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Abstract

Synthetic Aperture Radar (SAR) images, while invalu-
able for various remote sensing applications, lack the intu-
itive visual information provided by color. Our project seeks
to enhance the quality of SAR image colorization, a process
of assigning colors to grayscale SAR images, by employing
a combination of image classification, segmentation, and
coloring techniques. By utilizing an ensemble of coloriza-
tion methods and selecting the optimal approach based on
an improved understanding of scene structure and the dis-
tinct performance strengths of different models, we demon-
strate that our method achieves more accurate and realistic
colorization of SAR images. Our results underscore the po-
tential of our approach in incorporating more context for
SAR imaging in the enhanced visual interpretation and ap-
plication of various environmental and surveillance tasks.

We utilize a subset of the SEN12MS-CR dateset, focusing
on the San Francisco Bay Area. We first classify the SAR
images into five terrain categories by using an instruction
refined GPT-4o model. We then evaluate four recoloriza-
tion models (cGAN, CNN, NL, and LR) via NRMSE, SAM,
and Q4 metrics on their performance for each terrain cate-
gory. When testing our terrain-based approach, we use the
optimal model for the terrain category and compare the re-
sults of our terrain-based approach to the best performing
model presented in Shen et al [14].

1. Introduction
As the costs of accessing space have decreased dra-

matically in the past decade, more technologies are be-
ing launched onboard the proliferating number of satellites
in space. The SAR concept was invented in 1951 by the
Goodyear Aircraft Company, but has since resurged in pop-
ularity during the past decade as one of the forefront re-
mote sensing technologies to dominate the Earth observa-
tion market.

SAR imagery enables the capturing of features in the
Earth’s surface under various atmospheric conditions, in-
cluding cloud cover and other visual obstructions not pen-

Figure 1: San Francisco from the SEN12MS-CR dataset
(Left: Sentinel-2 RGB, Right: Sentinel-1 SAR Band 1)

etrable by standard spectral imaging techniques. SAR
even works at night, making it a powerful technology ca-
pable of Earth observation under any condition. Despite
these advantages, SAR images by themselves can some-
times be hard to analyze, and providing better interpretabil-
ity through fusion of SAR and color imagery can be useful
in examining a particular scene.

Our project focuses on improving the spectral-based
baselines for SAR colorization presented in Shen et al [14]
through terrain classification and segmentation, showing a
quantitative improvement in colorization accuracy metrics
compared with baseline methods, which leads to a qualita-
tive improvement in the visual realism of the colorized im-
ages. The input to our method is a SAR satellite image. We
then use an ensemble of colorization models (cGAN, CNN,
NL, LR) to output a colorized SAR image.

2. Related Work
Acquiring simultaneous SAR and clear optical images

can often prove difficult due to varying conditions on the
surface [10]. An alternative approach is to train a model that
learns to automatically colorize SAR images from readily
available SAR and optical image data pairs, providing a way
to augment SAR images with colorization techniques that
simulate the appearance of natural colors, improving their
utility and interpretability.

One such approach is to directly generate an optical im-
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Figure 2: Truncated metadata extracted from gdalinfo

age from SAR data. This is called SAR-to-optical image
translation [4, 8, 9, 7]. Unfortunately, this approach re-
moves any SAR specific radar-specific effects, which may
be extremely useful for terrain or scene analysis [11]. For
example, speckle patterns allow for the determination of
surface texture, all of which would be removed in the trans-
lation process of this approach.

Our chosen approach is creating an intermediate ground
truth that preserves the characteristics of a SAR image,
while also enabling coloring the image for better inter-
pretability [13, 14]. This retains the textural and intensity
details of the SAR image, while providing a more accurate
and realistic color representation of the area. This is done by
merging the SAR bands with the optical RGB bands to form
a fused image. This method is called Fast IHS (Intensity-
Hue-Saturation) [15], and is described using the following
process (as described in Shen et al. [14]):

I = T (MS)
SAR’ = (SAR − µSAR) · σI/σSAR + µI

D = SAR’ − I
GT = MS + D

MS is the multispectral (RGB) image, I is the extracted
average intensity component, SAR is the SAR image and
GT is the ground truth (fused) image. An example of a gen-
erated GT image and its corresponding MS image is shown
in Figure 4 (top-right and top-left, respectively).

The ground truth can be generated from the underlying
SAR image using a variety of methods. Schmitt et al. [13]
introduces a deep learning SAR colorization method us-
ing a combination of a variational autoencoder (VAE) [5]
and mixed density network (MDN) [1]. Shen et al. [14]
formalizes the evaluation of these models by introducing
multiple evaluation metrics (NRMSE, SAM, Q4) and addi-
tional deep learning methods which use convolutional neu-
ral networks (CNN) and conditional generative adversarial
networks (cGAN) [12] similar to Isola et al. [3]

Dataset Info Training Testing

SEN12MS-CR

Patches 471 250
SAR Size 256x256x1 256x256x1
MS Size 256x256x3 256x256x3
GT Size 256x256x3 256x256x3

Table 1: Dataset Summary of the SEN12MS-CR Subset

3. Data
We use a subset of the SEN12MS-CR dataset [2], a

dataset covering 175 global distributed regions of interest
in the world for multi-modal cloud removal. Our subset
focuses on areas near the San Francisco Bay Area, contain-
ing observations conducted in the Summer of 2018. The
dataset consists of a 2-band Sentinel-1 radar measurement
(SAR), and corresponding multi-spectral Sentinel-2 obser-
vations (MS), which include those in the visible spectrum.
For training spectral models, a separate pre-defined set of
20 SAR image pairs are used from the same dataset (Seed
1158 / Spring).

A total of 721 256× 256 Sentinel-1 and 2 patches cover
the North Bay, northern San Francisco and parts of Oak-
land. This region offers a diverse topography that includes
mountains, hills, urban areas, and water bodies such as
the Bay and the Pacific Ocean. This variety enables us to
validate our methods across different terrains and environ-
ments. One patch of corresponding MS (Sentinel-2) and
SAR (Sentinel-1) images are shown in Figure 1. Patches
also include metadata (Figure 2), with supplemental infor-
mation on location, exact corner coordinates and a text de-
scription.

For Sentinel-1 patches, we extract out Band 1 (polari-
metric VV) for use as our SAR image. For Sentinel-2
patches, bands 4, 3 and 2, corresponding to R, G, B respec-
tively are used for the multispectral (MS) image. The raw
Sentinel-1 and Sentinel-2 images consist of unnormalized
sensor values. To preprocess the SAR images, we apply the
following equation to scale the values to a range between 0
and k:

SARadj =
SAR −min(SAR)

max(SAR −min(SAR))
· k

k = 2047 when the image is input to the colorization
network, and k = 255 when the image is visualized. Visu-
alization of Sentinel-2 images are also similarly conducted
by setting k = 255.

4. Methods
To enhance the results beyond the baseline, we incorpo-

rate context from the image. We start by classifying the
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image into its specific category. Following this, we apply
recolorization using each available method. The ideal re-
colorization technique is then selected based on the image’s
classification.

4.1. SAR Data Classification

The first step in this process is to classify the SAR im-
ages into one of several categories based on the geography
and scope of the image. We chose to create five distinct cat-
egories that could sufficiently summarize all the SAR im-
ages of the Bay Area in the training set: mountainous areas,
urban areas, bodies of water, mix of urban areas with water,
and mix of mountainous areas with water. For the classi-
fication task, we utilized GPT-4o 1, OpenAI’s latest flag-
ship model, because it can reason through vision tasks and
is able to understand the basics of SAR imagery structure.
In the prompt, our main instruction is to ”Please classify the
following SAR satellite image into one of the following cat-
egories: Mountain, Urban, Water, Water-Urban or Water-
Mountain,” and we provide further context and instruction
on what features to focus on when deciding a category.

We found that GPT-4o did not fully understand how to
interpret SAR imagery and often misclassified the water as
an urban area or mountainous area. We improved the re-
sults by adding additional instructions like the following:
”You often misclassify water. When the image is feature-
less and relatively uniformly dark and hazy, make sure your
response is not Urban or Mountain but instead the correct
answer of Water.” Adding details on what features to pay
attention to helped the model to improve its accuracy on the
training images. After classifying the entire training set, we
visually inspected a random sample of 100 of the SAR im-
ages and found 6 misclassifications. Thus, For the entire
training set, we expect to see about 94% of the images to be
classified correctly and 6% to be misclassified.

4.2. Recolorization Models

For spectral models, we trained our models using the
same methodology specified by Shen et al. [14]. A separate
subset of the SEN12MS-CR dataset [2] is used for training
the spectral models 2.For non-spectral models, we utilized
the pretrained models provided by the authors to conduct
SAR colorization. We evaluated five different methods for
colorization:

1. NoColSAR This method simply replicates the SAR
band over all three RGB channels. It served as a base-
line in Shen et al. [14] However, it did not provide any
benefit in our experiments and was therefore excluded
from our final evaluations.

1https://openai.com/index/hello-gpt-4o/
2https://github.com/shenkqtx/

SAR-Colorization-Benchmarking-Protocol

(a) Mountain Class Examples

(b) Urban Class Examples

(c) Water Class Examples

(d) Water-Urban Class Examples

(e) Water-Mountain Class Examples

Figure 3: Terrain Class Examples

2. LR4ColSAR (LR) This spectral-based method em-
ploys linear regression. The SAR image is flattened
and modeled using a linear regression approach, with
weights and biases optimized using a mean squared er-
ror (MSE) loss function.

3. NL4ColSAR (NL) This is the second spectral-based
method, incorporating a nonlinear element by imple-
menting a single hidden layer neural network. The
nonlinearlity used in this model is a tan-sigmoid func-
tion as shown in Equation 1, using the Levenberg-
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Figure 4: Model SAR colorization output examples
(Top-left: RGB, Top-right: Ground Truth, Bottom-left:

CNN4ColSAR, Bottom-right: cGAN4ColSAR)

Marquardt algorithm with a l2-norm loss function.

f(x) =
2

1 + e−2x
− 1 (1)

4. CNN4ColSAR (CNN) We use the pretrained model 3

provided by Shen et al. [14], and specific details re-
garding parameters and setup are detailed in the paper.
CNN4ColSAR utilizes a convolutional neural network
with four convolutional layers having kernel sizes of 9,
5, 1, and 5, and numbers of kernels 64, 32, 32, and 3,
respectively.

5. cGAN4ColSAR (cGAN) Like CNN4ColSAR, we
used a pretrained model. The generator in the con-
ditional GAN consists of an 8-layer architecture using
4× 4 convolutional filters with a stride of 2. The num-
ber of kernels begins at 64 and doubles at each subse-
quent layer, up to a maximum of 512.

4.3. Evaluation Metrics

We evaluate our model using the metrics shown in Shen
et al. [14] and also defined below; normalized root mean
square (NRMSE), spectral angle mapper (SAM), and multi-
dimensional extended version of the universal image quality
index (Q4).

3https://github.com/shenkqtx/
SAR-Colorization-Benchmarking-Protocol/

NRMSE =
1

N

N∑
n=1

(
RMSE(n)

µ(n)
)

SAM(x, y) = arccos (
< x, y >

||x||2 · ||y||2
)

Q4 =
4|σz1z2 | · |µz1 | · |µz2 |

(σ2
z1 + σ2

z2)(µ
2
z1 + µ2

z2)

Each metric captures specific aspects of the colorization.
Optimizing against a particular metric will depend on the
application. For our experiments we evaluate and report
results for each metric individually.

• NRMSE focuses on the individual pixel differences,
looking at errors between pixel values

• SAM assesses the spectral angle between two bands,
emphasizing spectral fidelity in images

• Q4 evaluates structural and perceptual similarity be-
tween two images

5. Experiments
We conduct a series of experiments to demonstrate how

our approach improves the recolorization process for SAR
satellite images. We have two main steps in our approach,
the train step and the test step. In the train step, the goal
is to understand which model performs the best for each
type of terrain. In our test set, we first classify each image
into a type of terrain, and then use the best corresponding
colorization model for that type of terrain.

The data for both steps is sourced from a subset of the
SEN12MS-CR dataset, which focuses on the San Francisco
Bay Area. We split the images into a training set and a
test set with a 65:35 split, with roughly 470 images in the
training set and 250 images in the test set.

5.1. Step One: Train

Our train step can be summarized by the following
pipeline.

Figure 5: Train Step Pipeline
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We first begin the with raw SAR image data files, and
preprocess each of the roughly 470 images to use in our ex-
periments. The first step is classification, using the method
we describe in 4.1 to assign categories to each SAR image.

Terrain Class Count

Mountain 22
Urban 53
Water 248
Water-Urban 31
Water-Mountain 117

Table 2: Training Data Terrain Counts

This table summarizes the counts of each type of terrain
in our training data. Because the data focuses on the Bay
Area, the majority of the images are of the Water and Water-
Mountain terrain types.

Independently of the classification process, we run the
four colorization models (cGAN, CNN, NL and LR) de-
scribed in 4.2 on each of the SAR images. Finally, we score
all the outputs using the three evaluation metrics described
in 4.3, paying special attention on how each model performs
on the different terrain classes. The evaluation results are
outlined in Table 6, where the best model performance for
each terrain class and metric is bolded.

Looking at the table, we see that for the Mountain class,
the cGAN model earns the best score using the NRMSE and
Q4 metrics, while the CNN performs slightly better than the
cGAN for the SAM metric. Overall, the cGAN coloriza-
tion model performs the best for the Mountain class, so we
assign that model to the class. The CNN model performs
the best across all three metrics for the Urban class, so we
assign that model to the class. The LR model performs the
best using the SAM and Q4 metrics, while cGAN is slightly
better using the NRMSE metric. Overall, the LR model per-
forms the best and we assign it to the Water terrain. For
Water-Urban and Water-Mountain, the cGAN performs the
best for all three metrics, so we assign that model to the
classes. The best overall performing models for each ter-
rain class are summarized in the following table.

Terrain Class Optimal Model

Mountain cGAN
Urban CNN
Water LR
Water-Urban cGAN
Water-Mountain cGAN
All cGAN

Table 3: Optimal Colorization Model for each Terrain Class

5.2. Step Two: Test

Now that we understand which models are optimal for
each type of terrain class, we can test our methodology us-
ing the following pipeline.

Figure 6: Test Step Pipeline

We begin with the raw SAR image data files within the
test set, and preprocess the images like with the train im-
ages. Next, using the same terrain classification method de-
scribed in 4.1, we classify each image, and the counts of
each class are summarized in the following table.

Terrain Class Count

Mountain 37
Urban 2
Water 154
Water-Urban 30
Water-Mountain 27

Table 4: Training Data Terrain Counts

Like with the training set, the most common terrain class
is Water. However, compared to the training set, the test
set has more Water-Mountain and Mountain cases, a similar
amount of Water-Urban cases, and much fewer Urban cases.

Next, we color the SAR image using the optimal model
that is assigned to that SAR image’s terrain class. We then
evaluate the resulting colored SAR image using the three
metrics defined in 4.3. Finally, we calculate the average
score for each evaluation metric, and compare to the cGAN
baseline metrics for the test set. We compare against the
cGAN model as a baseline because it was the optimal model
identified by Shen et al. [14]. The evaluation results are
summarized in the following table.

Method RMSE SAM Q4

cGAN [14] 0.350 9.511 0.424
Terrain-based (ours) 0.239 6.256 0.441
Ideal value 0 0 1

Table 5: SAR image colorization metrics on the test set
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Through our terrain-based approach, we achieve better
performance than the cGAN method on all three metrics.
Our RMSE and SAM scores are significantly lower than
the baseline, and our Q4 metric also achieves greater per-
formance than the baseline.

Qualitatively, the models assigned to each terrain class
also visually look the most accurate to the ground truth. In
Figure 4, the image is of a region that contains both wa-
ter and urban areas, and is classified as Water-Urban. The
model associated with this terrain class is the cGAN model,
and visually the cGAN output does produce a closer result
to the ground truth than the CNN output.

Figure 7: cGAN Colorized Outputs
(Top Left: Mountain Class SAR Image, Top Right:

Water-Urban Class SAR Image, Bottom Left: Mountain
Class cGAN Colorized Image, Bottom Right: Water-Urban

Class cGAN Colorized Image)

Here are a few more cGAN colorized output examples
for the Mountain class and Water-Urban class. For both
of these classes, the cGAN model performs the best across
almost all the metrics. And, both of the cGAN colorized
outputs look very close to the baseline ground truth, and
visually look very realistic to how optical satellite imagery
might appear for these same regions.

6. Conclusion

The terrain-based approach presented in this paper
demonstrates a significant improvement in recolorization
accuracy for SAR satellite images comparing to the cGAN
baseline model. By classifying images into distinct terrain

classes (Mountain, Urban, Water, Water-Urban, and Water-
Mountain) and assigning the optimal colorization model for
each class, we achieve superior results across all three eval-
uation metrics: RMSE, SAM, Q4. This suggests that a one-
size-fits-all model may not be the most effective approach
for SAR image recolorization. The terrain-based approach
allows for greater customization and flexibility, resulting in
more accurate and visually appealing colorized images.

6.1. Future Work

We see several avenues to improve the results in this pa-
per. First, roughly 94% of the images were classified cor-
rectly by the GPT-4o model, which means there is room
for improvement for the classification process. Further, we
chose the five classes based on visual inspection of the train-
ing set, and while these terrain classes work well for the San
Francisco Bay Area subset, they will not work in other re-
gions. To improve the classification process, we are inter-
ested in fine-tuning a model to augment the process.

Second, there are some classes with a mix of terrains,
like the Water-Urban and Water-Mountain classes. We are
interested in how segmenting these images into their spe-
cific terrains, and recolor based on the masks of the terrains,
can improve the results.

Figure 8: Segment Anything Model output
(Left: cGAN output, Right: Segmentation output)

Figure 9: Visualization of Satellite Imagery Segmentation
(Left: Original SAR Image, Right: Segmentation output)

Here, we began experimenting with how we could most
efficiently segment the SAR images into their respective ter-
rains using Meta’s Segment Anything model[6]. For exam-
ple, both figures above would be classified as Water-Urban,
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Terrain Class Metric cGAN CNN NL LR Ideal

Mountain
NRMSE 0.247 0.324 0.261 0.254 0
SAM 7.764 7.578 8.810 7.616 0
Q4 0.763 0.698 0.698 0.684 1

Urban
NRMSE 0.241 0.205 0.402 0.423 0
SAM 6.103 5.795 16.401 17.529 0
Q4 0.728 0.720 0.721 0.667 1

Water
NRMSE 0.226 0.231 0.285 0.230 0
SAM 5.104 4.990 7.899 4.864 0
Q4 0.306 0.272 0.304 0.391 1

Water-Urban
NRMSE 0.206 0.225 0.349 0.345 0
SAM 5.832 5.922 11.203 11.250 0
Q4 0.778 0.739 0.716 0.753 1

Water-Mountain
NRMSE 0.204 0.226 0.258 0.236 0
SAM 5.902 6.041 7.602 6.199 0
Q4 0.752 0.694 0.689 0.738 1

All
NRMSE 0.235 0.277 0.286 0.269 0
SAM 6.689 6.560 9.297 7.928 0
Q4 0.649 0.599 0.603 0.621 1

Table 6: Metrics for training conducted on the SEN12MS-CR Subset

so we could produce masks that distinguish between the
Water and Urban regions of these images.

Additionally, evaluating the approach on a wider range
of dataset will ensure its robustness and generalizability
across different geographic locations and image acquisition
conditions. Finally, applying this approach to real-world
scenarios like environmental monitoring will demonstrate
its practical value and potential impact.
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