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Abstract

Convolutional neural networks (CNNs) are experts at
image classification, due to their ability to extract image
features. These image features include low-level features
such as edges and textures, or high-level features such
as shapes and objects. To what extent does a convolu-
tional neural network rely on each of these features to clas-
sify a model? Our research broadly aims to contribute
to the stated need for more interpretability in vision mod-
els by showcasing the effectiveness of Distributed Align-
ment Search (DAS) in enhancing the interpretability of com-
mon convolutional neural network (CNN) architectures. We
evaluate three high-level causal variables (object color, ob-
ject shape, and background color) utilizing DAS, and pre-
liminarily determine that in our custom dataset, a ResNet
causally depends the most on background color, shedding
light on the inner workings of the model and creating a
mechanism for evaluating the causal dependence of image
features with future datasets and models. 0

1. Introduction

Recent advances in computer vision systems have enabled
image classification performance to surpass human capabil-
ities. At the heart of these systems are convolutional neural
networks (CNNs). Despite their success, our understanding
of the underlying mechanisms of these networks remains
limited. In vision models, features such as color, texture,
background, and position are crucial for classification. Al-
though we have some insights into how humans weigh these
features in image classification [1], the internal workings of
neural networks in this context have not been thoroughly
explored.

Distributed Alignment Search (DAS) is an interpretabil-
ity method that provides insights into how neural networks
process these features [5]. This method allows for inter-

0All code is made available publicly at
github.com/emilybunn/cs231nDAS.

change interventions, enabling detailed examinations of a
model’s internal response to changes in specific features.
In this paper, we trained a ResNet on a custom dataset of
shapes and performed interchange interventions on key im-
age features, including color, background, and shape.

Our approach aims to deepen our understanding of the
influence these features have on the network’s decision-
making process, as well as demonstrate the usefulness of
DAS in the computer vision field. Furthermore, we also
aim to contribute to the stated need for more interpretabil-
ity in vision models [16] by showcasing the effectiveness of
DAS in enhancing the interpretability of common convolu-
tional neural network (CNN) architectures.

2. Related Work
Image Classification. The physical world is extremely di-
verse, with objects composed of various textures, colors,
shapes, and backgrounds. Humans have an exceptional
ability to classify objects into different categories, even at
a quick glance or with lossy information. This capability
stems from our highly developed visual system, which has
evolved to efficiently process and interpret the vast array of
visual stimuli we encounter in our environment.

Human visual perception is adept at recognizing objects
despite variations in size, orientation, lighting, and occlu-
sion [1]. The human brain detects and processes low-level
features such as edges, lines, and curves. These features
are then combined to form more complex representations
of objects [13]. The human visual cortex has been highly
studied, with a deep understanding of the inner mechanisms
of the visual system. Early stages of visual processing oc-
cur in the retina and primary visual cortex (V1), where basic
visual information is extracted. Higher-level areas of the vi-
sual cortex, such as V2 and V4, process increasingly com-
plex features, leading to the perception of entire objects and
scenes in the inferotemporal cortex [6].

Replicating human-like object classification in computer
vision systems presents several challenges, including vari-
ability in object appearance, background clutter and noise,
and generalization across categories. Recent advances in
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computer vision, particularly through the use of deep learn-
ing and convolutional neural networks (CNNs), have sig-
nificantly improved the ability of machines to classify and
recognize objects, even beyond human performance [8][9].
However, even with these recent advances, we are seem-
ingly no closer to being able to understand the stages of
visual processing or the features that are the most relevant
to image classification in computer vision models [16].

Interpretability for Vision Models. Prior interpretabil-
ity methods for deep computer vision models have been
roughly outlined into the following five categories: (1) Vi-
sualization of CNN representations in intermediate network
layers. (2) Diagnosis of CNN representations. (3) Disentan-
glement of the ’mixture of patterns’ encoded in each filter
of CNNs. (4) Building explainable models. (5) Semantic-
level middle-to-end learning [12]. These methods all share
a common goal, where each aims to develop a deeper un-
derstanding of the inner mechanisms of a vision model at
a higher level. However, each of these models does so at
a highly granular level, utilizing individualized and small-
scale approaches to qualitatively interpret the representa-
tions of the CNN.

Causal abstraction. Causal abstraction is a conceptual and
mathematical framework used to simplify complex systems
by representing them at a higher level of abstraction while
preserving their causal relationships [3]. Prior attempts at
causal abstraction techniques require a brute-force search
process [2][4], to find an alignment between the states of
a low-level model and the variables of a high-level model.
Distributed Alignment Search (DAS) finds the alignment
between high-level and low-level models by learning an ab-
straction via gradient descent, rather than brute-force [5].
The details of this mechanism are further explored in the
Methods section of this paper.

Past approaches to utilizing DAS as an interpretability
method have focused on language models. Research has
successfully utilized DAS to identify causal mechanisms in
alpaca [15], or to find distributed representations in Llama2-
7B [10]. Here, DAS exhibits itself as a useful and flexible
way to quantitatively discover internal structures that are
distributed across bases in language models. However, the
application of DAS to computer vision models has not yet
been fully investigated, likely due to its recent release.

3. Methods
Baseline Model. We finetune a pre-trained deep neural
network named Microsoft Resnet-18 as a baseline model,
aiming to achieve a loss of zero [7]. A Residual Net-
work (ResNet) is a type of deep neural network architec-
ture, which addresses the problem of training very deep net-
works, which previously faced issues such as vanishing and

exploding gradients, making it difficult for the training pro-
cess to converge. The most notable features of a ResNet
are the introduction of ”skip connections” and bottleneck
blocks.

Skip connections, also known as shortcut connections,
allow the network to bypass one or more layers by feeding
the input of a layer directly to a subsequent layer. This ef-
fectively helps in preserving the gradient during backpropa-
gation, which is essential for training deeper networks. The
concept of residual learning through skip connections helps
the network to learn identity mappings, which simplifies the
optimization process and leads to improved performance.

Layer Output Size Layer Config # Repeat
Conv1 112x112 7x7, 64, stride 2 1

MaxPool 56x56 3x3, stride 2 1

Conv2 x 56x56
1x1, 64
3x3, 64
1x1, 256

3

Conv3 x 28x28
1x1, 128
3x3, 128
1x1, 512

4

Conv4 x 14x14
1x1, 256
3x3, 256

1x1, 1024
6

Conv5 x 7x7
1x1, 512
3x3, 512

1x1, 2048
3

AvgPool 1x1 7x7 1
FC 1x1 1000-d 1

Table 1: Resnet-18 Architecture

The Microsoft Resnet-18, in particular, is a ResNet that
consists of 18 layers [7]. The architecture includes a series
of convolutional layers, batch normalization, ReLU activa-
tions, and max pooling, followed by fully connected lay-
ers. The model is made available publicly with pretrained
weights on the ImageNet-1k dataset, which includes 1,000
different classes and over a million images. For our spe-
cific task, we modify the architecture by adjusting the fi-
nal fully connected layer to output the desired number of
classes (num classes = 3).

In our experiments, we fine-tune the Microsoft Resnet-
18 on our custom dataset, applying various data augmen-
tation techniques such as random cropping, horizontal flip-
ping, and normalization to enhance the robustness of the
model. The training process involves optimizing the model
parameters using cross-entropy loss and Adam [11]. The
model architecture can be examined in Table 1.

Distributed Interchange Interventions. Distributed inter-
change interventions are a technique used in the context
of model interpretability to systematically modify specific
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features of the input data and observe how these modifica-
tions affect the model’s output. This method helps in under-
standing the role and importance of different features in the
model’s decision-making process.

Consider a causal model M with input variables S and
source input settings {sj}kj=1. Furthermore, allow N to be
our target variables in M, where N ⊆ S. Allow Y be a
vector space with subspaces {Yj}k0 that form an orthogonal
decomposition and R to be an invertible function that maps
our target variables N to our vector space Y. Finally, let
ProjYj

denote the orthogonal projection of a vector in Y to
our subspace Yj . 1

A distributed interchange intervention aims to produce
an intervened model DII, which is similar to our original
causal model M with the replacement of the original mech-
anisms FN to the intervened mechanisms as follows.

F ∗
N(v) = R−1

(
ProjY0

(
R
(
FN(v)

))
+

k∑
j=1

ProjYj

(
R
(
FN(M(sj))

)))
When performing distributed interchange interventions

with neural networks, we assume that R are rotation opera-
tors. The difficulty therein lies in locating the best rotation
operator, which can be accomplished using DAS.

Distributed Alignment Search. Distributed Alignment
Search (DAS) is a causal abstraction method that is able
to learn an alignment between variables and sub-spaces
of a large neural representation, utilizing a distributed in-
terchange intervention objective which is optimized with
stochastic gradient descent. 2

Consider a low-level neural network L with source input
settings InputsL, a high-level algorithm H with high-level
output settings OutH , and an alignment τ between the in-
put and output variables. We can utilize a distributed in-
terchange intervention objective to minimize the distance
between two total high-level settings as follows, where DII
is our distributed interchange intervention model and A is
our attribute represented by a targetted feature.∑

b,s1,...,sk∈InputsL
Loss(DII,A)

In our intervention, we utilize a Cross-Entropy loss in
order to find the best alignment. I also utilize the Pyvene
library [14] to facilitate customized interventions in our ex-
periments. Pyvene provides a flexible framework for encod-
ing and implementing interventions, allowing us to tailor
our approach to specific model architectures and datasets.

1All of the notation and formulas are taken from the original Distributed
Alignment Search (DAS) paper. [5]

2All of the notation and formulas are taken from the original Distributed
Alignment Search (DAS) paper. [5]

4. Dataset and Features
We developed two custom datasets, a baseline and an inter-
vention dataset, consisting of three classes: ’dax’, ’wug’,
and ’blicket.’ We ensure that there are no repeated im-
ages between the baseline and intervention datasets us-
ing rejection sampling. The full dataset can be found at
github.com/emilybunn/cs231nDAS.

Class Shapes Background Color
blicket circle, square (250, 250, 100)

dax circle, triangle (250, 200, 250)
wug square, triangle (150, 200, 250)

Table 2: Classes described by shapes and background color.

Baseline dataset. The baseline dataset consists of 400 PIL
images of size (244, 244) per class with an 80/20 train/test
split. Examples of the dataset can be seen in Figure 1.

Each class consists of two shapes and an associated back-
ground color, as shown in Table 2. Furthermore, each shape
has a fixed size consistent across shapes and has a fixed
color consistent amongst shape type.

Shape Type Color Size
circle (170, 100, 255) rad=15
square (100, 200, 0) len=30
triangle (255, 50, 50) len=15

Table 3: Shapes described by their colors and sizes.

Each shape type has an associated color and size range in
the training dataset, as shown in Table 3. The positions of
each shape are randomized, while ensuring that shapes do
not overlap and are entirely present in each image.

Intervention dataset. The intervention dataset consists of
60 PIL image pairs of size (244, 244) per intervention type
split evenly across class pairs. Examples of an image pair
can be seen in Figure 2.

Figure 1: An example image for each class in the baseline
dataset.
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Intervention Feature Swap Examples
Shape Color (100, 200, 0) -> (255, 50, 50)

Background Color (250, 250, 100) -> (250, 200, 250)
Shape Type square -> triangle

Table 4: The intervention types described by their swaps.

Each image pair consists of one base input and one source
input, where there is one feature swap between the pair. An
example image pair for each intervention type between a
blicket and dax would involve the swapping various fea-
tures, shown in Table 4. A shape type intervention between
a blicket and dax is visualized in Figure 2.

Figure 2: An example image pair for a shape type interven-
tion in the intervention dataset.

5. Experiments/Results/Discussion

5.1. Model

In finetuning the pretrained Resnet-18 model, we utilized
the same hyperparameters as the Microsoft Resnet-18 [7]
while adjusting the number of classes to match our custom
dataset, with which we were able to achieve perfect classi-

fication accuracy and a close to zero loss after ten epochs of
training on 960 images. 3

5.2. Experimental Setup

Training a Neural Network. We finetune the pretrained
Microsoft Resnet-18 [7] on our custom training set, reach-
ing perfect classification accuracy on both our training and
test dataset.

Creating Intervention Dataset. We create an interven-
tion dataset, where each example consists of a base input,
a singular source input, a high-level causal variable target-
ted for intervention, and a counterfactual gold label that we
hope the network will output if the interchange intervention
works as desired.

As elaborated on in our Dataset section, we create three
interventions each targetting a high-level causal variable:
shape color, background color, and shape type.

Shape Color Intervention: Swap out the typical shape
color for the base image class’ different shape to the typical
shape color for the source image class’ different shape. For
instance, consider the following procedure for a shape color
intervention between a base class ’blicket’ to a source class
’wug’: take an image of our base class ’blicket’ and modify
the differing shape of square to have the same color as a
triangle. The counterfactual gold label would be ’wug’.

Background Color Intervention: Swap out the back-
ground shape color for the base image class to the typical
background color for the source image class’. For instance,
consider the following procedure for a background color in-
tervention between a base class ’blicket’ to a source class
’wug’: take an image of our base class ’blicket’ and modify
the background color of yellow to be blue. The counterfac-
tual gold label would be ’wug’.

Shape Type Intervention: Swap out the typical shape
for the base image class’ different shape to the typical shape
for the source image class’ different shape. For instance,
consider the following procedure for a shape intervention
between a base class ’blicket’ to a source class ’wug’: take
an image of our base class ’blicket’ and modify the differing
shape of square to be a triangle. The counterfactual gold
label would be ’wug’.

Note that we keep all other factors that we are not in-
tervening on the same, and importantly, ensure that our in-
tervention dataset does not overlap with our training or test
dataset. 4 An example of a shape type intervention between

3Given that the focus of our paper is more closely aligned to the impact
of interventions, our main objective in determining hyperparameters was
to ensure that our model would reach 100% classification accuracy on our
training and test dataset. The small size and simplicity of our dataset made
this easily attainable.

4This is somewhat trivial, given that our source image dataset necessar-
ily cannot overlap with our training or test dataset.
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a blicket and wug can be seen in Figure 2. More examples
can be seen in the Appendix in Figures 6, 7, and 8.

Learn a Distributed Alignment. Utilizing our intervention
datasets, we can now learn a distributed alignment between
our low-level model (i.e. our ResNet) and our high-level
models (i.e. our ResNet intervened on with a high-level
model ignoring shape color, ignoring background color, and
ignoring shape type). Based on these distributed align-
ments, the high-level model that is most aligned with the
low-level model is, in theory, the high-level causal variable
that the low-level model is the most reliant on.

Therefore, we optimize an orthogonal matrix for each
high-level model to learn a distributed alignment using our
source inputs. From here, we can run our base inputs
through the model to output the classification label, which
we measure to see if it matches the counterfactual gold la-
bel. If so, we expect that the interchange intervention has
a strong effect on the model’s behavior (i.e. by replacing
the background color, the model outputs a different classifi-
cation label corresponding to the class associated with that
background color).

Details on IIA can be found below and details on the
algorithm can be found in the Methods section of the paper.

5.3. Metrics

Interchange Intervention Accuracy (IIA). Interchange in-
tervention accuracy (IIA) measures the number of suc-
cessful interchange interventions, or how many classifica-
tion outputs match our counterfactual gold label after in-
tervention. When interchange intervention accuracy (IIA)
is 100%, the high-level model is a perfect abstraction of
the low-level model. When IIA is less than 100%, this still
gives us an approximation of the average ”limiting” causal
effect of the feature on the causal structure. The formula is
as follows. 5

IIA =
∑

b,s1,...,sk∈InputsL

1

|Inputsk+1
L |

(DII = A)

5.4. Results

We perform an interchange intervention with each inter-
vention type, and derive interchange intervention accuracies
(IIAs) by causal variable shown in Table 5. Furthermore, we
can qualitatively observe examples of interchange interven-
tions that failed in Figures 3, 4, and 5.

5.5. Discussion

The high interchange intervention accuracy for back-
ground color indicates that this feature is a significant causal
variable for a high-level model, serving as an almost per-
fect abstraction of the ResNet. This also suggests that while

5All of the notation and formulas are taken from the original Distributed
Alignment Search (DAS) paper. [5]

Intervention Type IIA (%)
Shape Color 76%

Background Color 95%
Shape Type 68%

Table 5: IIA by Intervention Type Averaged across Class

Figure 3: An example failed image pair for a shape color
intervention between a dax and a blicket. The base is a dax,
the intermediate is a blicket, and the source is a dax where
the triangle color is substituted by a square color.

Figure 4: An example failed image pair for a shape color
intervention between a dax and a blicket. The base is a wug,
the intermediate is a blicket, and the source is a wug where
the triangle color is substituted by a square color.

Figure 5: An example failed image pair for a shape type
intervention between a blicket and a wug. The base is a
blicket, the intermediate is a wug, and the source is a blicket
where the circle is substituted by a triangle.

shape type and shape color are also important causal vari-
ables, the fine-tuned ResNet does not rely on them as heav-
ily as it does on background color.

Examples of failure cases reveal that, seemingly inde-
pendent of position, interventions on shape color and shape
type do not strongly affect the model’s classification. This
implies that each image in the dataset is predominantly in-
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fluenced by background color. Given the simplicity of the
task, the model does not need to depend on shape color or
shape type to classify the images correctly.

In interpreting the model’s performance, the fact that it
achieved 100% classification accuracy in just 2 epochs sug-
gests that it may have learned to rely heavily on one feature
exceptionally well. This rapid convergence indicates that
the model found a shortcut to solve the classification task,
which, in this case, is the background color.

This points to a limitation in the custom dataset, which
fails to balance different causal variables properly in a
heuristic manner. The model’s reliance on background
color over other features highlights a potential dataset bias
that may lead to overfitting on a single feature. Conse-
quently, the model’s performance might degrade when ex-
posed to more complex or varied data where background
color is not a reliable predictor.

Interestingly, this reliance on background color aligns
with human intuition about the most obvious and telling
feature of each class. When humans categorize images,
they often prioritize prominent and easily distinguishable
features. In this dataset, background color appears to be
the most salient feature, mirroring how humans might make
quick judgments based on the most noticeable attribute.

Additionally, this scenario also underscores the utility
of causal abstraction and Distributed Alignment Search
(DAS) in determining the causal dependence of specific fea-
tures. By systematically analyzing feature interventions,
DAS helps in uncovering which features the model is gen-
uinely relying on for its decisions. This insight is crucial
for understanding model behavior, improving dataset de-
sign, and refining model training strategies.

6. Conclusion/Future Work

To address these findings, future work should focus on cre-
ating a more balanced dataset where multiple features con-
tribute equally to the classification task. This approach
would prevent the model from over-relying on a single fea-
ture and promote a more comprehensive understanding of
the relationships between different causal variables. Specif-
ically, this could entail:

• Creating a Range of Background Colors: Ensuring that
each class has a range of similar background colors
to prevent the model from associating a specific back-
ground color too strongly with a particular class.

• Adding Texture to Images: Introducing textures to
both the shapes and the background to add another
layer of complexity and relevance to the feature set.

• Adding Position to Images: To accomplish this, the
dataset could be designed such that each class has a

dedicated sector of the image where the shape(s) re-
side.

• Adjusting Shape Sizes: Making the shapes larger or
smaller to see how the model adjusts its reliance on
shape-related features.

• Varying the Number of Shapes: Switching to single-
shape or multi-shape classes in the dataset to test the
model’s ability to generalize from different levels of
complexity.

• Utilizing a Different Dataset: Using CIFAR-10 or an
alternative dataset with real-world images.

As an aside, an additional research direction that could be
interesting is utilizing oriented gradients, or some similar
method, to glean which features in an image seem the most
important, and intervene on that as a high-level feature. This
could be an interesting interpretability method, that does not
rely on explicitly knowing the potential high-level features
of a dataset in advance.

Overall, while the current model’s performance reveals cer-
tain limitations in the dataset, it also demonstrates the power
of interpretability tools like DAS in dissecting and under-
standing the underlying mechanisms of deep learning mod-
els. This knowledge is essential for developing more robust
and reliable models that align with human reasoning and
perform well across varied and complex datasets. By lever-
aging DAS, researchers can pinpoint specific weaknesses in
the dataset and model, guiding more informed and effective
improvements.

7. Appendix

There are more examples of interventions below.
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Figure 6: An example image pair for a shape color intervention between a blicket and a wug in the intervention dataset.

Figure 7: An example image pair for a background color intervention between a blicket and a wug in the intervention dataset.

Figure 8: An example image pair for a shape type intervention between a blicket and a wug in the intervention dataset.

4328


