
Improving the Efficiency of 3D Pose Estimation Model

Quan Ho
Stanford University

quanmho@stanford.edu

Abstract

The increasing interest in virtual reality and digital
avatars has necessitate faster and cheaper methods for
converting physical motions into the digital space. While
high-fidelity motion capture systems offer precise 3D mo-
tion reproduction, they are expensive and require substan-
tial setup. Alternatively, RGB videos can easily be captured
with minimal setup and then converted to motions in the
digital world using 2D keypoint detection techniques and
2D-to-3D lifting approaches. This paper explores 2D-to-3D
lifting approaches for inferring 3D motion from 2D videos,
focusing on optimizing existing methods. Specifically, it in-
vestigates the impact of training a 2D-to-3D lifting model,
namely the HuMoR model, using the FP16 format. Evalu-
ation on training the HuMoR model with FP16 format re-
veals that while FP16 training offers modest speed improve-
ments, its benefits are more pronounced with larger models.
Additionally, FP16 training does not significantly affect loss
values compared to FP32 training. Further work to fol-
low up on this paper could be exploring FP16 training with
other larger models and investigating even smaller formats
such as FP8.

1. Introduction
Having the ability to interact with the digital world us-

ing motions has long been a desired goal for researchers
and consumers alike. Humans have always interacted with
the physical world through our motions rather than through
a keyboard and a mouse. Human motions can also be a
form of visual communication that can convey meanings
and feelings difficult to convey with texts. With the rise of
interests in virtual reality and digital avatar, we will need
methods to translate motions from the physical world to the
digital world that are not just accurate but also fast and ac-
cessible. High-fidelity motion capture system can repro-
duce highly accurate 3D motion, but such system is expen-
sive and require large empty area to setup. On the other
hand, RGB videos are readily available and can be captured
by anyone with minimal setup. There are two categories of

approaches for inferring 3D motion from a 2D video: (1) di-
rect estimation, and (2) 2D-to-3D lifting. direct estimation
approaches attempt to infer 3D motion directly from 2D im-
ages or videos, whereas 2D-to-3D lifting approaches lever-
age existing 2D pose detectors to estimate the 2D pose then
use a different model to infer 3D pose from the predicted
2D pose. In general, 2D-to-3D lifting approaches tend to
outperform direct estimation approaches [8]. Thus, in this
project, we will focus on optimizing existing 2D-to-3D lift-
ing approaches. In particular, we will explore the impact of
training 2D-to-3D lifting models using FP16 format.

1.1. Related Work

To find a 2D-to-3D lifting approach for optimization,
we explored earlier works of different 2D-to-3D lifting ap-
proaches and summarized our findings below.

PoseFormer. PoseFormer is an early attempt at lever-
aging transformer architectures for 3D human pose esti-
mation by using a purely transformer-based approach with
no convolution architectures involved [8]. PoseFormer is
consisted of three transformer modules: spatial transformer
module, temporal transformer module, and regression head
module [8]. The spatial transformer module is for extract-
ing the local joint relations within each frame. The temporal
transformer module is for extracting dependencies across a
sequence of frames. Finally, regression head module is for
predicting the 3D pose of the center frame using a sequence
of frames.

PoseFormerV2. PoseFormerV2 is an improved version
of PoseFormer. Unlike PoseFormer which used a tempo-
ral transformer module, PoseFormerV2 represents the se-
quences in frequency domain, where high-frequency com-
ponents can be dropped to scale up the receptive field and
boost robustness for 2D joint detection with noisy data.
PoseFormerV2 converts the sequences into Discrete Co-
sine Transform (DCT) coefficients and replaces the tempo-
ral transformer module with a time-frequency transformer
that extracts features from both the time domain and the
frequency domain [7]. Compared to PoseFormer, Pose-
FormerV2 has both better speed and accuracy.

4321

HuMoR. Instead of the typical approach of estimat-
ing 3D motion from videos, HuMoR is a learned, autore-
gressive, generative model that captures how pose changes
over time and models a probability distribution of possi-
ble pose transitions using conditional variational autoen-
coder [4]. HuMoR is trained on the AMASS motion cap-
ture dataset [1]. At test time, HuMoR is used as a motion
prior along with a robust test-time optimization strategy to
enable 3D human motion estimation from noisy and par-
tial observations across different input modalities such as
RGB/RGB-D video and 2D or 3D joint sequences [4].

1.2. Mixed Precision Training

As ML models become larger and more complex, the
computational resources required for training the models
and performing inference also grow. To address this issue,
mixed precision training techniques have been developed to
enable training with lower-precision data formats like FP16.
Compared to FP32 which uses 32 bits, FP16 only uses 16
bits, so models using FP16 format will require less mem-
ory. Furthermore, switching to FP16 also shortens training
and inference time by reducing memory access time as well
as being able to leverage hardware dedicated to accelerat-
ing FP16 arithmetic throughput such as NVIDIA Tensor
Cores [2]. Mixed precision training techniques were used
to retrain several CNNs (AlexNet, VGG-D, GoogLeNet,
Inception v2, Inception v3, pre-activation Resnet-50) for
ILSVRC classification task and achieved similar accuracy
compared to the baseline FP32 training sessions [2]. Simi-
larly, detection CNNs (Faster-RCNN, Multibox-SSD) were
retrained with mixed precision techniques and also achieved
similar accuracy as the baseline FP32 training session.

2. Methods

HuMoR Details. We evaluate the effect of training on FP16
format by re-training the HuMoR model with Pytorch Au-
tomatic Mixed Precision (AMP) recipe. Due to time con-
straint, we could only pick one model to re-train, and we
choose HuMoR because the model code is publicly avail-
able and well-documented. HuMoR takes in and outputs
matrix representing the state of a moving person. Specif-
ically, the state matrix x is composed of a root transla-
tion r ∈ R3, root orientation Φ ∈ R3 in axis-angle form,
body pose joint angles Θ ∈ R3×21 and joint positions
J ∈ R3×22:

x = [r ṙ Φ Φ̇ Θ J J̇], (1)

where ṙ, Φ̇ and J̇ denote the root and joint velocities, re-
spectively, giving x ∈ R3×69 [4].

For model architecture, HuMoR uses a conditional vari-
ational autoencoder (CVAE) [5] for predicting the next pose
state xt given the previous pose state x(t − 1). The latent

space variables zt can then be viewed as the probability of
transitioning to the next pose state given the previous pose
state, which is denoted with pθ(xt|xt−1). Since different
poses will have different distributions of possible next pose
(e.g, an idle person would have many possible next states,
but a person in midair would have very little possible next
states), rather than having a prior with solely a Gaussian
distribution, HuMoR performs training on the prior to yield
a conditional prior to output different distributions based on
the given pose state [4]. The decoder part of the architecture
outputs two outputs: the change in pose state ∆θ and the
person-ground contact probability ct for each of the eight
body joints. The encoder, conditional prior, and decoder
are all 5-6 layer MLPs with ReLU activations and group
normalization [4, 6], which is the part of HuMoR that we
are interested in re-training in FP16. HuMoR’s CVAE was
trained using the typical approach for training CVAE which
is to maximize the likelihood lower bound:

log pθ(xt|xt−1) ≥ Eqϕ [log pθ(xt|zt,xt−1)]

−DKL(qϕ(zt|xt,xt−1) ∥ pθ(zt|xt−1)). (2)

Profiling Traces. To understand the impact of training with
FP16, we would like to measure the training time using
Python timer, but this approach quickly became inadequate
due to not having enough granularity. Instead, we utilizes
PyTorch profiler tool to profile a single step of propagating
one batch of size 8 of data through the model and comput-
ing the loss. The profiler tool outputs a trace file with the
execution order and timing of functions and GPU kernels
that were used. We set the profiler tool to map each portion
of the execution trace to a specific part of the training algo-
rithm, namely, preparing the data, sampling the data (propa-
gating the data through the MLPs to obtain next pose state),
and computing the loss.

3. Dataset
We re-train the models using the AMASS dataset [1]

used by the original authors. However, due to our system
constraint, we cannot use the entire AMASS dataset, so we
opted to only train with the CMU dataset. For validation, we
used MPI HDM05, SFU, and MPI mosh. For preprocess-
ing the dataset and extracting features, we used the provided
pre-processing script in the official HuMoR codebase.

4. Experimental Results
We evaluate the impact of training with FP16 based on

the execution time and the loss value after training for 8
epochs. Our system uses NVIDIA T4 with 16GB memory,
and due to time constraint, we chose to observe execution
time over only 2 epochs and observe the loss over only 8
epochs instead of 200 epochs that were used to train the

4322

Figure 1: HuMoR CVAE Architecture [4].

Figure 2: Execution Trace. PyTorch profiler tool outputs a trace file that can be viewed in Google Chrome. This figure shows
the execution of taking one single training loss step using FP16 data format. In particular, the majority of the execution time
is spent in evaluating the loss function.
.

Execution Time over 2 Epochs
FP32 Training 8h 52m (532m)
FP16 Training 8h 32m (512m)

Table 1: FP16 finishes 2 epochs of training 20 minutes
faster than FP32, which equates to 4% improvement in ex-
ecution time.

original HuMoR model [4]. We keep all the other training
hyperparameters identical with the original HuMoR train-
ing algorithm.
Total Execution Time. We simply wrapped the original
training code for HuMoR with PyTorch AMP recipe with-
out other modification for our first investigation, and we saw
only an improvement of 4% in execution time. We expected
significantly more speedup since training with smaller data
format and being able to use dedicated accelerated hardware
for FP16 should at least improve computation time.

To further understand the lack of speedup, we use Py-
Torch profiler tool to dump out execution trace for the first
training loss step. We tried profiling beyond the first train-
ing loss step, but the system would crash every time we
profile beyond the first training loss step. We record the ex-
ecution time for each part of the training loss step in Table
2 and a visualization of the execution trace in Figure 2.

From the execution trace breakdown for the first train-

FP32 FP16
Prepping Data 3.80ms 4.11ms
Sampling Data 6.36ms 8.42ms
Computing Loss 84.47ms 98.05ms

Table 2: Across the three steps in one single training loss
step, FP16 shows slight slowdown.

ing loss step, we see that the majority of the computation
time is spent in evaluating the loss function. This would
partly explains the lack of speedup from training with FP16
because the loss function doesn’t benefit as much from
the speedup for matrix-multiply-add operations when train-
ing in FP16. The part that would benefit the most from
hardware-accelerated matrix-multiply-add in FP16 would
be the sampling data step with all the MLP layers, but that
part only represents 4-5% of the total execution time of one
training loss step, hence the speedup becomes less notice-
able. However, looking at the execution time breakdown for
the first training loss step, we see that there are slowdown
across all the steps. To understand the slowdown better,
we profiled the sampling step and the loss function in more
granularity.

Sampling Step Execution Time. We zoom in and take
a closer look to how the sampling step is being done. In
particular, we look at how the CPU and GPU are spending

4323

FP324xMLP FP164xMLP

Sampling Data 17.11ms 9.00ms

Table 3: For sampling step in one single training loss step
with 4x MLP dimensions, FP16 now shows an almost 2x
speedup.

Figure 3: 1024x1024 Linear Layer in MLP. This shows the
execution traces (Left: FP32, Right: FP16) for a forward
pass through one linear layer of input size of 1024 and out-
put size of 1024. The red arrow indicates the corresponding
GPU kernel for the linear layer, where the computation are
being done. Everything before is overhead logic to copy
the data into GPU and, for FP16, also logic to convert FP32
data to FP16.

their time when doing one forward pass through a single
1024x1024 linear layer. If we only look at the GPU kernel
at the bottom of Figure 3, we see that FP16 are almost 8x
faster than FP32. This matches our expectation that FP16
would provide significant computational speedup. How-
ever, this speedup is not observed at levels above the GPU
kernel because FP16 has an extra fixed cost to convert FP32
data to FP16 format which is more apparent when the di-
mensions of the linear layer is too small to bring GPU uti-
lization to 100% so most of the execution time is spent in
overhead logic instead of computation. We tried re-training
the model by quadruple all the MLP layers, bringing the
parameter count from 9.7 millions to 133 millions, to see
if increasing the computation requirement would make the
speedup benefit more visible. The result is that after qua-
drupling the MLP layers, we see almost 2x speedup for the
sampling step. This indicates that training at FP16 is more
beneficial when training large models as compared to train-
ing small models.

Loss Function Execution Time. We did a similar inves-
tigation into the slowdown observed with the loss function
as we did for the MLP layers. As seen with the MLP lay-
ers in the sampling step, the GPU has very low utilization
during the loss function evaluation step, resulting in paying
extra cost for overhead logic to use FP16 without being able
to benefit from the FP16 accelerated hardware. Improv-
ing GPU utilization for the loss function is more complex
than for the MLP layers since we cannot simply increase

Figure 4: 4096x4096 Linear Layer in MLP. This shows the
execution traces (Left: FP32, Right: FP16) for a forward
pass through one linear layer of input size of 4096 and out-
put size of 4096. With larger linear layer size, we now see
the GPU spending more time doing the computation accord-
ing to the bottom bar, hence increasing the GPU utilization.
Higher GPU utilization allows for the hardware speedup
benefit to become more visible.

any of the matrix dimension used in the loss function. One
part of the loss function used in HuMoR utilizes the smplx
libraries [3] which has a series of rigid body transforma-
tions which involves sequentially multiplying many small
4x4 matrices together, and such operation is particularly un-
desired for FP16 training since the GPU pays a fixed time
cost for converting FP32 to FP16 yet the actual computation
time is almost nothing, so any speedup cannot be observed.
Comparing Loss Values. We track the training loss and
validation loss for training the modified 4xMLP HuMoR
model using FP16 and FP32 over 8 epochs. As seen in Fig-
ure 5, the training loss and validation loss are closely simi-
lar for both FP16 training and FP32 training. This indicates
that switching to FP16 training using PyTorch AMP recipe
has minimal effect on the training loss values and validation
loss values. Since we train with only the CMU dataset due
to system constraint and time constraint, our loss value is
higher than the loss value in the official HuMoR model.

5. Conclusion
From our investigation, we see that larger models will

benefit more using a smaller data format like FP16 for train-
ing compare to smaller models. Larger models will do a
better job of saturating the GPU to bring GPU utilization
higher, and the speedup from using FP16 will become more
prominent as the GPU spends more time doing computa-
tion. For smaller models, the matrix size is not large enough
to saturate the GPU, so the overhead time cost of convert-
ing FP32 data into FP16 will become more prominent to the
users compare to the speedup from accelerated hardware for
FP16.

4324

Figure 5: Training loss and validation loss for training the
modified 4xMLP HuMoR model using FP16 and FP32 over
8 epochs.

We also investigated the effect of FP16 training on the
loss values. From our findings, the loss values for both
training and validation are similar between FP16 and FP32
training when using PyTorch AMP recipe.

6. Future Work
This time, we were only able to evaluate the impact of

FP16 training on one model and trained for only a short
period of time due to our system constraint and time con-
straint. We learned from this investigation that FP16 train-
ing is more beneficial for larger models, so one next step
can be to evaluate FP16 training on other existing models
that are much larger than HuMoR. Another next step is to
obtain a more powerful system with newer GPU and try to
train with the entire AMASS dataset and the 2000 epochs
used by the original HuMoR model. There is also another
smaller format which is FP8. FP8 requires at least Hopper
GPU and also has less supporting community compare to
FP16, so we didn’t look into it this time, but it could be a
potential next step. Finally, we only evaluated FP16 train-
ing, but it would also be interesting to evaluate the impact
of using FP16 for inference.

References
[1] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and

M. J. Black. AMASS: archive of motion capture as surface
shapes. CoRR, abs/1904.03278, 2019.

[2] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos,
E. Elsen, D. Garcı́a, B. Ginsburg, M. Houston, O. Kuchaiev,
G. Venkatesh, and H. Wu. Mixed precision training. CoRR,
abs/1710.03740, 2017.

[3] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A.
Osman, D. Tzionas, and M. J. Black. Expressive body capture:
3D hands, face, and body from a single image. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 10975–10985, 2019.

[4] D. Rempe, T. Birdal, A. Hertzmann, J. Yang, S. Sridhar, and
L. J. Guibas. Humor: 3d human motion model for robust pose
estimation. In International Conference on Computer Vision
(ICCV), 2021.

[5] K. Sohn, H. Lee, and X. Yan. Learning structured output
representation using deep conditional generative models. Ad-
vances in neural information processing systems, 28, 2015.

[6] Y. Wu and K. He. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pages
3–19, 2018.

[7] Q. Zhao, C. Zheng, M. Liu, P. Wang, and C. Chen. Pose-
formerv2: Exploring frequency domain for efficient and ro-
bust 3d human pose estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8877–8886, June 2023.

[8] C. Zheng, S. Zhu, M. Mendieta, T. Yang, C. Chen, and
Z. Ding. 3d human pose estimation with spatial and temporal
transformers. Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2021.

4325

	. Introduction
	. Related Work
	. Mixed Precision Training

	. Methods
	. Dataset
	. Experimental Results
	. Conclusion
	. Future Work

