
JASMUR: Estimating the Absolute Pose of Vehicles in Real-World Traffic Images

Jasmine Park
Stanford, NVIDIA

CS231N
jaspark@stanford.edu

Umur Darbaz
Stanford, NVIDIA

CS231N
udarbaz@stanford.edu

Abstract

Vehicle pose estimation is a key component of path plan-
ning in self-driving cars [1]. Determining the position of
other cars in traffic and predicting their movement by esti-
mating their orientation in 3D space allows a self-driving
car to drive safely and avoid collisions. We revisit the
Peking University/Baidu Autonomous Driving Kaggle com-
petition [2] focused on estimating the absolute pose of ve-
hicles from RGB real-world traffic images. We present JAS-
MUR, a 6D pose estimator that predicts the location and
orientation of cars built on top of state-of-the-art object
detection methods. We explore different CNN and trans-
former feature extractor backbones, define a mean-average-
precision metric and achieve up to 0.258 mAP in predicting
combined 6D pose with a pretrained ResNet50.

1. Introduction

Vision-based self-driving cars operate on a combination
of multiple-cameras (producing RGB images), and a vari-
ety of sensors [3]. Input image data provides valuable in-
formation such as other vehicles in traffic. Detected vehi-
cles have a translation vector in 3-dimensional space (x, y,
z) and a 3-dimensional rotational vector (yaw, pitch, roll).
These vectors combined, 6D pose, present the location and
orientation of detected objects relative to the camera. Pose
is a key component of path planning, as it is not only used
to predict behavior of other vehicles, but also pedestrians in
the scene [4, 5].

Our objective is to estimate the pose of vehicles (x,y,z,
and yaw,pitch,roll) from RGB real-world traffic images.
This problem can be split into two parts; (1) an object de-
tection problem, and (2) a pose regression problem. First,
every vehicle in a frame must be detected accurately, and in
real-time. Next, for each detected vehicle, their pose rela-
tive to the camera must be estimated.

2. Related Work
We first evaluate existing top entries for object detection

and pose estimation. One of the state-of-the-art vehicle pose
estimators is 6D-VNet [1], which uses a Faster-RCNN ob-
ject detector with a Resnet-101 backbone. The extracted
features of the vehicles are run through linear layers to gen-
erate a translation vector and a rotation vector. A separate
translation loss and rotation loss is calculated from the pre-
dictions and ground truth, and the network is trained end-
to-end. The paper also shows that the spatial relationship
between objects within the image are beneficial to capture
using a non-local block at the output of the backbone. 6D-
VNet has explores using Euler angles and Quaternions for
regressing rotation loss. It additionally considers regress-
ing translation vectors in world coordinates and pixel units.
We take their exploration into account when designing our
architecture.

Another leading vehicle pose estimation framework,
apart from those in the Kaggle competition, is GSNet (Ge-
ometric and Scene-aware Network) [6]. GSNet uses an R-
CNN object detector and a heatmap regression branch to
extract Region of Interest (ROI) features, keypoint coordi-
nates (global locations in the whole image) and bounding
boxes. These are fused and fed into three separate heads
that regress a translation vector, a rotation vector and recon-
struct the vehicle shape. GSNet defines several loss terms
that are summed to generate a final loss term, but an im-
portant aspect is that Euler angles are restricted to [−π, π].
This ensures each pose can be represented with a unique
angle.

CenterNet [7] presents a comprehensive framework for
object and keypoint detection. It produces two separate
outputs, (1) the center point of detected objects, and (2) a
heatmap that contains the probability of a pixel belonging
to the center of a detected object. It’s a popular choice in
the Kaggle competition, and we believe its overall system
architecture is applicable to our problem.

YOLO [8, 9, 10] is a state-of-the-art object detection tool
that uses a backbone CNN and feature pyramid networks
[11] to detect and draw bounding boxes around objects in

1



Figure 1. Random samples of the PKU/Baidu dataset visualized.

a given image. Unlike R-CNNs [12], YOLO does not have
region proposal. It instead divides the image into a grid and
predicts classes of objects and bounding boxes within each
cell. Because it works in a single forward pass, YOLO is
applicable to real-time problems such as self-driving vehi-
cles. It is an efficient network, containing 36.9M parameters
and requiring 104.7 GFlops of operations while achieving
66.7% AP in the case of YOLOv7 [8].

Transformer use in self-driving applications is also in-
creasing. Scene Transformer [13] embeds agents (such as
vehicles and pedestrians) into high dimensional spaces and
utilize attention to encode interactions between the road and
the agents to draw trajectories. Another technique for 6D
pose estimation and tracking is presented in Foundation-
Pose [14]. FoundationPose takes in reference images and
models of objects (which are encoded as neural representa-
tions of appearance and geometry) and uses a transformer
network trained with contrastive learning to generally han-
dle many object representations and produce pose estima-
tion.

3. Dataset
For this project, we are utilizing a highly special-

ized dataset from the Peking University/Baidu Autonomous
Driving competition hosted on Kaggle [2, 15]. The dataset
includes 60,000 labeled 3D car instances derived from
5,277 high-resolution real-world images as visualized in
Figure 1. These images are annotated with 3D orientation
labels (yaw, pitch, roll) along with spatial coordinates (x, y,
z) for each vehicle in the image. Computer-Aided Design
(CAD) models of cars in the images are also provided.

The primary data consists of JPEG format images. These
images, derived from real-world scenarios, are crucial for
the application of machine learning models that predict the
pose and dimensions of cars within the images. Each image
is associated with a prediction string that encodes the 3D
pose and location of cars within the image. These are the
ground-truth labels. An example of the prediction strings is
shown in Table 1. These strings are crucial for training and
evaluating our pose estimation models. Additionally, mask

ID Yaw Pitch Roll x y z
28 0.169264 0.00461133 -3.1264 -2.52194 3.94 16.6459
23 0.146421 -0.0302788 -3.0741 -3.08984 7.33516 37.4124
43 0.157318 3.12389 -3.10215 -4.93734 9.87454 58.4607

Table 1. Sample labels for each vehicle in an image.

images are provided for each instance to facilitate the focus
on relevant regions during processing.

4. Methods
JASMUR employs a combination of object detection,

image preprocessing, data augmentation and pose regres-
sion techniques to tackle 6D pose estimation. The full
pipeline is illustrated in Figure 2. The pipeline takes in
3384x2710 RGB images of real-world traffic data. Every
vehicle in each image has an associated 6D pose label (x, y,
z, yaw, pitch, roll). Our end-to-end pipeline predicts the 6D
pose for each vehicle in an image. Next, we describe the
design decisions made for every stage of the pipeline.

4.1. Object Detection

We utilize YOLOv8, a state-of-the-art object detec-
tion model to accurately identify and localize cars within
each image. YOLOv8 strikes a balance between accuracy
and computational performance which makes it a popular
choice in real-time applications such as self-driving vehi-
cles. Each input image is fed into YOLOv8, which in
turn outputs detected objects’ classes and bounding boxes
around each object as two vertex coordinates (x1y1, x2y2)
in 2D image space. Using the camera matrix, we map the
3D coordinate labels (x, y, z) of each vehicle onto the 2D
image space. Once the coordinates are transformed, we
match each image-space coordinate with a corresponding
YOLO-detected bounding box. We enumerate the steps
taken to associate the bounding boxes with the labels be-
low.

1. The center-point (xcyc) of each bounding box is calcu-
lated from the YOLO-detected bounding box vertices.

2. The 3D coordinate labels (x, y, z) of each car is mapped
to 2D image space (xlyl) for every car instance per
image.

3. The car coordinates (xlyl) are compared to each
bounding box center-point (xcyc) to find the closest
one using Euclidean distance.

4. The bounding box with the smallest distance to the
projected 2D center point is considered a match.

This process yields a list of objects with their associated
bounding box and pose labels. The bounding box is used to
crop the image around the detected car, ensuring that only
the region of interest is used for further processing.

2



Figure 2. Image Pipeline and Network Architecture of JASMUR

4.2. Data Augmentation

To enhance the robustness of our model, we design a
data augmentation step in the JASMUR pipeline using the
albumentations library [16]. This augmentation is ap-
plied to the cropped car images (our region of interest). The
augmentation techniques simulate various real-world sce-
narios and bolster the generalization ability of our model.
Our selected augmentation steps are based on the best per-
forming Kaggle entries [17]. The key augmentation tech-
niques we used are listed below, and examples are illus-
trated in Figure 3.

• Shift-Scale-Rotate: Randomly shifts, scales, and ro-
tates the images to simulate different viewpoints.

• Brightness-Contrast Adjustment: Randomly adjusts
the brightness and contrast of the images to account for
different lighting conditions.

• RGB Shift and Hue-Saturation-Value Adjustment:
Applies random shifts in RGB values and hue-
saturation-value to handle color variations.

• Blurring Techniques: Uses both Gaussian blur and
median blur to mimic the effect of motion and defocus.

• Channel Shuffle: Randomly shuffles the color chan-
nels to increase the model’s robustness to color varia-
tions.

4.3. Model Architecture

JASMUR implements a two-head neural network archi-
tecture. First, cropped and augmented images are resized
and fed in to a pretrained backbone feature extractor CNN

Figure 3. Data Processing Example. Top Left: Original Image.
Top Right: YOLO Output. Bottom Left: Cropped Image based on
bounding boxes. Bottom Right: Augmented Image.

(ResNet50 [18] or MobileNetV3 [19]) or Vision Trans-
former (ViT) [20]. Each of these models are pre-trained on
ImageNet [21]. MobileNetV3 is relatively lightweight and
appropriate for resource-constrained use cases such as em-
bedded systems. ResNet, at the cost of more computation
and memory, brings higher accuracy and is able to capture
more complex patterns. ViT is effective for advanced im-
age recognition through its transformer architecture but it
comes with higher demands on processing power and data.

We remove the classifier layer of the CNN/transformer
backbone and feed its learned features to parallel rotation
and translation heads. Each head begins with a fully con-
nected layer to capture information from the feature extrac-
tor independent of the other head.

Rotation head is comprised of three fully connected lay-
ers with ReLU for non-linearity. Effectively, we use a pre-

3



trained CNN/transformer with a new regression head to es-
timate the rotation vector (yaw, pitch, roll) and output three
Euler angles in radians.

Translation head is also comprised of three fully con-
nected layers with ReLU for non-linearity. Similar to ro-
tation, it first takes in the backbone features. We addition-
ally calculate four features using the bounding box vertices
outputted by YOLO; (1,2) bounding box center coordinates
x,y, (3) bounding box width and (4) bounding box height.
These are normalized to the original input image size, and
the center x,y coordinates are zero-centered. We intuit that
there is a transformation from the bounding box center point
to the vehicle location that is learnable, while the size of
the bounding box exposes information about the distance
of the vehicle relative to the camera (z coordinate). These
features are concatenated with the output of the 1st fully
connected layer that learns the CNN/transformer features,
and fed in to the 2nd fully connected layer of the translation
head. The final layer of each head reduces the features to a
single 3D vector, producing three coordinates in normalized
image space (x, y, z). The network jointly predicts the 6D
pose of the vehicle.

4.4. Loss Functions

We treat 6D pose regression as multi-task learning. We
separately regress position and orientation of each vehicle,
and define separate loss functions for the two tasks.

Translation Loss: Ltranslation is regressed in pixel
units normalized to the original image space for x and y,
and pixel units normalized to the maximum seen depth for
z. We adopt L1 (Manhattan) distance to keep the loss value
scale comparable to rotation loss, as defined in equation 1,
where ti is the (x,y,z) label for a given vehicle, and t̂i is the
(x,y,z) prediction.

Ltranslation =
1

N

N∑
i=1

|tij − t̂ij | (1)

Quaternion conversion: For rotations, top performing
entries [1, 17, 22] prefer alternative representations to Euler
angles. Euler angles are not one-to-one. The same angle
can be represented by multiple values at 2π offsets, which
turns into a multi-modal task for regressing it, and presents
a challenge. To alleviate this problem, we convert the 3D
rotation labels and our output prediction to quaternion vec-
tors q = (q0, q1, q2, q3) as shown [23].

q0 = cos

(
ϕ

2

)
cos

(
θ

2

)
cos

(
ψ

2

)
+ sin

(
ϕ

2

)
sin

(
θ

2

)
sin

(
ψ

2

)
(2)

q1 = sin

(
ϕ

2

)
cos

(
θ

2

)
cos

(
ψ

2

)
− cos

(
ϕ

2

)
sin

(
θ

2

)
sin

(
ψ

2

)
(3)

q2 = cos

(
ϕ

2

)
sin

(
θ

2

)
cos

(
ψ

2

)
+ sin

(
ϕ

2

)
cos

(
θ

2

)
sin

(
ψ

2

)
(4)

q3 = cos

(
ϕ

2

)
cos

(
θ

2

)
sin

(
ψ

2

)
− sin

(
ϕ

2

)
sin

(
θ

2

)
cos

(
ψ

2

)
(5)

• ϕ is the roll angle (rotation around the x-axis)

• θ is the pitch angle (rotation around the y-axis)

• ψ is the yaw angle (rotation around the z-axis)

Rotation Loss: Lrotation is regressed as quaternions us-
ing L2 (Mean-Squared-Error) distance as shown in Equa-
tion 7. This loss measures the angular difference between
predicted and true label rotations in 4D space.

qlabel =
qlabel

∥qlabel∥
qpred =

qpred

∥qpred∥
(6)

Lquaternion =
1

N

N∑
i=1

(qlabel,i − qpred,i)
2 (7)

Finally, we combine the translation and rotation losses
into one joint loss by simply summing the two terms as
shown in equation 8.

Ljoint = Ltranslation + Lrotation (8)

Using L1 loss for translation instead of L2 loss has the
effect of producing smaller loss numbers in magnitude,
which brings the two to the same scale, preventing either
term from dominating and causing poor learning for mul-
tiple tasks. Note that we do not apply scaling factors for
either loss term, but instead define two independent heads
and reduce the effect of one task’s gradients on the other.

5. Experiments

We first describe our choice of hyperparameters and
evaluation metrics, then discuss observations from our ex-
periments. The provided results in Table 3 and Table 4
show the performance metrics of different models (ViT,
ResNet50, and MobileNetV3) with various configurations
(frozen and unfrozen weights) and the MSE loss function.
We provide an analysis of those results, and additional in-
sights from our defined metrics.

4



5.1. Hyperparameters

We select a mini-batch size of 64 images for training per-
formance and for more accurate batch normalization when
fine-tuning the pre-trained backbone networks. Note that
since we are using pre-trained backbones, the effect of the
minibatch size on batchnorm is muted. We use the Adam
optimizer with a learning rate of 1e-4 and betas=(0.9,0.999).
This was carefully tuned for learning stability, as larger val-
ues caused loss spikes and had trouble converging. Ad-
ditionally, we add a learning rate scheduler to reduce the
learning rate to a factor of 0.1 every 3 epochs, which helps
us take smaller steps towards the end of training.

5.2. Dataset Split and Evaluation Metrics

The provided training dataset is split into two, training
and validation. The validation set is randomly selected and
represents 20% of the training set. While the competition
provides a testing set, ground truth for the images are not
provided. Since the competition is no longer accepting sub-
missions for evaluation, we are unable to compare our re-
sults with other entries in the competition.

The competition defines a mean average precision
(mAP) metric to evaluate differences between the predicted
pose information and true position and rotation of each
vehicle. We first implement the two distance functions,
rotation distance and translation distance as specified by
the competition [2], getting the angular difference between
two quaternions in degrees and getting the root-sum-square
(RSS) distance between the two spatial locations.

The distances are then compared to each step in the
threshold list shown in Table 2. If both distances are within
the tolerance within a given step, it is considered a true-
positive, and at least one mismatch is considered a false-
positive. The competition defines rotation tolerances in de-
grees and translation tolerances in meters. However, we do
not have access to the image scale. We re-define the units
of translation tolerance to be in normalized pixel space for
our evaluation.

Category Thresholds

Rotation 50 45 40 35 30 25 20 15 10 5
Translation 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Table 2. mAP Thresholds

We use validation mAP as the final evaluation metric due
to the nature of the 2020 Kaggle competition, where we can
no longer submit results for evaluation.

5.3. Best Performing Model

ResNet50 with frozen weights and MSE loss
(ResNet freeze) stands out as the best performing
model. This configuration achieves an average validation
loss of 0.245 5, 3, an average validation mAP of 0.258,

an average validation rotation mAP of 0.446, an average
validation xy mAP of 0.999, and an average validation
xyz mAP of 0.467 4. The drop in mAP between xy and
xyz is due to our normalization of the Z value to the
maximum value instead of making an actual prediction,
which means only the prediction on xy makes sense.
While the average validation loss is lower for ResNet with
unfrozen weights, mAP for both translation and rotation
(Avg Val All mAP) is higher for ResNet50 with frozen
weights. It’s possible to have a higher loss but still achieve
high precision metrics because the loss function penalizes
all errors, while the precision metric mAP rewards on the
accuracy of predictions for rotation and translation.

5.4. Model Performance

ResNet50 consistently outperforms other models 5, 4,
5, 6. MobileNetV3 with unfrozen weights and MSE loss
also performs well, but slightly behind ResNet50 in most
metrics. On the other hand, ViTs generally perform worse
compared to ResNet50 and MobileNetV3.

5.4.1 Model Comparison

ViTs need large datasets because they lack the inherent bi-
ases of CNNs like locality and translation invariance. Al-
though ViTs are great at capturing global dependencies,
they struggle with fine-grained details without substantial
data and resources and therefore even with pre-trained ViTs,
their performance on car pose estimation with Kaggle data
may be limited. On the other hand, CNNs like ResNet
and MobileNet, which are also pre-trained on large-scale
datasets such as ImageNet, excel at capturing local fea-
tures and building hierarchical representations, crucial for
3D pose estimation. Pre-trained ResNet and MobileNet
models have proven effective in various tasks with large-
scale datasets. ResNet performs better than MobileNet due
to its deeper architecture, which captures complex features
needed for detailed 3D pose estimation, while MobileNet’s
design, optimized for efficiency, may miss intricate details.

5.4.2 Effect of Freezing Weights

Freezing weights bring several advantages. It can prevent
overfitting smaller datasets like ours and brings consistent
performance to training. A key benefit is that it prevents
two independently learned tasks from interfering with each
other. When the two regression heads merge at the feature
extractor backbone, conflicting gradient directions from the
losses can cause one loss term to dominate, hindering one
of the tasks from learning effectively. We experienced this
problem with an earlier network architecture that branched
from a common fully connected layer. With the architecture
in 2 and frozen networks, this risk is eliminated.

5



Name Train Validation
Total Train Loss Training Translation Loss Training Rotation Loss Avg Val Loss Avg Val Translation Loss Avg Val Rotation Loss

ViT freeze 0.239 0.008 0.238 0.249 0.023 0.227
MobileNet freeze 0.240 0.009 0.240 0.249 0.023 0.225
ResNet freeze 0.237 0.007 0.236 0.245 0.021 0.224
MobileNet 0.218 0.008 0.219 0.234 0.022 0.212
ResNet 0.216 0.008 0.216 0.237 0.022 0.215

Table 3. Performance metrics for various model configurations in terms of training and validation losses.

Name Avg Val All mAP Avg Val Rot xy mAP Avg Val Rot mAP Avg Val xy mAP Avg Val xyz mAP
ViT freeze 0.215 0.371 0.371 0.994 0.434
MobileNet freeze 0.227 0.395 0.396 0.974 0.439
ResNet freeze 0.258 0.446 0.446 0.999 0.467
MobileNet 0.255 0.462 0.463 0.994 0.451
ResNet 0.249 0.451 0.451 0.998 0.450

Table 4. Performance metrics for various model configurations in terms of mean Average Precision (mAP).

However, unfreezing and fine-tuning the feature extrac-
tors presents flexibility and better adaptation to our prob-
lem domain. We observed that ResNet consistently per-
formed well, but MobileNet benefited from being frozen
as seen in Table 4,6. MobileNet, optimized for efficiency
and lightweight design, likely trains better with unfrozen
weights. Nonetheless, there is room for improvement by
exploring the optimal number of layers to unfreeze and fine-
tune while leaving others frozen.

5.5. Areas to Improve

1. Better Data Augmentation: Enhancing data aug-
mentation techniques can help the model generalize better
to unseen data. One particular area to explore is to reduce
the size gap between small and large cars or flip images to
make the model more robust.

2. Post-processing of Images: Implementing post-
processing techniques to remove irrelevant images can im-
prove the model’s accuracy; however, we did not have
enough time to validate all the detected objects from im-
ages. Filtering out images that do not contribute to the task
can help focus the training process on more relevant data,
but this requires many human hours to implement.

3. Precision in x, y, z Predictions: The precision in
x, y predictions is significantly higher compared to includ-
ing z. This is because our current predictions are primarily
focused on x, y, and the z component is not computed as
accurately. Improving the computation of the z component
can lead to better overall predictions. We only exposed box
width and height as a feature that qualitatively could tell
us information about z—smaller box means farther away.
Since a single RGB image does not contain much depth in-
formation, we normalized the z labels to the maximum z
value seen and regressed that way. We found out that a sin-
gle image simply does not carry enough depth information,
limiting our precision, as it did for every top entry in the

competition.
4. Inference Testing our model on unseen real world

data. The competition does not provide labels for the test
set, so we do not have a clear way to evaluate our model
with a test set and compare our performance against the
other entries.

5. Loss functions We were unable to achieve a low loss
value for rotation prediction, which impacted the overall
loss. Experimenting with advanced loss functions may bet-
ter capture the nuances of rotational prediction.

6. Conclusion

ResNet50 with frozen weights is the best-performing
configuration for this specific task, demonstrating strong
generalization and adaptability. Vision Transformers may
not be as suitable due to their data efficiency and complexity
issues. Frozen weights provide stability and efficiency, par-
ticularly in transfer learning scenarios, although they may
limit the model’s ability to adapt fully to new data. The
additional insights from averaged metrics further support
these conclusions, highlighting the superiority of ResNet
and the advantages of using unfrozen weights.

Acknowledgements

We would like to thank David Rubinstein (Spotify) for
his invaluable input and assistance. Special thanks to
the Kaggle community for providing the Peking Univer-
sity/Baidu Autonomous Driving dataset and for their in-
sightful discussions and shared resources. We also appreci-
ate the developers of the YOLOv8 and albumentations
libraries for their powerful tools that significantly con-
tributed to the success of this project. Finally, we acknowl-
edge the support and resources provided by our institution,
which made this research possible.

6



Model Avg Val Loss Avg Val Translation Loss Avg Val Rotation Loss Avg Val All mAP Avg Val xy mAP Avg Val Rot mAP
Mobilenet 0.242 0.023 0.219 0.233 0.985 0.425
Resnet 0.241 0.022 0.219 0.245 0.998 0.454
Vit 0.248 0.023 0.225 0.217 0.984 0.380

Table 5. Performance metrics averaged across models.

Frozen Weights Avg Val Loss Avg Val Translation Loss Avg Val Rotation Loss Avg Val All mAP Avg Val Rot mAP Avg Val xy mAP
No 0.238 0.023 0.215 0.243 0.460 0.995
Yes 0.247 0.023 0.224 0.229 0.406 0.987

Table 6. Performance metrics averaged across frozen and unfrozen weights.

Figure 4. Training Loss

Figure 5. Validation Loss

Figure 6. Validation mAP scores

7



References
[1] Di Wu, Zhaoyong Zhuang, Canqun Xiang, Wenbin Zou, and

Xia Li. 6d-vnet: End-to-end 6dof vehicle pose estimation
from monocular rgb images. 06 2019.

[2] Ruigang Yang zdf56 Addison Howard, Phil Culliton. Peking
university/baidu - autonomous driving, 2019.

[3] Waymo Satish Jeyachadran. Introducing the 5th-generation
waymo driver, 2020.

[4] The Waymo Team. Utilizing key point and pose estimation,
2022.

[5] Jingxiao Zheng, Xinwei Shi, Alexander Gorban, Junhua
Mao, Yang Song, Charles R. Qi, Ting Liu, Visesh Chari,
Andre Cornman, Yin Zhou, Congcong Li, and Dragomir
Anguelov. Multi-modal 3d human pose estimation with 2d
weak supervision in autonomous driving, 2021.

[6] Lei Ke, Shichao Li, Yanan Sun, Yu-Wing Tai, and Chi-
Keung Tang. Gsnet: Joint vehicle pose and shape recon-
struction with geometrical and scene-aware supervision. In
Computer Vision – ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XV,
page 515–532, Berlin, Heidelberg, 2020. Springer-Verlag.

[7] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection, 2019.

[8] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-yuan
Liao. Yolov7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors, 07 2022.

[9] Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad
Daoudi. Real-time flying object detection with yolov8, 2024.

[10] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jun-
gong Han, and Guiguang Ding. Yolov10: Real-time end-to-
end object detection, 2024.

[11] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection, 2017.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation, 2014.

[13] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zheng-
dong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca
Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, David
Weiss, Ben Sapp, Zhifeng Chen, and Jonathon Shlens. Scene
transformer: A unified architecture for predicting multiple
agent trajectories. arXiv, 2021.

[14] Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield.
Foundationpose: Unified 6d pose estimation and tracking of
novel objects, 2024.

[15] Xibin Song, Peng Wang, Dingfu Zhou, Rui Zhu, Chenye
Guan, Yuchao Dai, Hao Su, Hongdong Li, and Ruigang
Yang. Apollocar3d: A large 3d car instance understanding
benchmark for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5452–5462, 2019.

[16] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khved-
chenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A.
Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2):125, February 2020.

[17] 4uiiurz1. 5th place entry on kaggle pku autonomous
driving. https://github.com/4uiiurz1/
kaggle-pku-autonomous-driving, 2019.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015.

[19] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3, 2019.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2021.

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge,
2015.

[22] Kaggle Top 2nd entry. Pku autonomous driving discussion.
https://www.kaggle.com/competitions/
pku-autonomous-driving/discussion/
127099, 2020. Accessed: 2024-06-04.

[23] Wikipedia. Conversion between quaternions and euler an-
gles, 2024.

8

https://github.com/4uiiurz1/kaggle-pku-autonomous-driving
https://github.com/4uiiurz1/kaggle-pku-autonomous-driving
https://www.kaggle.com/competitions/pku-autonomous-driving/discussion/127099
https://www.kaggle.com/competitions/pku-autonomous-driving/discussion/127099
https://www.kaggle.com/competitions/pku-autonomous-driving/discussion/127099

