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Abstract

We present a self-supervised method to learn a shared
embedding space for audio and image data for everyday
objects. Our approach centers around the use of pre-
trained models AST (Audio Spectrogram Transformer) and
DINOv2. We train AST with frozen DINOv2, and project
their embeddings into a shared space to improve cross-
sensory retrieval tasks. We utilize 100,000 image-audio
pairs from ObjectFolder and 3,000 test points from Object-
FolderReal to evaluate our model. We find that our method
shows significant results for inter-object retrieval tasks, but
currently performs at-chance for intra-object retrieval. We
investigate this performance disparity in the Discussion.
Additionally, we test and address our model’s ability to per-
form sim-to-real learning.

1. Introduction

In this report, we explore the integration of audio and
image data into a shared multimodal embedding space,
with an emphasis on object-centric data. The identification
and use of everyday objects is often essential for interacting
in one’s environment, and therefore is a topic of interest
for many embodied artificial intelligence tasks. Humans
meaningfully learn about objects via multimodal data
(rather than disjointed observations taken in isolation), so
we hypothesize that efficiently learning this correspondence
can greatly improve a model’s performance on intuitive
object recognition, and has uses for downstream robotics
tasks.

To first evaluate baseline AST’s ability to classify our
audio of interest, we utilize the provided top-k classifica-
tion inference metrics. To implement this joint embedding
space, we took two independent models, AST [10] and
DINOv2 [1] , and trained AST with frozen DINOv2
such that their learned features are projected to a shared
embedding space. Then, after the integration of AST and

DINOv2, we evaluate the joint embedding space on a
variety of cross-sensory retrieval tasks.

1.1. Problem Statement

The primary goal of this project is to integrate the em-
bedding of audio and image data from well-performing
models into a shared multimodal embedding space for
object-centric applications. Specifically, the task is to uti-
lize a pretrained Audio Spectrogram Transformer (AST), in
conjunction with the frozen DINOv2 model. The pretrained
AST we utilize was trained on AudioSet [0] , a large-scale
dataset with diverse audio-text label pairings. The evalua-
tion of this shared embedding space will be assessed by the
ability to facilitate effective cross-modal retrieval.

1.2. Method Inputs and Outputs

The inputs to our model consist of approximately
100,000 image-audio data pairs. These pairs are from the
ObjectFolder dataset [4], developed in Stanford’s Vision
and Learning Laboratory, which contains high-quality neu-
ral (simulated) visual, auditory, and tactile representations
of everyday objects. We then use a paired AST and Di-
noV2 architecture to output a shared embedding space of
audio and visual data. However, to evaulate these embed-
ding outputs, we utilize a variety of cross-sensory retrieval
inference tasks. The outputs of these cross-sensory retrieval
tasks are the mean Average Precision (mAP) between the
embeddings of DINOv2’s visual features and AST’s impact
audio features.

We define the cross-model retrieval task general as fol-
lows: given either the audio or image embedding of a spe-
cific object and point on that object, identify the embedding
of the other modality of interest corresponding to the same
point of the same object. There are two configurations for
our cross-sensory retrieval tasks:

¢ Inter-Object Retrieval: Retrieving the correct modal-
ity embedding for a single point from each of 100 dif-
ferent validation objects.



* Intra-Object Retrieval: Retrieving the correct
modality embedding for k points, each from within a
single object.

Please see Methods for more implementation details.

In this paper, we present the results of our joint-embedding
Inter-Object and Intra-Object retrieval tasks. We also
present results of the single-modality AST method, which
serves as a baseline and is detailed below.

1.3. Baseline Method

The Audio Spectrogram Transformer model provides
a comprehensive method to run inference on an arbitrary
amount of datapoints, provided that the researcher prepares
audio and text-label pairs. We run inference on approxi-
mately 90,000 datapoints from ObjectFolder, and present
the result of the baseline method in Experiments Results.

2. Related Work
2.1. Single-Modality Learning

Multimodal work is frequently built upon the architec-
tures of single-modality learning. Here we highlight the two
main previous works that we build our joint audio-vision
work upon: AST (Audio Spectrogram Transformer) and DI-
NOv2.

The AST model [10] is introduced by Y. Gong et al.,
presenting the first convolutional-free approach to learning
audio embeddings. AST has shown strong performance in
audio classification across a default set of 527 classes, indi-
cating strong embeddings and the ability to learn more fine-
grained audio features. However, the current AST frame-
work is suited for audio-text label relationships and classi-
fication. For the integration across more modalities, such as
vision and tactile, we have the opportunity to utilize AST’s
learned embeddings and integrate them with visual data for
a deeper multimodal understanding, rather than relying on
bridging these modailities via text labels.

DINOV2 [1], developed by Facebook Research, is a self-
supervised algorithm for learning visual features. DINOv2
uses teacher-student architecture to extract image features
very efficiently, without relying on labeled data. DINOv2
utilizes a Vision Transformer (ViT) as its main architecture,
and is widely used as a stable backbone for various com-
puter vision tasks. For this reason, we employ DINOvV2 as
our principle visual model, and use it off-the-shelf without
additional training.

2.2. Multimodal Supervised Learning

We begin by examining multimodal visual models
with supervised approaches. PolyVit [14], introduced by
Likhosherstov et al., cotrains on image, audio, and video
data with a single transformer and shared parameters.

PolyVit takes a supervised approach by training on a va-
riety of robust annotated datasets such as CIFAR-10 [13],
Kinetics 400 [12], and Audioset [6].

OMNIVORE [9], a method by Girdhar, R., Singh, M.,
Ravi, N., et al. trains a single vision model with multiple
visual modalities: images, videos, and single-view 3D. This
model utilized a transformer-based architecture and excels
at classification tasks for the three visual data formats used.
They also found that cross-modal correspondences emerged
without explicit training, indicating the model’s ability for
generalization across new modality pairings. This zero-shot
capability would be particularly desirable for down-stream
embodied Al tasks, and is something we hope to emulate.
Like PolyVit, OMNIVORE is a supervised approach by
training on labled datasets such as ImageNet [2], Kinetics-
400 [12], and SUN RGB-D [17].

Recently, the Touch-Vision-Language (TVL) Model [3],
developed by Fu, Datta, Huang, Panitch, Drake, et al., was
presented as a unique approach to integrate tactile data with
vision and language. They utilized human annotations and
generated pseudo-label, which was proved to achieve sig-
nificant multimodal understanding.

While these approaches achieve state-of-the-art results,
we are interested in exploring self-supervised approaches
without explicit labels. This partly arises from a necessity,
as object-centric labeled data is relatively scarce.

2.3. Multimodal Self-Supervised Learning

In addition to multimodal supervised learning methods,
there have been various approaches to self-supervised learn-
ing to jointly embed features such as audio, vision, tactile,
etc.

Nagrani et al. [16] present a novel video-mining pipeline
to create a weakly-labeled dataset for video-to-audio and
caption data. This is a clever approach to address a gap
between image-captioned and video-captioned data, but still
relies on some form of captioning.

As an extension of OMNIVORE, OmniMAE [7] utilizes
a novel approach of training a ViT with a masked autoen-
coder (MAE) for images and videos. This masking allows
for efficient data processing and does not require any la-
beled data, making it a fully self-supervised strategy.

AudioCLIP [ 1] extends the CLIP model to integrate au-
dio and image learning along with image and text. They
utilize a blend of CLIP ViT and ResNeXt architectures
to make this tri-modal correspondence and is fully self-
supervised.

Lit (Locked-image Tuning) [ 18], by Zhai et al., also per-
forms contrastive self-supervised learning for image and
text modalities. Additionally, the authors highlight that
freezing a strong image-encoder led to optimal results.
This, along with ImageBind, encouraged us to freeze DI-
NOV2 in our own methods.



Perhaps most similar to our method is the ImageBind
framework [8], developed at Meta by R. Girdhar et al. Im-
ageBind presents a novel approach to creating a shared em-
bedding space across multiple modalities of data includ-
ing images, audio, text, audio, and video. This research
our most relevant predecessor as it addresses the core task
of self-supervised multimodal learning via joint embed-
ding spaces. By this method, ImageBind is able to per-
form a wide range of retrieval and zero or few-shot genera-
tion tasks, displaying the ability to utilize joint embeddings
between modalities it was not directly trained on. How-
ever, ImageBind seems to underperform significantly with
object-centric data. We hypothesize that this is due to the
model’s training on a broad range of category types, which
is useful for general-purpose models. However, it would
follow that for object-specific tasks, there was likely an in-
sufficient amount of object training data for ImageBind to
perform well on these tasks. This motivates our project’s
use of a multimodal embedding space, with a emphasis on
object-centric data.

3. Methods
3.1. Integration of AST and DINOv2

3.1.1 Pretraining and Architecture Details

The AST model is pretrained on AudioSet [0], a robust au-
dio dataset which allows AST’s pretrained weights to han-
dle a wide variety of inputs. The model uses a frequency
stride of 10 and a time stride of 10 with overlapping patches,
allowing for more fine-grained feature extraction for ob-
ject impact sounds. AST proccesses audio data by adapt-
ing the Vision Transformer architecture to audio spectro-
grams. This strategy treats the time-frequency representa-
tion essentially how image pixels are treated in vision tasks.

DINOV2 is fully-frozen during our training process, as
DINOV2 is a very strong off-the-shelf model and allows for
consistent visual features over training. DINOv2 also uses a
Vision Transformer as its backbone architecture. DINOv2’s
frozen model involved training a student network to pre-
dict the output of a teacher network, allowing the student to
learn consistent image features over multiple views of the
same image. Images must be re-sized and normalized prior
to passing to DINOv2.

In general, a ViT operates by extending the transformer
natural language processing architecture to image recogni-
tion tasks. Images are first divided into sub-patches (which
can have overlap, depending on the stride), then flattened
and lineraly embedded. To still encode positional informa-
tion of the pixels, positional embeddings are added to the in-
puts. These patches are processed by multiple self-attention
mechanisms, and are very useful for vision-based tasks such
as natural images or spectrograms.

3.1.2 Training

AST processes audio waveforms into mel spectrograms,
then passes these spectrograms through the AST model to
generate embeddings. Frozen DINOv?2 simultaneously pro-
cesses images from the training set. Training pairs of audio-
text data are pulled from rendered directories of Object-
Folder data. AST’s weights are updated during the training
process and optimized with AdamW, with the intention of
improving from the AST baseline presented in Experiments
Results.

3.2. Evaluation Implementation
3.2.1 Inter-Object Retrieval

Inter-object retrieval is implemented by first processing em-
beddings from two different modalities (audio and vision)
for the same datapoint pair. The cosine similarity scores are
then computed between these embeddings, defined as:

X1 X2

X1 = 57— X9 =
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Finally, an evaluation of mean Average Precision (mAP)
is done to measure retrieval performance. mAP is calcuated
as:

1L 1
AP = — _
m N;ranki—i—l

Where N is the number of queries and the ranki is the rank
position of the correct class for the i-th query.

The algorithm iterates over a DatalLoader we designed
to load audio and image data pairs. The Datal.oader serves
batches of audio-visual data pairs. The Datal.oader is in-
structed to load n —way objects, with only one audio-vision
data pair each.

3.2.2 Intra-Object Retrieval

Intra-object retrieval is implemented similarly as inter-
object retrieval, but instructs the Datal.oader to only load
point pairs from within a single object.

3.3. Loss

We optimize a combined InfoNCE loss function to en-
courage corresponding audio and image embeddings to be
close together in the shared embedding space. This allows
dissimilar pairs to be further apart in the embedding space
as well. InfoNCE loss is defined as follows:

exp(sim(u, v)/7) )
SO exp(sim(u, vy,)/T)

Where u and v are the embeddings of positive pairs, vy
are the embeddings of negative samples, 7 is the tempera-
ture parameter, and sim is a cosine similarity function.

Linfonce = — log (



3.4. Baseline Method

To contrast the mAP of our proposed method, we em-
ploy the provided Baseline AST method. We performed
inference on ObjectFolder data without the additional train-
ing on object-centric data, to get a baseline mAP for audio-
text label classification. The off-the-shelf AST used for this
task is the same pretrained version we use on our proposed
method.

3.5. Evaluation

We evaluate the baseline method via results from the
provided AST classification task implementation. This im-
plementation takes an arbitrary number of audio-text label
pairs, and performs inference on these pairs, returning mAP,
AUC, and d-prime metrics for the top-k resulting class la-
bels. At least 2 correct labels must be supplied for each
validation point, from a total of 527 classes. The results of
this baseline are in Experiments Results, 5.3.

We evaluate our proposed model on the cross-sensory
retrieval tasks as described in Section 2. The results of the
method implemented for this milestone (Intra-Object Re-
trieval) as well as a comparison method that was already
completed (Inter-Object Retrieval) are presented in Section
5.

4. Dataset
4.1. Simulated and Real Datasets

The primary dataset used for this project is R. Gao et

al’s ObjectFolder [4] , published from Stanford’s Vision
and Learning Laboratory. ObjectFolder has approximately
100,000 simulated datapoints with visual, auditory, and tac-
tile information. The dataset is composed of 1,000 distinct
everyday objects, with approximately 100 datapoints per
object. We use 90% of ObjectFolder data for training, (ap-
proximately 90,000 points across 90 objects), and 10% for
validation (approximately 10,000 points across 10 objects).
Note that we separate our train and validation data by ob-
ject: an object’s datapoints are either fully in the training set
or fully in the validation set.
Finally, we present testing results from a related dataset,
Gao et al.’s ObjectFolderReal [5]. ObjectFolderReal, also
published from Stanford’s Vision and Learning Laboratory,
has approximately 3,000 real datapoints of visual, audi-
tory, and tactile information. There are 100 objects in this
dataset, with about 30 points per object. We selected this
as our testing set for its quality of being similar to Object-
Folder yet unseen by our model. We are also interested in
our model’s ability to perform sim-to-real transfer.

4.2. Preprocessing

4.2.1 Rendering of ObjectFolder Real Data

The ObjectFolder data is neural data (simulated), meaning
that preprocessing involves utilizing rendering scripts for
the waveform and image data. The waveform data were al-
ready rendered in our SVL cluster. Waveforms are coverted
to spectrograms with 44.1kHZ and 256 mel-frequency bins.

For the images, we had to create a rendering script for the
images to meet desired specifications. First, ObjectFolder-
Real supplied point and normal information for each data-
point impact. Therefore, we wanted to generate a textured
rendering of an object in space pointing at the point of im-
pact contact, with the camera positioned along the normal
to that point. We also wanted the camera distance from the
object’s surface to be the same distance as the ObjectFolder
data for consistency. Our images are rendered at 512x512
pixels. Rendering image and spectrogram samples are given
in Figure 1 and 2.
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Figure 1: ObjectFolderReal Rendering Examples

4.2.2 Compatibility with AST

AST incorporates the preprocessing of waveform to spec-
trogram within its own pipeline, but both AST and DINOv2
require some normalization of inputs before passing to their
respective models. AST data is normalized to a mean of
—3.739 and standard deviation of 6.697., so we incorporate
this step to our preprocessing pipeline.

To run the AST baseline method, which was classifi-
cation inference on audio-text label pairs, it was also
required to map audios to one of 527 default AST text-label
classes. As this inference was simply used as a baseline, we
hand-mapped object impact sounds to classes based on the
object’s material. ObjectFolder has objects from 7 different
material classes, the mapping rule for this is presented in
Table 1.

5. Experiments & Results
5.1. Hyperparameters

We utilize a learning rate of le — 5 and AST’s pre-set
weight decay of 5e — 7. We experimented with a vari-
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Figure 2: Spectrogram Rendering Examples.
2a Spectrogram of a wooden spatula. 2b Spectrogram of a ceramic bowl. 2¢ Spectrogram of an iron skillet.

Material AST Class Label
Ceramic clank, clink, dishes pots pans

Wood wood, wood block

Glass glass, clank, clink
Iron clang, cowbell
Plastic clatter, thunk
Polycarbonate clatter, thunk
Steel clang, reverb

Table 1: Mapping of materials to AST class labels

ety of learning rates, and found that learning rates greater
than le — 3 lead to exploding gradients. Values of 1le — 4
and le — 5 both seemed to converge, but le — 5 had sig-
nificant improvements for training with 4 objects and two
points each, so we selected 1e — 5 as our final learning rate.
Figure 3 visualizes these details.

Due to the computational needs of the AST model, we
were limited to 8 points per training batch. However, we
experimented with how to split these 8 points per batch:
either 8 objects with 1 point each, or 4 objects with 2 points
each. We found that 8 objects with 1 point each led to more
significant convergence, as detailed in Figure 3. We did not
perform cross-validation.

Training Loss

— Ir: 1e-5, 4 objects 2 points — Ir: 1e-4, 8 objects 1 point — Ir: le-3, 8 objects 1 point = Ir: 1e-4, 4 objects 2 points
= Ir: 1e-5, 8 objects 1 point

Figure 3: Visualization of Training Loss with Various
Hyperparameters

5.2. Optimization

We use AdamW [15] for our optimizer, with the learn-
ing rate and weight decay specified above, to update the
AST weights by the computed gradient from our loss func-
tion. This is the same optimizer used by the pre-trained
AST model, as AdamW often yields better training loss and
generalization to unseen data.

5.3. Baseline Classification Results

AST’s off-the-shelf classification reports the metrics of
mAP, AUC, and d-prime. mAP (mean Average Precision)
measures the average precision across recall and retrieval
tasks. In AST’s baseline case, this is the average precision
across recall levels for each class label. AUC is the area un-
der the ROC curve, and is a measure of the performance of
binary classification. d-prime is a measure of the model’s
ability to distinguish between the target and noise.

From running a validation sample of 300 ObjectFolder data-
points on pretrained AST, we got a audio-label classification
mAP of 0.162, AUC of 0.523, and d-prime of 0.074. With-
out any additional training, this mAP showed some promis-



ing result of using AST’s embeddings, especially when
considering our the model’s ability to predict our loosely-
labeled data out of 527 class label. This encouraged us
to perform Experiments 1-3 after joint AST and DINOv2
training.

5.4. Multimodal Cross Sensory Retrieval Results

5.4.1 Experiment 1: Inter-Object Retrieval

We continue with the primary metric of mAP. Our first ex-
periment was Inter-Object Retrieval. We perform cross-
sensory retrieval with either 20, 50, and 100 objects, with
one point per object. Results for Experiment 1 as compared
to chance performance are tabled in Table 2.

Retrieval Type | Ours (%) | Random (%)
(20-way)
DINOv2 — AST 48.98 18.0
AST — Dino 49.48 18.0
(50-way)
DINOv2 — AST 25.82 10.0
AST — Dino 26.81 10.0
(100-way)
DINOv2 — AST 24.1 5.19
AST — Dino 25.5 5.19

Table 2: Inter-Object Audio +» DINOv2 Cross-Modal
Retrieval

5.4.2 Experiment 2: Inter-Object Retrieval, with Spec-
trogram Averaging

We were also interested in how inter-object retrieval would
perform when treating audio as more of a global versus local
feature. To test this, we sampled n points per object, took
the average of the audio spectrogram from these points,
then performed the same inter-object retrieval task as de-
fined above.

Inter-Object with Spectrogram Averaging mAP for DINOv2 and AST
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Figure 4: Inter-Object mAP (with Spectrogram Averaging)
versus Number of Points per Object

We fixed the task to 100 objects, but found that the num-
ber of points sampled per object seemed to influence mAP.
Our findings for this experiment are detailed above in Fig-
ure 4.

5.4.3 Experiment 3: Intra-Object Retrieval

We perform intra-object retrieval, as defined in Methods,
across varying numbers of points. These results are tabu-
lated in Table 3.

Retrieval Type | Ours (%) | Random (%)
(10-way)
DINOv2 — AST 29.6 29.02
AST — Dino 28.8 29.02
(20-way)
DINOv2 — AST 18.2 18.0
AST — Dino 17.3 18.0
(100-way)
DINOv2 — AST 5.21 5.19
AST — Dino 5.38 5.19

5.4.4 Experiment 4: Inter-Object Sim-to-Real Testing

Finally, we test our model’s ability for sim-to-real learning
transfer. As intra-object retrieval appeared at-chance per-
formance, we just perform Experiment 4 on inter-object re-
trieval. Results for 2, 5, 10, 20, and 100-way retrieval are
visualized below in Figure 5.

5.5. Discussion
5.5.1 Inter-Object Discussion

In Experiment 1, we find that our method is quite effective
for inter-object retrieval, achieving mAP scores that are
significantly above chance for 20, 50, and 100-way object

100
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Figure 5: Inter-Object Sim-To-Real Testing

retrieval tasks. We believe that this is because of our
large-quantity of robust training data that has a variety
of everyday objects. Additionally, when visualizing the
ObjectFolder spectrograms, it seems that the material of
an object is a main predictor in spectrogram features. This
qualitative observation can be seen in Figure 2. Addition-
ally, we believe that we encountered some over-fitting to
our training data, as we achieved very small loss values for
train loss, but after a significant amount of training (TOOk
steps), our validation loss began to diverge. However, all
inter-object results are from the validation set and are still
significant, so we did not mitigate the overfitting for now.

We find that performing inter-object retrieval with
spectrogram-averaging (Experiment 2) yields comparably
significant results as Experiment 1. We also find that a
“"medium” amount of points per object (eg. 20-80 points)
yielded the highest mAP of 26.8, and was slightly higher
than Experiment 1. This finding aligns with our intuition:
if we take the spectrogram average over a few object
points (eg. 1-10 points), that is essentially equivalent to
Experiment 1. However, taking the average over too many
intra-object spectrograms could muddle the signal too
much, especially for objects with more variable spectro-
grams. Again citing Figure 2, materials with more reverb
(such as iron and steel) tended to have more variability in
their spectrograms.

5.5.2 Intra-Object Discussion Investigation

For Experiment 3, we find that our method is at-chance, and
it seems that our joint audio-image embeddings are not suf-
ficiently fine-grained for intra-object retrieval. After some
reflection, while this is a harder task than inter-object cross-
sensory retrieval, we concluded that humans are able to still
semi-reliably discriminate different impacts audio locations

on the same object. This prompted us to investigate the
quality of our spectrograms before processing by AST. Our
hypothesis was that the spectrograms were likely not de-
tailed enough to capture more subtle differences between
intra-object audios.

We found that our original spectrograms had two main
sub-optimal features. First, due to the smaller number of
timesteps used in our impact-audio waveforms, we found
that only 1/3 of the spectrogram actually contained the au-
dio signal, and 2/3’s was padded by AST’s default configu-
rations. Second, we found that the original spectrograms
used 128 mel-frequency bins, which often did not suffi-
ciently capture the differences between intra-object spec-
trograms. To confirmed this insufficiency, we plotted the L1
differences between two intra-object points for a few sam-
ple objects. These failing points are highlighted in Figure 6
and 7.

L1 Distance for Object 1 Epoch O Step 0

0 20 40 60 80 100 120

1000
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Figure 7: L1 Distance for Spectrogram Samples from
Figure 6

After investigating these failing points, we adjusted the
expected time steps for AST, and increased mel-frequency
bins from 128 to 256. Our next step is to re-train and run
Experiment 3 with this new configuration.

5.5.3 Sim-To-Real Gap

Finally, it seems that our current model is unsuccessful at
bridging the sim-to-real learning gap, as inter-object perfor-
mance on ObjectFolderReal data is only marginally above
chance. We hypothesize this might be in-part due to the
spectrogram deficiencies described in the previous section.
We also aim to investigate if the lower-fidelity of simulated
versus real data becomes more apparent in spectrogram vi-
sualizations than waveform audios. If this is the case, then
AST could face difficulties in cross-sensory retrieval of real
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Figure 6: Intra-Object Spectrogram sample, featuring AST default padding and insufficient variation

data with higher-fidelity spectrograms.

6. Conclusion & Future Work

In this study, we successfully designed and evaluated
model for shared embeddings between audio and image
data, focusing on object-centric data. We integrated AST
for audio processing and frozen DINOvV2 for images into a
joint model, which proved to be highly effective for inter-
ojbect cross sensory retrieval tasks. Our results show signif-
icant improvement over baseline single-modality classifica-
tion, which highlights the potential for this approach to be
used for more intuitive object recognition and downstream
robotics tasks.

Our future work will include re-training our architec-
ture with the improved spectrogram configuration, with the
intention of improving intra-object cross-sensory retrieval
performance. Additionally, we will investigate the sim-to-
real gap our model faces, as described in the Discussion.
In a larger context, this work is part of a larger work, Ob-
jectBind, is an ongoing project in multimodal object-centric
foundation models. Objectbind aims to integrate modalities
such as images, mesh, audio, and tactile data into a shared
embedding space. Our hope for this project is to develop an
all-inclusive model with intuitive object-recognition abili-
ties, as the identification and interaction with objects is fun-
damental for humans and embodied agents alike to perform
everyday tasks.
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