIM of 100 randomly sampled images col-
ored using our model. The average for the 100 pictures was
then presented as a result.

6.2. Qualitative Evaluation of the Results

Some examples from our test results on COCO can be
found in Figures 4 and 5. We saved images from the test
set of our last epoch and chose to display a variety of the
most interesting results over different objects and settings.
We found that batch 64 produced more accurate results, and
that our model performed similarly to the pix2pix model,
at times even creating more colorful outputs (see pizza on
Figure 2). The trained generator produced brownish, dull
outputs, showing that the adversarial training was an im-
provement on the simple CNN with Inception introduced
by [4]. Pretraining considerably improved the quality of re-
sults. The addition of the COCO inception with semantic
information at the beginning of the model seems to have
improved the precision of the colorings. Both on the teddy
bears and the pizza, the color in our model is well colored
throughout the object, rather than just the center.

Our model was exceptionally good at detecting and col-
oring human faces. It’s ascribed colors generally respected
object boundaries. It was well capable of coloring natu-
ral objects such as the tree and the grass but still had some

Figure 5. Succesful colorizations. (1) Succesful color ascription to
clothing. (2) Semantic segmentation of bananas. (3 and 4) People.
(5) Well colored flower, boundaries well respected.

difficulty coloring objects with many possible colors such
as clothing (with some exceptions, see Figure 5). The fact
that the model colors some but not all clothing items sug-
gest that it might yet be able to recognize them, suggesting
that further training could fix the issue. The model excelled
at coloring interiors, of which the COCO dataset had many
examples and which generally do not have much variation
in color, and often have many wooden elements. The colors
images it generated were realistic but not necessarily close
to the ground truth. Proving that adversarial training led the
model to learn realistic colorings rather than just minimiz-
ing loss. The model’s aptitude at identifying and coloring
people is likely due to the class imbalance that characterizes
the COCO dataset. Of the 80 classes it contains, ”person” is
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Figure 6. Class imbalance in the COCO dataset

Figure 7. Common Errors. (1) Color Blotches (2) Streaks, no color
for clothing (3) Green assigned to all surroundings.

by far the most common (Figure 6). This is a promising sign
that the model would learn to colorize other objects well if
trained on a larger dataset and for more epochs.

6.3. Error Analysis

Manual inspection of the model results on the test set
provided us with insights on what the model was having
difficulty with. Figure 4 shows a collection of failed col-
orizations. We can see that the GAN is still somewhat “shy”
about coloring clothing items and often leaves this to be a
gray and brownish color, with some exceptions. We found
that during training, the model was able to ascribe color
to areas where classifications model would have been less
willing to. In Figure 8 we can see that in epoch 14 the road
is colored green and man’s pants are colored blue. In epoch
15 the model corrects and leaves the image mostly gray.
The model is still penalized for the unrealistic coloring, but
the fact that on epoch 14 the model ascribed such strong
colors suggests that it believes it can create realistic outputs
with strong colorings and does not gray out images entirely,
unlike classification models like ”Deep Koalarization.” We
can also observe some streaks of “bleeding” in the images,
colors that are not supposed to be there (for example the
pink vertical line on Figure 7(2)) and some over-ascribed
colors, such as the entirely green surroundings in 7(3).

Figure 8. (1) Epoch 14 (2) Epoch 15. (3) Ground Truth. Model
producing boldly colorized outputs at late iterations

Figure 9. pix2pix colorization model trained on 1.2 million Ima-
geNet images for 3 epochs ‘[7]

6.4. Semantic information

From Figure 5(1) and 5(3) we can observe that our model
has learnt semantic information. The models learned that
grass and trees are green and that the bananas are yellow.
It is also able to distinguish the background from buildings
and objects. In our results we can also see that the model
is able to recognize human faces and colors them with a
beige, pinkish tone.It is even able to adequately color the
pizza and teddy bears on Figure 4. However, some objects
like the clothing in Figure 7(2) and the furniture in 5(2) have
not been learned and are left uncolored. We believe that
training on a larger dataset, would allow our model to learn
more objects and settings and their corresponding colors.

6.5. Conclusion

In this work, we compared the quantitative and qualita-
tive results of colorization tasks using a GAN with a gen-
erator that incorporates semantic feature extraction via the
Inception-ResNet-v2. For our experiments, we draw the
following conclusions:

• Our GAN produced convincing results when trained
on 64 batches for 15 epochs with a pre-trained gen-
erator, showing that semantic feature extraction can
be succesfully added to adversarially trained models.
It was particularly succesful at identifying and color-
ing people, which is an overrepresented class on the
COCO data set. This suggests that the model was
effectively incorporating semantic segmentation as is
also suggested by its ability to identify and color ob-
jects like bananas. These results also suggest that the
model has the potential to perform well on a wide va-
riety of objects if trained on a larger dataset.
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• Our adversarially trained model performed much bet-
ter than the pretrained generator with Inception-
ResNet-v2 based on the model Baldassare et al. The
adversarial training led to the model producing more
colorful results that looked brighter and more realistic,
whereas images generated by Baldassare et al.’s model
and the pretrained generator had much dimmer outputs
caused by averaging the colors to minimize loss [4].
The adversarial training created mroe realistic results
with brighter colors.

• Our model performed convincing colorization and was
only trained on 10,000 images for 15 epochs. The
pix2pix colorization model was trained on 1.2 mil-
lion training images for 3 epochs and produced highly-
convincing colorization outputs (see Figure 9). Our
model’s high performance on its testing set with com-
paratively a lot less training data is a promising sign
that it would produce even better results if similarly
trained. Further research could compare the speed at
which our model and pix2pix trained on ImageNet
achieve good results, as well as comparing the qual-
ity of the outputs.
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