
Improving Camouflage Object Detection

Vinay Awasthi,
SCPD Stanford University

Baltimore, MD
v365747@stanford.edu

Yin-Li Liu
Department of Electrical Engineering

Stanford, CA
liuyinli@stanford.edu

Max Meyberg
Department of Computer Science University

Stanford, CA
mmeyberg@stanford.edu

Abstract

This paper outlines an approach to identifying camou-
flaged objects of different shapes in complete harmony with
their surrounding. The YOLOv8 algorithm operates by ex-
tracting features and applying non-maximum suppression
to detect overlapping bounding boxes. On the COD10K
dataset, YOLOv8 achieved a mean average precision (mAP)
of 18.2% in our training dataset. The CAMO dataset, con-
verted to YOLO1.1 format using CVAT.AI, also showed poor
training performance with a mean precision (mAP50) of
3.89%, which we believe is due to issues with identifying
the center in our bounding boxes for ground truth. We are
working on addressing this issue. Using these two datasets,
we explored different approaches to improve performance,
including edge detection with Fourier transform, wavelet
transforms, shape separation, and transfer learning. We
achieved over 50% mAP50 by continuing to train the en-
tire YOLOv8 small model with the COD10K and CAMO-
COCO datasets, and over 40% mAP50 by performing trans-
fer learning on the YOLOv8 nano model.

1. Introduction

1.1. Introduction

In order to detect camouflaged objects, it is necessary
to separate these objects from their surroundings through
edge detection. For example, camouflaged objects behind
tree stems, under grass, or underwater require separating
shape contours to identify specific shapes. Currently, we
have narrowed our data augmentation choices to process-
ing images using CVNN [2], with frequency filters such as
high-pass filters and wavelet transforms. This approach will
make our neural network more complex by transitioning

from real numbers to complex-valued numbers, as a re-
sult creating 4x the total parameters. PyTorch (version 1.7)
has added support for complex-valued designs by allowing
torch.complex64, and TensorFlow also supports many
libraries that facilitate designs with complex-valued num-
bers.

We expect that complex-valued transformations in the
form of upstream CNN layers will help suppress the back-
grounds of images sufficiently for YOLOv8 to properly de-
tect the structural characteristics of camouflaged objects,
even when they match the texture and color of their sur-
roundings.

We are approaching camouflaged object detection as
a problem of edge detection and shape separation. The
YOLOv8 architecture weakens edge features as informa-
tion passes through various layers, so we need to augment
data to address this issue. Shape identification by detecting
contours of camouflaged objects, by working in the CVNN
domain (Complex Value Neural Nets), can further assist us
in identifying occluded structures.

1.2. Weaknesses of other Research

One of the biggest challenges faced in detecting cam-
ouflaged objects is in regards for practical applications for
image section techniques, specifically for object detection
tasks focused on camouflaged objects. The issue arises in
the fact that since true labels for camouflage objects use
bounding boxes, this results in an excessive amount of re-
dundant background information which acts as “noise”. As
a result, researchers have faced challenges in further im-
proving camouflage detection by utilizing YOLO v8.

An additional challenge includes the loss of texture in-
formation when reducing image dimensions.

1



1.3. Related Work

YOLOv8 with augmented CNNs is currently detecting
about 70 percent of the objects in COD10K dataset [1].
Anabranch[4] network for camouflaged object detection
[4], reported 66 percent correct identification (segmentation
only) as these objects are large, and at time cover, more
that 70 percent of picture (Stingray submerged under sandy
ocean, large coiled python over dried leaves etc..), YOLOv8
in general, will find these dataset challenging, due to its lim-
itation of not carrying edge features deep into its neural net
layers.

2. Dataset
2.1. Data Pre-processing

We used CVAT.ai and scripts to convert data from exist-
ing format to YOLO 1.1 format carrying class, center co-
ordinates along with width and height values. We ran into
an issue of not identifying center of the bounding box carry-
ing camouflaged object using script so our training accuracy
is lower than expected. We are working on correcting this
issue.

CVAT.AI can process data in many formats, however this
process of creating custom dataset that can be processed
using YOLOv8 for object detection is a manual process.
There are services that can draw bounding boxes on our
1250 CAMO dataset images but we decided not use them
as we need to also get familiar with data, various shapes,
lighting conditions, various occlusions of camouflage in na-
ture so that we can properly augment our data and deploy
correct approach to separate object and its shape.

We tried roboflow which was unable to tag camouflaged
dataset using foundational model ”grounding DINO”. It did
however tag non camouflaged objects correctly.

We ended up going with https://github.com/
SYED-M-HUSSAIN/COD/ data conversion scripts which
use imutils python package to draw bounding box using
segmentation mask.

3. Methodology
3.1. Model Selection

Many current state of the art methods (Sparse R-CNN,
Anabranch, YOLOv8, Vision Transformers using mask sep-
arable attention etc...) find it challenging to detect occluded
camouflaged objects due to not being able to detect edges
as at times these objects are large and windy taking almost
entire image. We want to focus on increasing precision so
we need to get to know our dataset well (COD10K https:
//dengpingfan.github.io/pages/COD.html,
CAMO https://sites.google.com/view/
ltnghia/research/camo).

OpenCV Contours Vs Masks

PyTorch mask to box

Figure 1. Highlighting failing cases of various bbox scripting
based methods.

Full survey of various concealed ob-
ject detection methods can be found here.
https://github.com/ChunmingHe/
awesome-concealed-object-segmentation

3.2. YOLOv8 Baseline

Pre-trained YOLOv8 model with CAMO dataset, did not
perform well, giving only about 3.96% on mAP(50:95). We
attribute this to:
1. Smaller model (YOLOv8 nano) not being able to capture
occluded, camouflaged edges and shapes and
2. Training with dataset of 152 images.

3.3. YOLOv8 COCO Data Format alignment

We ran YOLOv8x (largest model) as is for 120 epochs
with incorrect bounding box centers to get about 18.2 per-
centage average precision. We decided to use YOLOv8s
and train on CAMO-COCO and COD dataset.

We first used OpenCV collect contour method, to draw
bounding boxes, which did not draw correct bounding
boxes for zebra and giraffe etc.. in COD10K dataset as it
just picked contours, so each stripe on zebra became a cam-
ouflaged object thus bringing our training accuracy to single
digits.

While debugging low success rates of YOLOv8s on

2

https://github.com/SYED-M-HUSSAIN/COD/
https://github.com/SYED-M-HUSSAIN/COD/
https://dengpingfan.github.io/pages/COD.html
https://dengpingfan.github.io/pages/COD.html
https://sites.google.com/view/ltnghia/research/camo
https://sites.google.com/view/ltnghia/research/camo
https://github.com/ChunmingHe/awesome-concealed-object-segmentation
https://github.com/ChunmingHe/awesome-concealed-object-segmentation


Pytorch correctly drawing bboxes

Figure 2. Correct Bounding boxes on Patchy objects.

Models Size Param. Speed (ms) mAP(50:95)
YOLOv8n 640 3.2 M 0.99 37.3
YOLOv8s 640 11.2 M 1.2 44.9
YOLOv8m 640 25.9 M 1.83 50.2
YOLOv8l 640 43.7 M 2.39 52.9
YOLOv8x 640 68.2 M 3.53 53.9

Table 1. YOLO Models Complexity and Performance

COD10K dataset, we noticed that some label files, carried
lots of bounding boxes, and training so many images
with many instances was taking up to 7.8 GB of GPU
memory. We looked at the training dataset for images of
patched objects, which were failing detection (Giraffe,
Zebra, Shrimp). We noticed that OpenCV collect contour
method, that worked well for CAMO-COCO dataset as
objects were simpler (no stripes etc..), was failing to rec-
ognize entire objects as one. After switching to PyTorch’s
torchvision.ops ”mask to box” method, we started seeing
correct bounding boxes which were then fed to clean run
of YOLO pretrained model to learn camouflaged objects
giving training precision in 50 percentage range (mAP50)
and 25 percentage range for mAP50-95 metric just like
CAMO-COCO dataset.

We picked YOLOv8s model as base so that we can run
many experiments and still provide a solution of performing
single shot object detection in field for rescue missions. We
desire to not take upt to 40 seconds (R-CNNs) to detect an
image with high precision as firefighters and first responders
may use our model, to respond in rescue missions. We need
to sacrifice accuracy for faster speed.

3.4. Loss Function

We have chosen to implement our loss func-
tion as collection of 3 losses just as it is done in
ViT paper for detecting camouflaged objects[5]:
https://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=10207675.
1. Classification Loss:

At present, we are classifying objects as camouflaged or
not, by using just single class representation. As we fur-
ther clean up datasets for YOLOv8 consumption; we will
add fine-grained classification identifiers representing vari-
ous object classes.

2. Objectness Loss:
This defines whether our neural net was able to separate out
object from the background or not. This loss tells how far
off our detection was from the ground truth bounding box.
This single loss characterizes the quality of our edge detec-
tion and shape separation. This value represents quality of
our texture pre-processing, using various CNN layers up-
front performing high-pass filters or wavelet processing to
separate-out edges and shape, of camouflaged object from
its background.

3. Regression Loss:
This loss represents difference in predicted class vs true
class. For single class identification this is identical to clas-
sification loss above. We intend to use this loss for multi-
class identification. This loss will define whether we are
correctly identifying whether we have camouflaged bird in
picture or an insect or fish.

L = Lclassification + Lobject + Lregression

3.5. Training Budget

YOLO - A week of training results in 88% accuracy on
non camouflaged objects.https://arxiv.org/pdf/
1506.02640
ViT - 30 Days of training
Ours - 2 hrs/dataset (< 250 epochs on A100). This limit
allows us to verify our model on 2 datasets, one with small
objects (CAMO-COCO) and other with large more complex
objects with occlusion, blurred edges and multiple instances
with varying lighting conditions and reflections..

3.6. Metrics

We intend to add CNN layers to YOLO model and may
transform some layers to transformer like architecture sup-
plying some context about camouflage.

YOLOv8 reports F1 scores and mean average precision
mAP50 and mAP(50:95), we intend to keep this metric for
our classification.

F1score =
TP

TP + 1
2 (FP + FN)

mAP =
1

c

N∑
K=i

P (K).∆R(K)

3

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10207675
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10207675
https://arxiv.org/pdf/1506.02640
https://arxiv.org/pdf/1506.02640


In above equations, TP is True positive, FP is false pos-
itive, FN is false negative, c represents object categories, K
represents Intersection over Union (IoU) threshold. P(K) is
precision and R(K) is recall.

These metrics are standard in object detection and clas-
sification literature.

3.7. Transfer Learning

In addition to training the entire YOLO network, we
employed transfer learning by freezing the weights in cer-
tain layers of the YOLO backbone model and updating the
remaining layers using the CAMO dataset. This method
offers an alternative approach for fine-tuning the YOLO
model to detect occluded objects without the need for high
computing power. We trained the model on a CPU for 50
epochs, which took 17 hours, using the COD10K CAMO
dataset and achieved a mAP50 score of 0.411.

We froze 123 out of 184 layers (15 out of 22 in the mod-
ules view) in the YOLOv8 nano model, reducing the com-
putational cost from 3,157,200 parameters to 1,420,880 pa-
rameters for gradient calculation. This made the training
process feasible on CPU machines. The performance of the
transfer learning model, as well as the fully-trained model,
will be discussed in the results section.

4. Ensemble Learning using 3 models
In order to analyze texture information, we wanted

to move to complex domain using Fourier Transforms.
We considered scattering transform, which is defined
as complex-valued convolutional neural network with
wavelets acting as filters, allowing some signals to travel far
in the network, while limiting others to shorter distances,
limiting their influence. We considered this to be a good
plan as there is lot of literature that suggest that texture pro-
cessing can be done using FFTs. Wavelets CNNs can be
seen as... Source :https://www.di.ens.fr/data/
publications/papers/1304.6763v1.pdf

Figure 3. Wavelets traversing CNNs, source:
https://www.di.ens.fr/data/publications/papers/1304.6763v1.pdf

Pytorch has support for complex valued tensors and
YOLOv5 has a port supporting complex valued CNNs.

We investigated use of direct cosine trans-
forms for camouflage detection as outlined in

https://openaccess.thecvf.com/content/
CVPR2022/papers/Zhong_Detecting_
Camouflaged_Object_in_Frequency_Domain_
CVPR_2022_paper.pdf

These approaches used modified loss function, taking
discrete cosine transform (DCT) based norms, instead of
euclidean norms, to detect, whether given image tile, was
similar or different, to other tiles, thus detecting camou-
flaged object. These modifications also required changes
to the way dot products were implemented, changes to soft-
max function and necessity to train entire network again, as
pre-trained weights from YOLOv8s model, wouldn’t have
been directly applicable. We did not have 7 days of training
budget so we decided to implement best of both worlds, by
taking inspiration from space image data processing, which
discarded imaginary part, after taking FFTs, and just used
real part of the complex number, to continue image refine-
ments.

These approaches used modified loss functions, incorpo-
rating discrete cosine transform (DCT) based norms instead
of Euclidean norms, to determine whether a given image
tile was similar to or different from other tiles, thereby de-
tecting camouflaged objects. These modifications also need
to change the implementation from dot products to softmax
function, which required retraining the entire network, as
the pre-trained weights from the YOLOv8s model would
not have been directly applicable.

Given our limited training budget of seven days, we de-
cided to implement the best of both worlds by taking inspi-
ration from space image data processing. Specifically, we
discarded the imaginary part after taking FFTs and contin-
ued image refinements using only the real part of the com-
plex numbers.

We created 3 YOLOv8s models so that we can perform
ensemble learning by combining direct, edge enhanced and
shape enhanced (texture processed) detection while keep-
ing processing requirements low so that real time detection
could still take place. One model ran in base mode, us-
ing dataset as is. We also passed background images with-
out any labels so that model can generalize better in aquatic
scenes to detect submerged turtles.

One model, specializing in edge detection, used high
pass filter and other specializing in shape detection, by sep-
arating out high and low spatial frequencies, in Fourier
domain, as it is done in processing data from space tele-
scopes https://arxiv.org/pdf/1504.00647[3].
We were intending to use these filters as convolutions, in
complex domain, and run entire YOLO architecture, in
complex domain, however we noticed, that by just process-
ing real part of numbers, was enough, to increase mAP50
and mAP(50:95) scores, by 10 percentage points, in shape
related wavelet transforms using tuned hyper-parameters.
We used YOLOv8s and YOLOv8n models which are lim-

4

https://www.di.ens.fr/data/publications/papers/1304.6763v1.pdf
https://www.di.ens.fr/data/publications/papers/1304.6763v1.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhong_Detecting_Camouflaged_Object_in_Frequency_Domain_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhong_Detecting_Camouflaged_Object_in_Frequency_Domain_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhong_Detecting_Camouflaged_Object_in_Frequency_Domain_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhong_Detecting_Camouflaged_Object_in_Frequency_Domain_CVPR_2022_paper.pdf
https://arxiv.org/pdf/1504.00647


Table 2. High Pass filter transform, extracting edges, Original im-
age is on left, extracted edges are on the right.

Table 3. Scatter2D wavelet differentiable transforms. Original
heron image (L), Scatter2D transform with scatter scattering co-
efficient=1 (M), Scatter2D transform with scatter scattering coef-
ficient=2 (R)

ited in their power to express complex features.
Third model tried 2 approaches. We first tried Kyma-

tio wavelet scattering net https://www.kymat.io/,
which is differentiable so these layers can be added to gen-
eral pipeline of YOLO. This generated 2 sets of Scatter-
ing2D coefficients to detect object’s shape better (see Ta-
ble 2. above). We realized that these wavelet transforms
were very expensive to run on CPU, taking 20 to 30 sec-
onds/image on a 56 cores machine. We also tried to run
it on GPU, but CuPy package needed for processing on
GPU destabilized the system, twice, triggering complete
data-loss, as CUDA versions did not align between 11.8 and
12.2 of PyTorch, CuPy. We then abandoned this approach
for wavelet Scattering2D. We want camouflaged object de-
tection to happen in real time to allow for firefighters etc
to have this setup in head up display, so that they can find
people quickly in case of smoke/under-water or in other vi-
sually difficult situations.

We then embarked on extracting shape information
using foreground/background processing, using Ftbg algo-
rithm https://ui.adsabs.harvard.edu/abs/
2017ascl.soft11003W/abstract. We converted
the package to handle images in .jpg and .png format as it
only handled images in FITS format as most of the data
from space telescopes comes in, in this format or processed
in this format.

We produced predictions in all 3 models separately

Table 4. Fourier Transforms isolating foreground (structure), by
separating high spatial signals from low ones. First row shows
background and foreground, 2nd row is showing original image

and then looked at failing cases in base models, to check
whether FFT/wavelet processing could have helped in fur-
ther detection, from other two models. We found out that in
some cases, shape detection produced camouflaged object
detection, where other two methods have failed.

We also found that edge detection triggered camouflaged
object detection with low IOU (i.e. bounding box was away
from the object).

We also noticed that shape based detection, increase
our mAP50 to 0.56 and mAP(50:95) to 0.30 from earlier
mAP50 of 0.5 and mAP(50:95) of 0.25.

We intend to combine all the models to create one fi-
nal prediction as we noticed that each model has its own
strengths in isolating camouflaged objects where other two
might have failed.

5. A comparison of YOLO Architectures

YOLOv1 - Single CNN to perform real time object de-
tection, by dividing image into GRID, making multiple pre-
dictions about existence of an object and then picking one
with highest probability after removing overlapping boxes.

YOLOv2 - Darknet-19 backbone, used anchor boxes
idea from Faster R-CNN and batch norm in all its convo-
lution layers, increasing prediction accuracy.

YOLOv3 - Darknet 53 backbone, utilizing residual con-
nections, up-sampling and logistic classifiers achieving 3x
speed with comparable accuracy to RetinaNet.

YOLOv4 - This YOLO deployed spatial attention.
YOLOR - Added 2 pipelines to provide explicit knowl-

edge and implicit knowledge to Discriminator thus adding
capability to handle multiple tasks.

YOLOX - Deployed Anchor Free, CIOU loss giving

5

https://www.kymat.io/
https://ui.adsabs.harvard.edu/abs/2017ascl.soft11003W/abstract
https://ui.adsabs.harvard.edu/abs/2017ascl.soft11003W/abstract


Table 5. Edge enhanced CAMO object detection, (2nd row) shape
based detection is failing.

Table 6. Ensemble Model detecting camouflaged object, Model
that did not use fourier transforms failed to detect camouflage ob-
ject, other two models (Edge enhanced, Shape enhanced) were
able to detect. Edge enhanced did best

moderate increase in precision. CIOU loss not only penal-
izes incorrect bounding box co-ordinates but also considers
the aspect ratio and center distance of the box.

YOLOv6 - Deployed DIOU loss. Distance IOU loss in-
corporates normalized distance between the predicted box

Hyper-parameter Tuning

Figure 4. Ray-tune and Weights and Bias based hyper parameter
tuning for 100 epochs

and the target box which converges much faster than gener-
alized IOU (GIOU) loss.

YOLOv7 - Added Leaky ReLU activation and
CSPDartnet-Z Backbone. CSPNet partitions the feature
map of base layer into two parts and then merges them
through a cross stage hierarchy. Use of split and merge al-
lows for more gradient to flow through the network, giving
1% increase in mAP.

YOLOv8 - This adds Exponential Linear Unit (ELU)
for activation, multi-scale object detection and new back-
bone architecture called CSPDarkNet + C2F module
which combines high level features with contextual in-
formation. ELU is added to address vanishing gradient
problem using CIOU and DFL (Binary cross entropy for
classification loss) loss (over Generalized Intersection
over Union loss https://giou.stanford.edu/)
addressing how close shapes are to each other (i.e if
no intersection, so intersection over union (IOU) is not
helpful), central point difference between predicted box
and ground truth and aspect ratio difference in pre-
dicted box to ground truth box. https://encord.
com/blog/yolo-object-detection-guide/,
https://arxiv.org/html/2304.00501v6.

6. Hyper Parameter Tuning

We used Ray-Tune and Weights and Biases to fine tune
our model. Ray-tune performed a grid search, on 30 or so
available YOLO hyper parameters, resulting in most opti-
mal set after running for 100 epochs. These runs are very
costly as they run for typically 6-8 hours on NVIDIA Dual
A100 GPUs.

We then used these best hyper-parameters to further
train/tune our shape and base models.

7. Results/Evaluation

We trained YOLOv8s (pretrained) using CAMO dataset
for 289 epochs and then used this trained model on
COD10K dataset for 500 epochs.

We have been experimenting with various features on
model performance to fine-tune the best approach.

6

https://giou.stanford.edu/
https://encord.com/blog/yolo-object-detection-guide/
https://encord.com/blog/yolo-object-detection-guide/
https://arxiv.org/html/2304.00501v6


Dataset Images Box(P R mAP50 mAP(50-95)
Val

CAMO 250 0.58 0.468 0.473 0.211
COD10K 2026 0.655 0.481 0.52 0.255

Table 7. CAMO-COCO and COD10K Dataset Validation-Set Re-
sults

label

prediction

Figure 5. base line model prediction example after training for 500
epochs

We achieved 50 % accuracy (mAP50) on both of these
datasets.

We trained on CAMO-COCO dataset for 289 epochs and
then trained it on COD10K for 500 epochs. This got our
validation set accuracy mAP50 to 50 %and mAP(50-95)
to 25 %. We are getting almost identical results on both
datasets even if YOLO model does not work well with
large objects, as bounding box covers entire image.

Ensemble Learning by Feature Fusion
We are combining weights from various models be-
fore making prediction by giving equal say, to each
set of weights. YOLO allows for this integra-
tion by exposing APIs to feature fusion from vari-
ous models. https://github.com/ultralytics/
yolov5/issues/7905.

Transfer Learning
For the transfer learning model, we trained on the COD10K
dataset for 50 epochs using a pretrained YOLO nano model,
achieving a mean precision of 41% (mAP50) on the vali-

Hyper tuned model’s Prediction

Edge-enhanced model’s prediction

Shape-enhanced model’s prediction

Figure 6. Ensemble Model for Feature fusion based prediction

dation set. Although this is slightly lower than the model
trained on all layers, it significantly improves the perfor-
mance of the original pretrained model. Considering com-
putational cost, model size, training data size, and training
time, the results demonstrate that performing transfer learn-
ing on a pretrained YOLO model is a viable approach under
the constraints of limited devices, data, and time.

7

https://github.com/ultralytics/yolov5/issues/7905
https://github.com/ultralytics/yolov5/issues/7905


Model mAP50 mAP(50:95) #p(M)
Pretrained YOLOv8s 0.0396 0.076 11.2
Finetuned YOLOv8s 0.520 0.655 11.2
Transfer learning 0.411 0.180 3.2
Edge-enhanced 0.441 0.232 11.2
Shape-enhanced-Hyper 0.556 0.309 11.2

Table 8. Performance on different models, CAMO and COD10K
datasets

Table 9. Test image of hidden heron and prediction

Layer YOLOv8n Fine-tuned Transfer

0

2

3

18

Table 10. Feature Map Visualization

7.1. Feature Visualization

To gain a deeper understanding of how object detec-
tion works for camouflaged objects, we implemented fea-
ture map visualization on the convolution layers in YOLO
models.

The backbone network of the YOLOv8 nano and small
models consists of 22 convolution layers. We sampled fea-
ture maps from the output of several layers to compare the
differences between the models.

8. Failing cases
YOLO does not do well when multiple objects

are clustered together. This issue can only be fixed

Table 11. YOLO fails to detect multiple objects.

by applying multiple dense layers at the start of neu-
ral net to extract relevant features as reported by
SINethttps://github.com/DengPingFan/
SINet?tab=readme-ov-file.

9. Conclusion

We think that we have an easy to implement solution for
head-up display that can detect occluded, camouflaged ob-
jects by performing various cost effective transformations,
that can scale from environment to environment for vari-
ous rescue missions. We noticed that wavelet transforms,
used in cleaning out space telescope images of milky-way,
can directly be applied to identifying, camouflaged objects,
without incurring a lot of computational overhead involved
in Scatter2D wavelet transforms.

10. Future Direction

We want to incorporate wavelet transforms to YOLO
framework and directly perform object detection by com-
bining long-chain wavelet transforms and short chain con-
volutions. FFT transforms can provide textural information
and information about how similar various image patches
are to each other and normal convolutional network can

8

https://github.com/DengPingFan/SINet?tab=readme-ov-file
https://github.com/DengPingFan/SINet?tab=readme-ov-file


continue to use same GIOU based loss function to detect
camouflaged objects.

References
[1] T. Han. Improving the detection and position of camouflaged

objects in yolov8. MDPI Electronics, 12(20):234–778, 2023.
[2] X. L. Joshua Bassey. A survey of complex valued

neural networks. ARXIV https://arxiv.org/pdf/2101.12249,
2101(12249):234–778, 2021.

[3] W. Ke. Large-scale filaments asso-
ciated with milky way spiral arms.
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.4043W/abstract,
1(0), 2015.

[4] T.-N. Le. Anabranch network for camouflaged object seg-
mentation. Computer Vision and Image Understanding,
184(7):45–56, 2019.

[5] M. A. K. Rohan Putatunda. Vision transformer-based
real-time camouflaged object detection system at edge.
2023 IEEE International Conference on Smart Computing,
1(00029):234–778, 2023.

9


	. Introduction
	. Introduction
	. Weaknesses of other Research
	. Related Work

	. Dataset
	. Data Pre-processing

	. Methodology
	. Model Selection
	. YOLOv8 Baseline
	. YOLOv8 COCO Data Format alignment
	. Loss Function
	. Training Budget
	. Metrics
	. Transfer Learning

	. Ensemble Learning using 3 models
	. A comparison of YOLO Architectures
	. Hyper Parameter Tuning
	. Results/Evaluation
	. Feature Visualization

	. Failing cases
	. Conclusion
	. Future Direction

