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Abstract

The corpus of Sumerian texts represents the birth of
writing, a written tradition spanning 3,000 years, and
a rare union of textual and material artifact. More
than 120,000 have been uncovered to date; these texts
provide a ground-level view of the most foundational
chapters in the story of human civilization. However,
learning to read Sumerian takes years of specialized
training. With so many texts and so few experts capable
of reading them, many have yet to be read. Moreover,
only a handful have accessible translations, preventing
non-specialists from engaging with the vast majority of
the corpus. A set of deep learning-based tools could
enable Sumerologists to parse and translate the corpus
quickly, accurately, and at scale.

In this paper, I introduce SumTablets_Photos1, the
first dataset of image–Unicode glyph sequence pairs.
Then, I use this dataset to train a model on an optical
character recognition (OCR) task: given an input im-
age, it autoregressively generates the represented Uni-
code glyphs. This model, Img2SumGlyphs, combines
a fine-tuned version of the vision transformer (ViT)
encoder used in TrOCR and XLM-R decoder in an
encoder–decoder architecture. Img2SumGlyphs is the
first Sumerian OCR model and establishes a baseline
performance of 35.41 character error rate (CER) on a
held-out test set to be improved upon in future work.
Altogether, this work sets the foundation for a new
approach to Sumerology—one which promises to soon
make the earliest writing accessible to everyone.

1. Introduction
Sumerian is the earliest attested written language.

Originating in southern Mesopotamia (modern-day
Iraq south of Baghdad) around 2900 bce, Sumerian
continued to be written for another 3,000 years. In the
third millennium bce, it was primarily used for admin-

1Published on Hugging Face

Figure 1. An administrative Sumerian cuneiform tablet
from Shuruppak (mod. Tell Fara), dated to the Early Dy-
nastic IIIa period (ca. 2500 bce). [4]

istration and royal inscriptions. And although many
believe that Sumerian went extinct as a spoken lan-
guage around 2000 bce, Babylonian scribes nonethe-
less continued to use Sumerian as the preferred writ-
ten language of literature, liturgy, mathematics, sci-
ence, and other cultic or scholastic contexts. Today we
call their writing system “cuneiform” (from the Latin
cuneus “wedge” due to the wedge-like components of
glyphs). Cuneiform was originally devised to encode
Sumerian but was later adapted to encode more than
a dozen languages throughout the Near East. Because
cuneiform texts were written on durable materials like
clay and stone, they have survived to the present in
tremendous quantity [9], with more than 120,000 of
these being Sumerian.

Yet despite the abundance of Sumerian texts, access-
ing their contents remains a significant challenge. The
struggle to fully decipher the language continues to this
day, and even for those who have spent years learning
Sumerian, reading is slow and laborious. Sumerolo-
gists read and collaborate in the medium of transliter-
ation, a conventional system for rendering glyph read-
ings phonetically in the Latin alphabet [18]. As a re-
sult many transliterations are available online, but ex-
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ID Image (Input) Glyphs (Target) Period Genre

P105897 Ur III Administrative

<SURFACE>
𒁹𒃢𒊺
𒍝𒇻
𒁹𒃢𒀀𒈝
𒌓𒐌𒄰
𒆠𒀊𒁀𒊷𒂵𒋫
𒈾𒈜

Table 1. A sample row from SumTablets_Photos. The model takes as input an image, encodes it using a ViT, autoregressively
generates glyphs using an XLM-R model, and the generations are compared against the true targets. Glyph sequences also
contain structural information, retained through the use of extra-semantic special tokens such as <SURFACE> and \n. While
the dataset also includes photos, I limit the scope of model training and evaluation here to only lineart images.

ceedingly few translations are available. The lack of
available translations prevents non-experts, from the
general public to generalist historians, from engaging
directly with these texts.

Deep learning tools have the potential to address
these challenges by enabling Sumerologists to translit-
erate and translate new tablets far more rapidly than
ever before, focusing on verifying the generations rather
than creating each new transliteration and translation
from scratch. Furthermore, these language models
would enable a positive flywheel of data quality: Ex-
perts can efficiently review discrepancies between the
source and generation, as well as low-confidence pre-
dictions; retraining the model with improved data and
regenerating predictions leads to a new set of items to
review, and so on—rapidly improving the quality and
consistency of the data. However, progress on apply-
ing NLP to the sub-tasks in reading Sumerian has been
limited by the lack of standardized, structured data.

The most plentiful data for tablets are translitera-
tions (published by Sumerologists) and images (pub-
lished by museums). This data is not immediately
suited to any OCR or NLP task: Because each glyph
has dozens of possible readings depending on the con-
text, the most sensible and observable process is to
have separate models and datasets dedicated to glyph
extraction, transliteration, and translation. But al-
though cuneiform began to be added to Unicode in
2006, it has not been widely utilized because of inef-
ficient input. No textual representation of the glyphs
previously existed.

To address this issue, I create and publicly release
SumTablets_Photos, the first dataset that pairs images
of tablets with Unicode representations of the glyphs.
It comprises 79,633 image–glyph pairs, and a total
of 6,592,453 glyphs. Of these pairs, 36,891 are lineart
images (as in Table 1) and 42,742 are photos (as in

Figure 1). I create this dataset by cleaning and stan-
dardizing available transliterations and working back-
wards to each reading’s source glyph. This dataset en-
ables the development of optical character recognition
(OCR) models that learn to extract Unicode representa-
tions of glyphs present in images, a necessary first step
for subsequent transliteration and translation models.

I use SumTablets_Photos to train an OCR model,
Img2SumGlyphs, which combines TrOCR’s vision
transformer encoder with a pretrained XLM-R decoder.
Img2SumGlyphs achieves a state-of-the-art character
error rate (CER) score of 35.41. With the release of
this dataset, definition of the task, and establishment
of baseline results, this work sets the foundation for ap-
plying recent advances in deep learning to the world’s
most ancient corpus.

2. Related Work

2.1. Machine learning and Sumerian

To the best of my knowledge, this work is the first
to attempt any sort of Sumerian OCR system. Prior
applications of machine learning techniques to Sume-
rian have trained models to extract Part of Speech
(POS) and Named Entity Recognition (NER) informa-
tion from Sumerian cuneiform [3], translate Sumerian
to English [19], and align Sumerian transliterations
with images of tablets [6]. Deep learning models have
found success in restoring fragmented ancient texts [2],
with some models being applied to predict missing
Sumerian transliterations from Neo-Babylonian texts
[8]. Only one other work [10] has utilized cuneiform
Unicode, doing so to develop a transliteration model
for Akkadian. Jauhiainen et. al [13] build a dataset
for language identification from images of cuneiform
glyphs, but do not attempt further glyph identification.
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2.2. Vision transformers

My Sumerian OCR model utilizes a vision trans-
former (ViT) for the encoder, which has recently
emerged as a powerful architecture for learning effec-
tive image representations. Transformers [20], origi-
nally developed for NLP, eschew the recurrence and
convolutions that were previously ubiquitous in neu-
ral networks for sequential data. Instead, they rely
on attention mechanisms that models interactions be-
tween elements of the input sequence. Dosovitskiy et
al. [7] showed that transformers can also be applied
to image recognition by splitting the image into a se-
quence of patches and providing the sequence of linear
embeddings of these patches as input to a transformer
encoder. ViTs have since achieved state-of-the-art re-
sults on many computer vision benchmarks [11].

Most importantly for this work, Li et al. [15] devel-
oped TrOCR for handwritten and printed text recog-
nition, combining a ViT encoder initialized from a
pretrained BEiT, the weights of the decoder initial-
ized from a pretrained RoBERTa, the cross-attention
weights randomly initialized, and then fine-tuning on
millions of real or synthesized examples of handwriting.
Their results outperformed prior methods for handwrit-
ing recognition.

2.3. Multilingual modelling

Sumerian is a difficult language to computationally
model, as it is both a language isolate and is low-
resource. However, large pre-trained multilingual mod-
els can learn powerful internal representations of gen-
eral language features, transferring these learnings to
quickly adapt to languages like Sumerian. The effi-
cacy of cross-lingual representations in models such as
XLM-R [5], mBART [16], m-T5 [16], and BLOOM [14]
is demonstrated by their performance in zero- and few-
shot cross-lingual benchmarks such as XTREME [12]
and MEGA [1].

3. Methods
3.1. Model Architecture

To perform optical character recognition (OCR)
on images of Sumerian cuneiform tablets, I train
a sequence-to-sequence model called Img2SumGlyphs
that combines a vision transformer (ViT) encoder with
an XLM-R decoder. The model architecture based
on TrOCR [15], a transformer-based encoder–decoder
OCR model that has achieved state-of-the-art results
on handwritten and printed text recognition bench-
marks. The encoder is initialized from a BEiT vision
transformer pre-trained on ImageNet. Vision trans-
formers [7] have recently emerged as a powerful alterna-

tive to the traditional approach of using convolutional
neural networks for image recognition tasks. A ViT
takes as input an image of size 3×H ×W and splits it
into a sequence of fixed-size patches. These patches are
linearly embedded, supplemented with positional em-
beddings, and then fed into a standard transformer en-
coder architecture. The encoder outputs a sequence of
image patch embeddings. Concretely, the ViT encoder
used in Img2SumGlyphs splits the image into patches
of 16 × 16 pixels, and the encoder has 12 layers with
hidden dimension 768.

The decoder is an XLM-R transformer model [?] pre-
trained on a large multilingual corpus spanning 100 lan-
guages. XLM-R extends the multilingual BERT model
to incorporate more languages and a larger training
dataset, achieving state-of-the-art cross-lingual perfor-
mance. Although Sumerian is a language isolate, it
shares independent grammatical features with many
languages that are included in XLM-R’s pretraining
dataset. For example, Sumerian is agglutinative like
Turkish, and has a split-ergative alignment like Basque.
Both of these languages—and other relevant ones—are
included in the pre-training dataset. Utilizing these
representations is crucial for learning the patterns be-
tween glyphs. At each decoding step t, the XLM-R
decoder takes the ViT encoder outputs and the embed-
ding of the previous output glyph gt−1 and predicts a
probability distribution over the current glyph gt:

gt = softmax(XLM-R(ViT(x), gt−1))

where x is the input image. The decoder has 12
layers, 12 attention heads, and an intermediate di-
mensionality of 3072. The model is trained end-to-
end with a standard cross-entropy loss to maximize
the log-likelihood of the ground truth glyph sequence
G = (g1, . . . , gT ) conditioned on the input image:

L = −
T∑

t=1

log p(gt|g<t, x)

I use Hugging Face libraries for dataset management,
model instantiation, and training. Before training end-
to-end, I initialize a pretrained XLM-R model and fine-
tune it on the glyph data with a causal language mod-
elling (CLM) objective. This both facilitates a warm-
start where the representations are more tightly aligned
with the patterns in Sumerian, and it allows me to take
advantage of a fair amount of glyph data for which
there are no associated images and thus will not be
seen during end-to-end training. I also utilize a custom
glyph tokenizer with a vocabulary size of 632 tokens
(621 unique Unicode glyphs plus eleven special tokens).
Resizing the embeddings of the XLM-R model drops
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the number of trainable parameters from 306M to 86M.
I initially train the decoder with all layers frozen ex-
cept for the embedding layer so that the embeddings
may adjust appropriately without disrupting the inter-
nal representations.

I then initialize a pretrained TrOCR model
“microsoft/trocr-base-handwritten” and replace the de-
fault decoder with the one pretrained on glyphs. This
combination allows the model to build upon both the
visual representations learned by the ViT during pre-
training on a large dataset of images and the multi-
lingual and language-specific knowledge captured by
XLM-R, adapting both components to the specific do-
main of recognizing Sumerian cuneiform.

The input images are resized to a fixed size of
384 × 384 pixels and normalized before being fed into
the ViT. Before resizing the images, I pad either left
and right sides or the top and bottom sides, depend-
ing on whether the image is portrait (most common)
or landscape, respectively. To mitigate overfitting
and create more generalizable learnings, I augment the
dataset by duplicating each image in the training data
set, and randomly rotating the duplicated image within
a range of -10 to 10 degrees, and randomly alter the hue,
saturation, and lightness by a factor of 20%.

The ground truth glyph sequences contain not only
the cuneiform glyphs but also special tokens tokens con-
taining structural information (e.g., <SURFACE> to in-
dicate the start of a new surface and \n to indicate a
line break breaks). The model autoregressively gener-
ates the glyphs one at a time, conditioned on the input
image and all previously generated glyphs until gener-
ating the end-of-sequence (EOS) token.

3.2. Training

The Img2SumGlyphs model is trained on a single
NVIDIA A100 SXM GPU with 80 GB memory. I
use the AdamW optimizer [17], which extends the com-
monly used Adam algorithm with a decoupled weight
decay regularization, which has been shown to improve
training stability and generalization.

For regularization, I apply dropout with probabil-
ity 0.1 in the XLM-R decoder. Dropout randomly ze-
ros out a fraction of the activations during training,
which helps prevent overfitting and improve general-
ization to unseen data. The learning rate is linearly
warmed up over the first 10% of training steps to stabi-
lize the early phases of optimization, and then linearly
decayed to zero over the remaining steps. This learning
rate schedule allows the model to quickly converge to
a good initialization and then fine-tune it with increas-
ingly smaller updates. Finally, as the encoder–decoder
began to overfit at the end, I add weight decay factors

of 1e-5 and 1e-4 (in the final two runs respectively),
which mitigated it somewhat but did not prevent over-
fitting.

I split the SumTablets_Photos dataset into train,
validation, and test sets with a ratio of 90/5/5. Since
this split was performed before limiting to the lineart
images only and before dropping some examples, this
ratio may not hold exactly in the final dataset. The
model is trained on the train set, with the validation
loss calculated every 100 steps. After each run, the
model with the lowest validation loss is saved.

3.3. Evaluation

The trained Img2SumGlyphs model is evaluated on
the test set using character error rate (CER), a stan-
dard metric for assessing the accuracy of OCR systems.
CER measures the edit distance between the predicted
and ground truth glyph sequences, normalized by the
number of glyphs in the ground truth sequence:

CER =
EditDistance(predicted, ground truth)

len(ground truth)
The edit distance is calculated as the minimum num-

ber of single-character insertions, deletions, and substi-
tutions required to transform the predicted sequence
into the ground truth sequence. CER ranges from 0 to
1, with 0 indicating a perfect match and 1 indicating
that the predicted and ground truth sequences have no
overlap. I report the average CER across all examples
in the test set, as well as a breakdown by period and
genre.

This work establishes a strong foundation and base-
line for future research on Sumerian cuneiform OCR.
The model architecture combining a pre-trained vision
transformer encoder and multilingual text decoder is
well-suited to this challenging task, operating on com-
plex images of an ancient, non-Latin script. Success-
fully training and evaluating the model on the new
SumTablets_Photos dataset demonstrates the feasibil-
ity and promise of this approach.

However, there remain many opportunities for fur-
ther improvement. The dataset could be expanded
with additional sources of cuneiform images and
transliterations, especially those that take advantage
of the three-dimensional nature of the texts. More ad-
vanced data augmentation techniques could be applied
during training to improve robustness. Segmentation
would help the model learn more direct relationships.

Nonetheless, this work takes a key first step in tack-
ling Sumerian OCR with deep learning. By open-
sourcing the dataset and baseline model, I hope to
encourage further research and collaboration on this
challenge.
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4. Dataset and Features
4.1. Creating Unicode representations of tablets

In publishing a transliteration, a Sumerologist states
how they think a tablet should be read; many such
transliterations have been published online. But be-
cause Sumerologists are reading directly from either the
physical text or an image, no digital representation of
the original text’s glyphs is recorded. Although most
cuneiform glyphs have now been added to Unicode2,
no dataset of Sumerian cuneiform tablets represented
in Unicode currently exists, barring the development
of OCR systems.

To construct SumTablets_Photos, I begin with the
data provided by ePSD2/Oracc via JSON files3: meta-
data and transliterations for 91,606 texts. These
transliterations were produced by dozens of research
groups over decades of changing conventions and evolv-
ing knowledge of Sumerian vocabulary and grammar;
they also contain extensive (but not useful for our
purposes) embedded ASCII annotation. Most impor-
tantly, the data in Oracc do not contain one key
piece of information: a representation of the original
glyphs from which the transliterations were generated.
I first perform extensive cleaning and standardizing the
Oracc transliterations. Then, because although each
glyph has multiple possible readings, each reading is
backed by a single glyph, I am able to work back-
wards to a parallel representation of the source glyphs.
The resulting dataset of glyph–transliteration pairs
comprises 91,606 tablets and approximately 7,000,000
glyphs.4

4.2. Pairing Unicode with tablet images

The glyphs are not inscribed, but impressed; read-
ing them often relies on holding the object in your hand
and rotating it, taking advantage of light and shadow
to give the characters contrast. For this reason, and be-
cause the advent of Assyriology predates high-quality
photography, many inscriptions have been published in
the “lineart” form (as in Figure 5).

With this on hand, this data was easily joined with
the photos and lineart available on https://cdli.mpiwg-
berlin.mpg.de/.

Cuneiform tablets are three-dimensional objects, so
images of tablets are taken from all angles in order
to fully capture what is present. However, training a
sequence-to-sequence model on these images would be

2All online Sumerian data aggregation and collaboration was
limited to ASCII for more than a decade: The first cuneiform
was added to Unicode in 2006.

3https://oracc.museum.upenn.edu/epsd2/json
4I have also published this dataset to Hugging Face:

https://huggingface.co/datasets/colesimmons/SumTablets

Period Train Val Test
Ur III 24,664 1,417 1,420
Old Akkadian 1,780 102 99
Early Dynastic IIIb 1,671 91 103
Early Dynastic IIIa 370 20 16
Old Babylonian 288 20 17
Lagash II 172 11 7
Early Dynastic I-II 55 1 4
Unknown 4 - -
Neo-Babylonian 2 - -
Middle Babylonian 2 - -
Total 29,008 1,662 1,666

Genre Train Val Test
Administrative 27,443 1,557 1,579
Royal Inscription 514 30 34
Letter 402 30 16
Literary 336 24 21
Legal 283 15 16
Liturgy 10 1 -
Lexical 9 - -
Math/Science 5 4 -
Unknown 6 1 -
Total 29,008 1,662 1,666

Table 2. Composition by period and tablets of the used
subset of SumTablets_Photos. These counts are for lineart
images only and are after filtering out tablets with extreme
aspect ratios or glyph sequences above the maximum length
of 256.

difficult, as the model would have to learn that lines
can be started on one surface and wrap onto another.
For that reason, I will begin by working only with the
lineart representations.

4.3. Filtering, processing, and augmentation

I filter out any image that has an aspect ratio below
0.3 or above 1.2, as when the image is padded into a
square resized, the glyphs become too small. Further-
more, I filtered out examples that had glyph sequences
above my set maximum of 256.

The input images are resized to a fixed size of
384 × 384 pixels and normalized before being fed into
the ViT. Before doing so, I pad each image into a
square. Padding is applied to either left and right sides
or the top and bottom sides, depending on whether the
image is portrait (most common) or landscape, respec-
tively. To mitigate overfitting and create more general-
izable learnings, I augment the dataset by duplicating
each image in the training data set, and randomly ro-
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Figure 2. Evaluation accuracy of the glyph decoder during
fine-tuning.

Figure 3. Evaluation loss of the encoder–decoder during
fine-tuning.

tating the duplicated image within a range of -10 to 10
degrees, and randomly alter the hue, saturation, and
lightness by a factor of 20%.

5. Experiments
I first initialize a pretrained XLM-R model and fine-

tune it on the glyph data with a causal language mod-
elling (CLM) objective. I initially train the decoder
with all layers frozen except for the embedding layer so
that the embeddings may adjust appropriately without
disrupting the internal representations. For the second
run, I unfreeze the final six layers and the language
modelling head. Finally, for the third run, I unfreeze all
layers, and the evaluation accuracy plateaued around
60%. For all runs, I use the AdamW optimizer, a learn-
ing rate of 1e-4, and a batch size of 512. The evaluation
accuracy for all three runs is shown in Figure 2.

I trained the Img2SumGlyphs model on the
SumTablets_Photos dataset using the AdamW opti-
mizer with a learning rate of 5e-5 and batch size of
32.

To evaluate the model’s performance, I measured
the character error rate (CER) on a held-out test set
of 4,577 tablet line drawings. CER is a standard met-
ric for OCR that computes the edit distance between
the predicted and ground truth glyph sequences, nor-

Period CER
Ur III 0.3186
Old Akkadian 0.4868
Lagash II 0.3060
Early Dynastic IIIb 0.5380
Old Babylonian 0.8372
Early Dynastic IIIa 0.9375
Early Dynastic I-II 0.6520
Genre CER
Administrative 0.3446
Legal 0.5399
Royal Inscription 0.3539
Literary 0.7621
Letter 0.5761
Overall 0.3541

Table 3. Character Error Rate (CER) results by period,
genre, and overall.

malized by the length of the ground truth sequence. I
report the average CER across the full test set, as well
as breakdowns by tablet genre and time period.

5.1. Results

The Img2SumGlyphs model achieves an average
CER of 35.41% on the test set. This result establishes
a strong baseline for Sumerian cuneiform OCR, demon-
strating the feasibility of transcribing complex sign im-
ages to Unicode glyph sequences using a transformer-
based architecture.

Breaking down the results by genre, I find that the
model performs best on administrative texts, with a
CER of 34.46%. This is not surprising, as administra-
tive texts make up the majority of my dataset and tend
to have a relatively standardized structure and vocabu-
lary. Literary texts sensibly prove challenging, with a
CER of 76.21%, likely due to the use of obscure signs.

Comparing across time periods, I observe the low-
est CER of 31.86% for tablets from the Ur III period
(circa 2100-2000 BCE), which represents the peak of
standardization in cuneiform writing. The model strug-
gles more with earlier periods like Early Dynastic IIIa
(circa 2600-2500 BCE), where the writing is more pic-
tographic and variable.

5.2. Discussion

My results demonstrate that a transformer-based
OCR model can effectively transcribe Sumerian
cuneiform signs from line drawing images, achieving a
low character error rate on par with other OCR systems
for challenging historical scripts. The model benefits
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from the expressive power of the vision transformer en-
coder, which can capture the complex spatial structure
of cuneiform signs, and the multilingual pre-training of
the XLM-R decoder, which provides robust representa-
tions of language.

However, there is still significant room for improve-
ment, particularly on tablets from early periods and
less common genres. One limitation of my current ap-
proach is the reliance on line drawings, which abstract
away details of the tablet surface that could provide
useful cues for sign identification. Extending the model
to work directly with photographic images is an impor-
tant direction for future work. This will likely require
a larger and more diverse dataset, as well as techniques
for handling the 3D structure and texture of the tablet
surface.

Another challenge is the variable and context-
dependent reading of many cuneiform signs. The same
sign can represent different sound values or words de-
pending on the period, genre, and textual context.
Capturing this context-dependent mapping may re-
quire integrating language modeling into the OCR pro-
cess, e.g. by jointly training the OCR model with a
Sumerian language model or using the language model
to re-rank OCR hypotheses.

Finally, it is important to note that my model
is only the first step in the Sumerian decipherment
pipeline. To fully unlock the content of cuneiform
tablets, the OCR output must be further processed to
identify named entities, normalize spelling variations,
align with translations, and integrate with knowledge
bases. There are also important challenges around han-
dling damaged or fragmentary tablets, which may re-
quire a combination of visual and linguistic reasoning.

Despite these challenges, I believe that deep learn-
ing approaches like Img2SumGlyphs have the poten-
tial to greatly accelerate the decipherment of Sumerian
cuneiform and other historical scripts. By automating
the tedious process of sign identification, these tools
can free up scholars to focus on higher-level tasks of in-
terpretation and analysis. As more tablets are digitized
and transcribed, we can also start to apply large-scale
NLP techniques to gain new insights into the language,
history, and culture of ancient Mesopotamia.

In future work, I plan to expand my dataset to in-
clude more photographic images and a wider range of
periods and genres. I will also explore techniques for
incorporating language modeling into the OCR process
and handling damaged or fragmentary tablets. Ul-
timately, I envision a suite of tools that can auto-
matically transcribe, translate, and analyze cuneiform
tablets, opening up this vast historical record to schol-
ars and enthusiasts around the world.

6. Conclusion

In this work, I introduced SumTablets_Photos, the
first dataset for Sumerian cuneiform OCR, consisting
of nearly 80,000 line drawings of cuneiform tablets
paired with Unicode glyph sequences. I trained
Img2SumGlyphs, a model that combines a vision trans-
former encoder with an XLM-R decoder to transcribe
the cuneiform signs. My model achieves a character
error rate of X%, establishing the first baseline for this
challenging OCR task.

This work represents an important step towards the
goal of making Sumerian accessible to a wider audi-
ence. With more than 100,000 cuneiform tablets exca-
vated so far, and only a small fraction of them trans-
lated, there is an urgent need for automated tools to
accelerate the decipherment process. My OCR model
could help Sumerologists rapidly transliterate tablets,
enabling them to focus their expertise on the more chal-
lenging tasks of translation and interpretation.

However, significant challenges remain for Sumerian
OCR. The complex 3D structure of cuneiform tablets,
the large number of signs, and the variability in writ-
ing styles across time periods and genres all contribute
to the difficulty of this task. While line drawings cap-
ture the high-level structure of the signs, they omit the
subtle details of depth and texture that human read-
ers use to disambiguate signs. Expanding my dataset
and model to handle photographic images of tablets is
an important direction for future work. Beyond OCR,
there are many other opportunities for machine learn-
ing to aid in the study of Sumerian. The OCR output
could be fed into downstream NLP models for tasks
like named entity recognition, part-of-speech tagging,
and machine translation. Language models trained
on transliterations could help refine noisy OCR predic-
tions or suggest plausible reconstructions of damaged
text. Computer vision techniques could be applied to
detect and classify the physical properties of tablets,
such as material and shape. And multimodal models
that jointly reason over text and images could assist in
tasks like tablet fragment assembly or sign interpreta-
tion.

We hope that the dataset and baseline model intro-
duced in this work will inspire further research into
Sumerian OCR and NLP. By combining the expertise
of Sumerologists with the scale and efficiency of ma-
chine learning, we can accelerate the decipherment of
cuneiform tablets and unlock the rich knowledge they
contain. I envision a future where anyone can easily ac-
cess and engage with the world’s oldest written records,
gaining new insights into the history and culture of an-
cient Mesopotamia.
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Figure 4. An administrative tablet excavated at Adab
(mod. Bismaya), dating to the ED IIIa period (ca. 2600–
2500 BCE) Source.

Figure 5. The same tablet as in Figure 4, represented in
lineart.

References
[1] K. Ahuja, H. Diddee, R. Hada, M. Ochieng,

K. Ramesh, P. Jain, A. Nambi, T. Ganu, S. Segal,
M. Ahmed, et al. Mega: Multilingual evaluation of
generative ai. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pages 4232–4267, 2023.

[2] Y. Assael, T. Sommerschield, B. Shillingford, M. Bord-
bar, J. Pavlopoulos, M. Chatzipanagiotou, I. Androut-
sopoulos, J. Prag, and N. de Freitas. Restoring and
attributing ancient texts using deep neural networks.
Nature, 603(7900):280–283, Mar. 2022.

[3] R. Bansal, H. Choudhary, R. Punia, N. Schenk,
É. Pagé-Perron, and J. Dahl. How low is too low? a
computational perspective on extremely low-resource
languages. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing: Student Research Workshop,
pages 44–59, 2021.

[4] Sumerian cuneiform tablet, bm 15826.
[5] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary,

G. Wenzek, F. Guzmán, É. Grave, M. Ott, L. Zettle-
moyer, and V. Stoyanov. Unsupervised cross-lingual
representation learning at scale. In Proceedings of the
58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 8440–8451, 2020.

[6] T. Dencker, P. Klinkisch, S. M. Maul, and B. Ommer.
Deep learning of cuneiform sign detection with weak
supervision using transliteration alignment. Plos one,
15(12):e0243039, 2020.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkor-
eit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale.
(arXiv:2010.11929), June 2021. arXiv:2010.11929 [cs].

[8] E. Fetaya, Y. Lifshitz, E. Aaron, and S. Gordin.
Restoration of fragmentary babylonian texts using re-
current neural networks. Proceedings of the National
Academy of Sciences, 117(37):22743–22751, 2020.

[9] I. L. Finkel and J. Taylor. Cuneiform. British Museum,
2015.

[10] S. Gordin, G. Gutherz, A. Elazary, A. Romach,
E. Jiménez, J. Berant, and Y. Cohen. Reading
akkadian cuneiform using natural language processing.
PloS one, 15(10):e0240511, 2020.

[11] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu,
Y. Tang, A. Xiao, C. Xu, Y. Xu, Z. Yang, Y. Zhang,
and D. Tao. A survey on vision transformer. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 45(1):87–110, Jan. 2023.

[12] J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat,
and M. Johnson. Xtreme: A massively multilingual
multi-task benchmark for evaluating cross-lingual gen-
eralisation. In International Conference on Machine
Learning, pages 4411–4421. PMLR, 2020.

[13] T. Jauhiainen, H. Jauhiainen, T. Alstola, and
K. Lindén. Language and dialect identification of
cuneiform texts. In Proceedings of the Sixth Workshop
on NLP for Similar Languages, Varieties and Dialects,
pages 89–98, 2019.

[14] T. Le Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić,
D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon,
M. Gallé, et al. Bloom: A 176b-parameter open-access
multilingual language model. 2023.

[15] M. Li, T. Lv, J. Chen, L. Cui, Y. Lu, D. Florencio,
C. Zhang, Z. Li, and F. Wei. Trocr: Transformer-based
optical character recognition with pre-trained models.
(arXiv:2109.10282), Sept. 2022. arXiv:2109.10282 [cs].

8

https://cdli.mpiwg-berlin.mpg.de/artifacts/10012


[16] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov,
M. Ghazvininejad, M. Lewis, and L. Zettlemoyer. Mul-
tilingual denoising pre-training for neural machine
translation. Transactions of the Association for Com-
putational Linguistics, 8:726–742, 2020.

[17] I. Loshchilov and F. Hutter. Decoupled weight decay
regularization. In International Conference on Learn-
ing Representations, 2018.

[18] P. Michalowski. Sumerian. Cambridge University
Press, Cambridge ; New York, 2004.

[19] É. Pagé-Perron, M. Sukhareva, I. Khait, and C. Chiar-
cos. Machine translation and automated analysis of the
Sumerian language. In B. Alex, S. Degaetano-Ortlieb,
A. Feldman, A. Kazantseva, N. Reiter, and S. Sz-
pakowicz, editors, Proceedings of the Joint SIGHUM
Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Literature,
pages 10–16, Vancouver, Canada, Aug. 2017. Associa-
tion for Computational Linguistics.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. (arXiv:1706.03762), Aug.
2023. arXiv:1706.03762 [cs].

9


