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Abstract

The MoonBoard is a standardized climbing board pop-
ular among the climbing community, with climbing prob-
lems being classified into discrete categories. Currently, no
perfect classifier exists to determine the grade of a prob-
lem. Here, we propose a novel approach toward climb-
ing classifying MoonBoard climbs by providing an image
of a climb as input to a vision model. For this, we cre-
ated a dataset where each climb has a corresponding image
where the holds are available. Then, we trained custom-
made CNNs and pre-defined models to classify these climbs
into the correct difficulty. We achieved performance of 40%
on our test dataset, which is comparable to prior non-vision
approaches. Since the dataset is significantly imbalanced,
we tried to balance the learning by weighting the differ-
ent classes equally. While balancing the learning that way
did not improve the overall results, it resulted in noticeable
increases to the average class accuracy. Another novel ap-
proach presented here is framing this problem as regression
instead of classification: this resulted in slightly worse re-
sults, but critically, the off-by-one accuracy (where we also
consider a problem as correctly classified when it is put
in an adjacent difficulty) consistently improved. Lastly, we
show saliency maps indicating what features the models use
for classification, as well as a qualitative discussion of the
misclassified problems.

1. Introduction
The MoonBoard is a standardized, popular climbing wall

used for training and skill development across the global
climbing community. In the MoonBoard app, users can se-
lect a preset climb based on its difficulty level and asso-
ciated image. In this project, we propose a deep learning
approach using Convolutional Neural Networks to better
grade the difficulty of a MoonBoard climb, depending on
its relative hold positions and grip types based on the in-
formation that is visually presented on the app. The grade
given to a climb by an individual user is often very sub-
jective, and the relative difficulty of a climb can be deter-

mined by a climber’s gender, flexibility, skill-level, height,
wingspan, and more. The graded difficulty of MoonBoard
climbs are currently determined by community consensus.
The grades of the MoonBoard problems range from 6B to
8B+ in the Fontainebleau scale rating system, and we will
classify each problem with a specific grade in that range.

In our project, rather than using a {0, 1}18x11 matrix to
encode each MoonBoard problem, we directly feed in the
image of the MoonBoard problem as an input to our model,
so our model can more directly learn the features of the
holds on a climb. We will continue to experiment with dif-
ferent CNN architectures for this task.

Overall, we found that using the visual information of the
MoonBoard as input to a model performs better than sim-
ply using a {0, 1}18x11 matrix with a basic CNN, however,
it performs worse than models that also include climbing-
specific information as inputs. We also found that simple
CNN architectures perform similarly to larger and deeper
networks, and posing this problem as a regression task per-
forms similarity to classification.

2. Related Work
In previous literature, researchers have used a variety

of ML techniques to determine the graded difficulty of a
MoonBoard problem as a classification problem. In one of
the early approaches in 2017, Dobles et al. encoded each
MoonBoard problem as a {0, 1}18x11 matrix, where each 1
corresponds to the position of a hold on the given climb.
They used Convolutional Neural Networks to achieve a
34% accuracy [1]. This paper provides good baseline re-
sults, but it is relatively simplistic in its approach. In
Duh and Chang’s work, after encoding each problem as
a {0, 1}18x11 matrix, they use a sequence model to pre-
dict the sequence of moves for a climb (i.e. left hand,
left hand, right hand). They use the sequence model’s out-
put in combination with the hold positions as input to their
grade predictor model, which is an LSTM. They achieve
47.5% accuracy. This paper includes domain specific in-
formation and achieves good results, but they do not use
any of the direct visual information of the MoonBoard lay-
out and holds as information to their models. Kempen also
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Table 1. Summary of Literature Review
Ref [1] Ref [2] Ref [3] Ref [4]

Algorithm CNN Sequence
+
LSTM

GCN Climbing
Sym-
bols +
VOMM

Performance 34%
Accu-
racy

47.5%
Accu-
racy

0.73
AUC

64%
accu-
racy
for
hard vs
easy
differ-
entia-
tion

includes climbing-specific information as input to models
and more specifically, used semi-natural Domain-Specific
Language, to encode climbing moves in symbol sequences,
which can then be fed into variable-order Markov models
(VOMMs). They used one model specifically for classify-
ing easy climbs, and another specifically for hard climbs,
and they combined both models to predict if a test climb is
easy or hard. They achieved 64% accuracy. However, this
paper is limited by its limited classification to easy and hard
instead of each climbing grade.

As a different approach by using a different architecture
and model, Tai et al. applied Graph Convolutional Neu-
ral Networks (GCN) to this problem to achieve an AUC
of 0.73. Tai et al. preprocessed the MoonBoard problems
into multi-hot vectors, where each route is represented as
a 140-dimensional vector where each dimension describes
the presence or absence of one of the 140 holds.

Crucially, none of these approaches take a vision-centric
approach to solve these problems, with all prior work giving
as input to the models some preprocessed information that
is not inherently visual. For the first time, we put forward
an approach where the input is an image of a climb, for the
model to classify its grade.

See Table 1 for a summary of the performance of this
prior work.

3. Dataset

Since the MoonBoard website removed the database of
problems online, we were unable to scrape the data di-
rectly from MoonBoard. We utilized the base dataset avail-
able from the MoonBoardRNN project [5] which previ-
ously scraped the data available from the MoonBoard web-
site, forming a text-based dataset listing details of different
climbs. This included 30642 total climbs of 14 different
grades. Each climb includes information, in the form of
text, of the start, middle, and end holds, grade, and other

Climb ID Grade Is benchmark
320671 7A False
258179 6C False
306695 6B+ True
334204 7B+ False

Table 2. Example Dataset

metadata irrelevant to this problem.

While this dataset describes which holds are part of a
problem, there is no visual information available to the
model. Hence, we created a new dataset from this origi-
nal dataset. For each climb in the dataset, we generated an
image of the climb, by taking an image of the base board,
and then circling, with different colors, the start, middle,
and end holds. Here is an image of the board, and then an
image of the board where we have highlighted the holds.

Figure 1. Example of a generated image for a climb

To make the training more streamlined, we also gen-
erated a more concise dataset, with only the information
needed from each climb: the ID, which is associated with
an image of the climb, the grade, and a is benchmark fea-
ture (the benchmark climbs have had their quality proved
by many people, hence they are ideal candidates for the val-
idation/test datasets). Below are 4 example rows of the new
dataset we formed.

Lastly, it is important to note that the 14 classes (14
grades) in the dataset are highly unbalanced, with each
higher grade having many less climbs included in the
dataset. Here is an exact count of the number of counts
of each grade
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Grade Count
6B+ 10153
6C+ 4617
7A 4045
6C 3836

7A+ 3074
7B+ 1622
7B 1551
7C 1061

7C+ 389
8A 181

8A+ 51
8B 29

8B+ 24
6B 9

Table 3. Grade Distribution

Notably, upon inspection, we noticed that many climbs
in the easiest class and in the two harder classes were of
very low quality. That is, the problems did not make sense
as members of those classes. This is not entirely surprising,
as these climbs are community-made, and there are many
reasons why a climb in the dataset may not be up to stan-
dards. Thus, we decided to not use those classes for this
project, having a total of 12 classes ultimately.

Lastly, to make training more manageable, we downsam-
ple our images from 547x847 to 224x224.

4. Methods

The key ingredient in our approach is the usage of im-
ages for the climbs, which make the visual features of the
holds available to our models. Then, essentially, the classi-
fication problem is as follows: a model receives a standard-
size image of a climb, where the details of the climb (i.e.
which holds are part of the problem) are baked into the pic-
ture. Then, the model must output the grade of the climb.

All prior approaches reduced the problems to matrices
of 0,1 indicating which holds were available. However, all
that would indicate to the model is the relative position of
the holds. Even more important than the position, the dif-
ficulty of a grade depends upon the type of holds available.
Thus, we propose that making the holds visually available
to the model will allow it to learn what an easier or harder
hold looks like. Then, the model can combine this with in-
formation about the positions of the hold to learn how hard
a problem is.

As architectures, we decided to use experiment with dif-
ferent models made from scratch using Pytorch, as well as
pre-existing models, either pre-trained or not. Overall, the
training methodology here is standard. We used 20% of
the data for testing. During training, we use batches of im-
ages to backpropagate the error. We use cross entropy loss,

except for the cases where we do regression instead of clas-
sification (see experiments and results), where we use mean
squared error.

5. Experiments and Results

Here we list all of our results and experiments.

5.1. Customized CNN

One of our main approaches consisted of training a con-
volutional neural network from scratched, constructed and
trained entirely in PyTorch. The architecture is described
and pictured in Figure 1. We picked this specific architec-
ture after some trial-and-error. Simpler networks were un-
able to learn to classify with any acceptable accuracy, and
we found that an architecture like this was complex enough
to get an acceptable accuracy.

Figure 2. CNN architecture

We tried combinations with different hyperparameters: a
batch size from 8, 32, 100, whether to weighting the classes
to balance them, and learning rate from 0.0001, 0.00001.
The table below reports the validation accuracy after train-
ing, as well as the one-off and average class accuracy, using
the superior 0.0001 learning rate.
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Weighted True Weighted False

Batch
Size 8

Acc: 41.87%
One-off: 73.10%

Avg class acc: 22.65%

Acc: 40.62%
One-off: 69.68%

Avg class acc: 18.39%

Batch
Size 32

Acc: 39.25%
One-off: 64.73%

Avg class acc: 17.33%

Acc: 39.84%
One-off: 65.03%

Avg class acc: 13.96%

Batch
Size 100

Acc: 37.91%
One-off: 71.20%

Avg class acc: 22.43%

Acc: 41.93%
One-off: 69.18%

Avg class acc: 19.76%
Table 4. Comparison of Accuracy, One-off Accuracy, and Average
Class Accuracy for Different Batch Sizes and Weighting Schemes,
Results for classification model, lr = 0.0001, 5 epochs

5.2. Larger Models

In addition to a custom CNN, we used larger, predeter-
mined architectures from PyTorch. These models included
resnet50, densenet121, and vit b 16, to experiment with ar-
chitectures that had different depths, and to experiment with
a vision transformer. To experiment with these models, we
used random search to search through of range of hyperpa-
rameters. We experimented with these learning rates: [1e-
5, 1e-4, 1e-3, 1e-2], these optimizers: [Stochastic Gradient
Descent (SDG), ’Adam’, ’RMSprop’], batch sizes: [16, 32,
64], and epochs: [4, 6, 8, 10]. Additionally, we experi-
mented with pre-trained models that were trained on IMA-
GENET1K V1, and models that had no initial pre-trained
weights. For all of these experiments, our primary metrics
also included accuracy, one-off-accuracy, and average class
accuracy. For these models, we also experimented with and
without a weighted loss function to balance our imbalanced
dataset. See results in Table 5.

5.3. Weighted Training

The dataset is significantly imbalanced, we often found
that the accuracy of the most common class was signifi-
cantly higher than any others. When training with simpler
models, the model would often always just output the most
common class. We found that using deeper and more ex-
pressive models lead to improvements on the accuracies of
other classes, but there was still a clear imbalance (the next
Figure shows the accuracy per class of one of our best mod-
els).

To ameliorate this problem, we experimented with re-
weighting the classes so that each class has the same over-
all weight during training. We specifically did this using
weighted loss functions. As we can see in the figure show-
ing the average class accuracy using this re-weighting, this
method increased the accuracy of the less-common exam-
ples. Critically, as can be seen in the results table, the
overall test accuracy remained stable whether we used this
weighting or not, while the average class accuracy saw a
notable increase.

Weighted True Weighted False

resnet50
Acc: 36.70%

One-off: 67.48%
Avg class acc: 16.52%

Acc: 37.04%
One-off: 68.52%

Avg class acc: 17.31%

resnet50
pre-trained

Acc: 37.22%
One-off: 69.74%

Avg class acc: 19.81%

Acc: 36.70%
One-off: 70.43%

Avg class acc: 17.82%

densenet121
Acc: 34.96%

One-off: 64.87%
Avg class acc: 13.93%

Acc: 30.4%
One-off: 72.1%

Avg class acc: 30.4%

densenet121
pre-trained

Acc: 36%
One-off: 68%

Avg class acc: 27.02%

Acc: 31.13%
One-off: 57.21%

Avg class acc: 12.78%

vit b 16
Acc: 28.42%

One-off: 43.13%
Avg class acc: 8.3%

Acc: 30.12%
One-off: 68.88%

Avg class acc: 30.12%

vit b 16
pre-trained

Acc: 33.22%
One-off: 57.22%

Avg class acc: 12.45%

Acc: 39.47%
One-off: 70.43%

Avg class acc: 17.16%
Table 5. Comparison of Accuracy, One-off Accuracy, and Average
Class Accuracy for different model architectures. This table shows
the best results for each model.

Figure 3. Unweighted Accuracies Across Grades for DenseNet121

Figure 4. Weighted Accuracies Across Grades for DenseNet121
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5.4. Regression vs. Classification

Our default approach framed this as a classification prob-
lem using cross-entropy loss. However, since the difficulty
of the problems follows a single dimension, we decided
to also try framing this as regression problem, having the
model output a single number between [1, 12], taking the
nearest integer number as the difficulty. The table below
shows the results of using the exact same architecture and
training as our customized CNN approach, but having a sin-
gle output unit instead of 12, one for each class. We note
that while the overall accuracy is worse, the one-off accu-
racy is slightly better.

Weighted True Weighted False

Batch Size 8
Acc: 34.68%

One-off: 73.29%
Avg class acc: 34.68%

Acc: 32.18%
One-off: 71.66%

Avg class acc: 32.18%

Batch Size 32
Acc: 32.08%

One-off: 73.39%
Avg class acc: 32.08%

Acc: 32.38%
One-off: 73.15%

Avg class acc: 32.38%

Batch Size 100
Acc: 29.52%

One-off: 69.62%
Avg class acc: 29.52%

Acc: 27.93%
One-off: 66.48%

Avg class acc: 27.93%
Table 6. Comparison of Accuracy, One-off Accuracy, and Average
Class Accuracy for Different Batch Sizes and Weighting Schemes,
Results for regression model, lr = 0.0001, 5 epochs

5.5. Saliency Maps

We used saliency maps to better understand how our
models were making their predictions, and to analyze which
input features were contributing the most to our model’s
outputs. These plots show how the most input features
changed based on the epoch. We can see that for a given
climb, at first, the model locates the holds of interest, and
in particular it seems focused on the most difficult part of
the climb. Later, it seems like the model has captured most
of the holds of interest that are used on the particular climb.
As the model continues training however, it starts to use
too many features and expands beyond the holds that are
directly a part of the climb, leading to poor predictions.

Figure 5. An Example Moonboard Problem

Figure 6. DenseNet121 Not Pretrained: Epoch 2

Figure 7. DenseNet121 Not Pretrained: Epoch 4

Figure 8. DenseNet121 Not Pretrained: Epoch 6

5.6. Misclassification Analysis

We analyzed some of the misclassified images for cer-
tain models to further analyze our predictions. We found
one pattern that when there are many holds, our models
struggled to predict the correct class, and it seemed like the
model may have recognized a pattern that if there are many
holds, the route should have a easier grade than it really
does. The reverse seems true when there are few holds. It
seemed like the models predicted that a climb wold be more
difficult if there were fewer holds further away, even though
the climb may still be easy.
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Figure 9. Misclassification example 1: True Label: 6C+, Predicted
Label: 6B+, for densenet121 without pre-training.

Figure 10. Misclassification example 2: True Label: 6C, Predicted
Label: 7B+, for densenet121 without pre-training.

6. Discussion

Model Architecture: Overall, our results have shown
that a simplified custom CNN architecture performs just as
well, if not better to larger and deeper architectures to the
the task of grade classification with rock climbing images
on the MoonBoard. This may be because it may be diffi-
cult to learn more features of the individual hold difficulties,
and how that impacts the complex movement that makes
one climb harder than another, even with a more powerful
model. For the larger models, it seems like resnet50 and
densenet121 model architectures perform similarly across
metrics, and the vision transformer performs the worse.
This may be because a vision transformer is too powerful
for the relatively small amount of training data that we have.
Another limitation is that we had limited training time, and
there is the chance that with more fine-tuning and a greater
training time, the larger architectures may perform better.

We also found that pre-training the models on ImageNet did
not significantly improve accuracies; this may be because
the features of various images on ImageNet are unrelated to
the specific features of a climbing hold and position.

We found that it is important to include the one-off accu-
racy and average class accuracy as metrics to this problem,
which many other papers do not include. One-off accuracy
is an important metric because the grading of climbs is bi-
ased, and climbs of different grades may actually close in
difficulty, especially for climbers of different body types
and abilities. Also, It is a more difficult task to predict
the grades of more difficult climbs, and it is important that
that is highlighted in the validation metrics by using average
class accuracy. We want our models to be suited to classify
routes in the whole range of climbing grades.

Weighted Training: We have found that weighted train-
ing using a weighted loss function is important for this par-
ticular classification task, since our classes are so imbal-
anced. In the results above, we can see that weighted train-
ing improves average class accuracies, and more difficult
grades with few examples receive much higher accuracies.
Other papers such as [2], use weighted training, and for our
approach, it also is important for the class imbalance.

Related Works: In comparison to other related works,
our results perform better to a base CNN [1] that uses a
{0, 1}18x11 grid as an input for training. It seems like our
models are able to learn more from the visual information
of the climbing board. However, our metrics are worse than
approaches that incorporate climbing specific information
as inputs to their models, such as climbing sequence infor-
mation (which holds follow each other in the sequence of
climbing movement) [2]. Grade classification is a very spe-
cific task, and there is a lot of information that a climber
needs to appropriately grade a climb, that is not captured in
just an image of the climbing board.

Regression: Overall, using regression instead of classi-
fication did not improve the results. This was a surprising
result, since this problem is well suited to regression; af-
ter all, difficulty here is a single dimension. We also note
that all the prior work framed this as a classification prob-
lem, which we found similarly surprising. Our hypothe-
sis for why classification did just as well as regression, is
that fundamentally the model does learn a regression-esque
structure. Across all of our models, the one-off accuracy
is significantly higher than the regular accuracy (sometimes
the one-off accuracy is double the regular one). In other
words, when a model makes a mistake about the grade of a
problem, it is often the case that it misclassified it as slightly
easier or slightly harder, which is a similar kind of mistake
we would expect to see in regression. Then, we conclude
that doing classification still allows the model to properly
learn that difficulty works along a single dimension.

The visual approach: Is the classification of Moon-
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Board problems well suited to computer vision? We em-
phasize that one novel approach in this project is showing
images as inputs to the network, instead of matrices of 0,
1. Indeed, no one before seems to have used any actual
images for classifying these climbing problems, and part of
the issue is that the board always looks the same. Two prob-
lems are different not because the board is set up differently,
but because different holds are allowed. Thus, to signal to
the model what the problem is, we circled the holds. This
worked, as our test-accuracy was just as good as those of
prior attempts, and often better. However, we wonder if
there are better ways of indicating to the model what the
allowed holds are. We also wonder if ultimately this prob-
lem is well-suited for computer vision. Normally, when two
images are classified as different, the images are different;
here, besides the circles indicating the holds, all climbs look
exactly the same.

Image size: Lastly, one expectation we had of the model
was that it would learn what a hard and easy hold looks
like, and then use that knowledge to asses the difficulty of
a climb. However, subtle visual differences in holds often
make a significant difference to the climber, and when the
images are down-sampled to 224x224, it is possible that
crucial detail is lost. We believe that a worthwhile approach
for this problem is use larger resolution images.

7. Conclusions and Future Work

Overall, grade classification of climbing images is a dif-
ficult task. It is difficult for neural networks to capture all
of the nuances of different rock climbs and how they con-
tribute to its difficulty. In our project, we have shown that
the visual information of the MoonBoard image itself can
be used for this classification tasks, to achieve similar re-
sults to previous literature. However, previous work that
includes additional climbing-specific information achieves
better results. We have also learned that classification is just
as suited as regression for this task, and weighted training
is important to account for the imbalanced dataset.

In the future, we would suggest experimenting with
higher resolution images for this visual approach, and if us-
ing more powerful architectures, potentially increasing the
size of the dataset and more time for greater fine-tuning
of models. Going forward, it would also be interesting to
combine the climbing-specific information (such as climb-
ing sequence) methods with the visual information of the
MoonBoard.
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