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Abstract

Deep-learning-based surrogate models are important
for quantifying uncertainties in carbon storage reservoirs.
However, existing surrogate models use convolutional neu-
ral networks or their variants as a backbone to learn map-
pings between point-wise evaluations of input and out-
put functions, which is often data-hungry and not mesh-
invariant. In this course project, we apply three neural-
operator-based surrogate models (UFNO, FNO, and CNO)
to learn output functions directly from input functions,
training them on a challenging synthetic dataset repre-
senting faulted storage reservoirs. The models are em-
ployed in an autoregressive manner to predict CO2 plume
sequences with high fidelity, with some achieving mesh in-
variance. We systematically compare model performances
in terms of testing errors and computational efficiency, find-
ing that FNO, without enhancement, achieves the best test-
ing results and is more sample-efficient than UFNO and
CNO. CNO maintains the best mesh-invariance but pro-
duces blurred predictions that fail to capture sharp edges.
FNO outperforms other operators computationally, achiev-
ing a 900-fold speedup over traditional simulators. These
findings demonstrate the effectiveness of FNO-based mod-
els for learning subsurface flow physics compared to CNO,
guiding surrogate model choice when data is scarce, a
common scenario in geoscience applications. The code
for our project is available at https://github.com/
IsaacJu-debug/operator_co2_flow .

1. Introduction
Multiphase flow in porous media is important for var-

ious geoscience applications, such as contaminant trans-
port [2], geothermal energy [12], carbon capture and stor-
age (CCS) [17], hydrogen storage [18], and nuclear waste
storage [1]. Limited by expensive field experiments, numer-
ical simulations are often the only tool for accessing these
systems, where mass and energy conservation equations
are solved monotonically. Simulationt tasks in these ap-

plications are very challenging due to the coupled-physics,
highly non-linear, and multi-scale nature of the processes
involved [16]. However, as fine spatial and temporal dis-
cretization to accurately capture flow processes are often
required, these simulations are time-consuming and compu-
tationally intensive, or even intractable in many scenarios,
such as inverse modeling.

2. Related Work

2.1. Deep-Learning-Based Surrogates

Data-driven deep learning (DL) models utilizes data to
understand the underlying physics by constructing statisti-
cal models from simulation data generated by high-fidelity
simulators. These models strive to minimize the data loss
between predicted fields and label data, efficiently achiev-
ing converged solutions with satisfactory accuracy [4]. Pre-
vious DL-based models have exhibited excellent accuracy
in predicting flow dynamics [28] and superior computa-
tional efficiency compared to High-Fidelity (HF) reservoir
simulators [23, 21]. Mo et al. developed a DL surrogate
model combining an autoregressive model with a CNN-
based encoder-decoder network to predict CO2 plume mi-
gration in random 2D permeability fields [15]. Tang et
al.[23, 21] integrated a residual U-Net (R-U-Net) with con-
vLSTM networks to forecast the temporal evolution of satu-
ration and pressure fields in 2D and 3D oil production sim-
ulations, later applying their recurrent R-U-Net model to
CO2 storage with coupled flow and geomechanics[22]. Wen
et al. [27] developed an R-U-Net-based surrogate model for
CO2 plume migration, encoding injection durations, rates,
and locations as input image channels.

Note that these surrogate models learn mappings be-
tween pointwise evaluations of input and output functions.
Generally, they are not mesh-invariant, which is an impor-
tant feature for building surrogates for physical systems
where data is expensive. Mesh invariance allows the sur-
rogate model to be applied to different discretizations of the
same physical domain without retraining, making it more
robust and efficient in handling data-scarce scenarios.

1

https://github.com/IsaacJu-debug/operator_co2_flow
https://github.com/IsaacJu-debug/operator_co2_flow


2.2. Neural Operators

In contrast to learning mappings between point-wise
evaluations, neural operators are design to learn maps be-
tween function spaces, and they can be used to approximate
the solution operator of a given partial differential equation
(PDE). The input and output functions in neural operators
can be at any resolution or on any mesh, and the output
function can be evaluated at any point in the domain.

Operator networks [5] and DeepONets [14], along with
its variants [14], have been developed to learn nonlinear op-
erators from data. PCA-net [3] utilizes principal component
analysis to reduce the dimensionality of the input space be-
fore learning the operator. Neural operators [7], such as
graph neural operator [10], Multipole neural operator [9],
and the widely adopted Fourier Neural Operator [8] and its
variants [11, 25], have shown promising results in learning
operators for various physical systems.

Particularly relevant to our project are the works of U-
FNO, an enhanced FNO and CNO, CNN inspired opera-
tor networks. Wen et al. [25, 26] combined U-Net and
Fourier neural operator (U-FNO) by incorporating convo-
lutional information in the Fourier layer, significantly im-
proving the cost-accuracy trade-off. They demonstrated that
U-FNO requires only a third of the training data compared
to the CNN baseline model to achieve equivalent accuracy.
Raonic et al. proposed the Convolution-based Neural Op-
erator (CNO) [19], which combines the computational ef-
ficiency of CNN models with the ability to learn operator
mappings between input and output functions. As U-FNO
is developed for the subsurface flow system, we consider
it as a strong baseline to verify its efficiency on our own
dataset and later compare it to CNO.

3. Problem Statement

In this project, we aim to address the aforementioned
computational bottleneck by learning the mappings be-
tween the input functions and output functions using neu-
ral operators [8, 9, 7]. Neural operators learn mappings
between infinite-dimensional function spaces and can ap-
proximate the solution operator of a given partial differen-
tial equation (PDE) or a family of PDE systems.

To achieve this goal, we design our project as two part:
(1) first implement a baseline model, U-Net Fourier Neu-
ral Operator (U-FNO) [25], to learn the spatio-temporal
evolution of the CO2 saturation; and (2) then compare its
performances with FNO and CNO on the same dataset. Par-
ticularly, the first component involves applying U-FNO as
a recurrent model to learn the sequence of CO2 predictions,
see Figure 1. Given the initial state Y0 = [y01 , . . . , y

0
nC

]T

and the static model features M = [(m1)
T , . . . , (mnC

)T ]T

defined at all pixels, we compute the sequence of dynamic
variables (Ŷ1, . . . , ŶnT ) in an autoregressive way as fol-

Figure 1: Workflow schematic for the recurrent UFNO
model in this project.

lows:

Ŷ0 = Y0, (1)

Ŷn+1 = fU-FNO,θ(Ŷ
n,M,F), n ∈ {1, . . . , nT }, (2)

where fU-FNO,θ is the neural model parameterized by the
model weights θ. The number of cells (pixels) in the grid
is denoted by nC and the number of temporal snapshots by
nT . Learning the simulator involves finding the parameters
that minimizes the data loss between predicted values and
ground truth at all timesteps. Following the recommenda-
tion in [25], we use a relative l2 loss to train the deep neural
operators, defined as:

LU-FNO =
1

nT

nT∑
n=1

∥yn − ŷn∥2
∥yn∥2

(3)

where nT denotes the number of rollout steps during the
training, yn denotes the true output in the data set, ŷn is the
output predicted by U-FNO, as formalized in Eq. (2). This
form of relative loss acts as a regularizer and proves espe-
cially beneficial in cases where the data display significant
variance in norms, such as our case. We empirically found
that compared with mean squared error (MSE) or root mean
square error (RMSE) loss, a l2 loss significantly improves
the performance for predicting gas saturation sequences.

4. Dataset and Evaluation Metrics
4.1. Dataset

We train and evaluate all operator models using a syn-
thetic dataset generated from GEOS, a high-performance
computing simulation environment for geoscience applica-
tions [6]. The input and output feature maps are given in
Figure 2. This dataset mimics a multiphase flow problem
with discontinuous structures imposed internal fault bound-
ary. The mathematical formulations and numerical treat-
ments of the simulated physics are given in appendix 8.1.

2



Figure 2: Selected feature maps of (a) input and (b) out-
put. The input features are explained from left to right: sg
represents gas saturation at the initial state; perm. denotes
permeability, which affects the transport of the gas plume;
type of internal cell (high indicates that the cell is internal);
type of faulted cells identifies whether the current cell is on
a fault or not; xcoords represents the coordinates of each
cell center in x direction. The output maps are a sequence
of gas saturations at varying time.

We generate a total of 500 realizations of the synthetic
geological models of size 1 km x 1 km x 1 m. The domain
shape as well as the position of the two impermeable faults
are fixed across all realizations.

This dataset is numerically chanllenging because of hav-
ing multiple boundary conditions and complex, discontious
structures. The latter feature, representing the faults, is
known to be challenging for FNO based models, as the FNO
tends to predict smooth behaviors. We hypothesize that
adding a translation equivarient block, U-Net [20], helps
with learning the transport behaviors manifested by our
physical systems.

Figure 2 presents the selected input and output feature
maps of the dataset. The input feature maps consist of ini-
tial gas saturation (sg,0), permeability, cell types, and cell
coordinates. The output feature is a sequence of gas satura-
tion (sg) maps that simulate the migration of the CO2 plume
over time.

As mentioned in the last section, the sg output map will
be auto-regressively updated during the training, while the
other static features will continue attending the rest of time
steps. The output feature maps are essentially a sequence
of gas saturation at a fixed time intervals. Observing the
output demonstrates that local evolution of gas plume and
strong discontinuous behaviors along the fault lines and the
boundary of gas plume. In the context of CCS, accurately
capturing the plume size and the interactions between CO2

plume and fault play significant roles in accessing the feasi-
bility of CCS project in a certain reservoir.

The following experiments will be conducted with 400
input simulation results, in which each case has an 11-step
rollout of simulation data, representing 550 days of CO2 in-

jection. To preprocess the dataset, we use ‘detrending’ scal-
ing for all fields of input and output feature maps. Specifi-
cally, the preprocessing can be expressed as:

x̃n
i =

xn
i − mean([xn

1 , . . . ,x
n
nS

])

std([xn
1 , . . . ,x

n
nS

])
,

i = 1, . . . , nS , n = 1, . . . , nT ,

(4)

where nS represents the total number of training samples.
This process involves centering the node features, xni, by
removing the average field across all nS samples and sub-
sequently scaling by the standard deviation of these features
at each time step.

4.2. Evaluation Metrics

To assess the accuracy of gas saturation predictions, we
employ the plume saturation error, δsg , as presented in [26].
This error metric is defined by the following equation:

δsg =
1∑

i,n I
n
i

nT∑
n=1

nC∑
i=1

Ini
∣∣sng,i − ŝng,i

∣∣ ,
Ini = 1 if

(
sng,i > 0.01

)
∪
(∣∣ŝng,i∣∣ > 0.01

)
,

(5)

where Ini = 1 signifies the presence of non-zero gas satu-
ration in either the actual data or the prediction for a partic-
ular mesh cell, sng represents the actual gas saturation val-
ues obtained from HF simulations, ŝng denotes the predicted
gas saturation from surrogatr models, nT refers to the total
number of temporal snapshots, and nC indicates the total
number of cells in the mesh.

5. Methods
We consider the state-of-the-art U-FNO model [25] as

a baseline and later compare it with recently proposed
operator models, such as convolutional neural operator
(CNO) [13, 19].

5.1. U-FNO Baseline

U-FNO enhances the original FNO with a mini-UNET
to better capture the underlying physics of CO2 plume mi-
gration. Its architecture schematic is depicted in Figure 3
and each block is briefly discussed for completeness:

• The U-Net Component: The U-Net architecture is
a symmetrically structured encoder-decoder with skip
connections. It is optimized to capture and then recon-
struct spatial hierarchies within data, and this can be
mathematically expressed as:
Encoder: sequence of convolutional and pooling op-
erations applied to input x resulting in a compressed
feature space; expressed formally as:

z = E(x; θE)
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where θE denotes encoder parameters.
Decoder: A sequence of up-convolutions that expans
the encoded features back to the original input space,
assisted by the skip connections, to maintain the spatial
information, and modelled as:

x̂ = D(z; θD),

where θD is the parameters of the decoder.

• Fourier Neural Operator (FNO) Block: The FNO
forms the basis for learning mappings of infinite-
dimensional function spaces, a property at the very
heart of solving PDEs in an effective manner. It is
made up of spatial features mapped into the Fourier do-
main, parametrized spectral transformations, and map-
ping them back out and is formally written as:

f̂(ξ) = F(f(x)), f(x) = F−1(R(ξ) · f̂(ξ)),

where F and F−1 are the Fourier and inverse Fourier
transforms, respectively, and R(ξ) is some learnt trans-
formation matrix in the Fourier domain.

This kind of architecture seamlessly integrates the localized
processing power of U-Net with the global approximation
power of FNO, which makes the learning process not only
efficient but also allows accurate modeling of complex sys-
tems governed by nonlinear PDEs.

Figure 3: U-FNO model architecture [25].

As U-FNO uses U-Net block to enhance its capability
for processing local features, which however sacrifices the
mesh-invariant property of neural operator. Using U-FNO
to solve PDEs often leads to results that depend heavily on
the underlying grid resolution, as we will see in section 6.3.
Moreover, U-FNO could suffer from aliasing errors that
could occur, especially when applying nonlinear operations
performed at the discrete level. This phenomenon, where
distinct continuous signals become indistinguishable upon
sampling, limits the expressiveness of U-FNO [19].

5.2. CNO Model

Insipred by the U-Net structure, a Convolution-based
Neural Operator (CNO) is developed to preserve mesh in-
variance by employing nonlinear operations that honors
continuous-discrete equivalence (CDE) [19]. Respecting
CDE property allows CNO to avoid aliasing errors, often
suffered from other popular neural operators such as FNO.
CNO is a promising neural operator in that it enjoys the
computational efficiency of CNN models and also learning
operator mappings between input and output functions.

Mathematically, CNO can be defined as a compositional
mapping between functions, as follow:

G : u 7→ P (u) = v0 7→ v1 7→ · · · vL 7→ Q (vL) = ū (6)

where each layer vl+1 is defined as vl+1 = Vl ◦ Σl ◦
Kl (vl) , 0 ≤ l ≤ L−1; at layer l, Vl can be either upsam-
pling/downsampling operator, Kl denotes the convolution
operator, Σl is the activation operator. All elementary oper-
ators in CNO are designed to maintain control over the func-
tion spectra while preserving the CDE property. To achieve
this, nonlinear activation functions are replaced with CDE-
preserving counterparts. These counterparts upsample the
input signal by a fixed factor, apply regular activation func-
tions (e.g., ReLU), and then downsample the signal by the
same factor (see Figure 4). The upsampling factor is cho-
sen in accordance with the Nyquist–Shannon sampling the-
orem [24]. Mathematical proofs demonstrating why these

Figure 4: Schematics of the three-step procedure for ap-
plying a continuous-discrete equivalent activation func-
tion [19].

specially-designed activation functions preserve CDE can
be found in [19]. Intuitively, using these nonlinear activa-
tion functions allows for the management of high-frequency
feature introduction while maintaining the integrity of the
underlying function’s representation. The architectural de-
tails of each elementary operator will be discussed below.

CNO’s architecture resemble that of a U-Net, where the
input and output are discretized function evaluations and
each layer respects CDE property, as shown in Figure 5.
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The input function is passed through a set of encoders,
where it is downsampled in space but expanded in chan-
nel width. The encoded features are then processed through
a set of decoders, where the channel width is reduced, and
the spatial resolution is increased. To further enhance the
network’s capacity, ”invariant blocks” are added, in which
the spatial resolution remains unchanged.

A key feature of CNO’s architecture involves including
skip connections between encoder and decoder layers at the
same spatial resolution or bandlimit. These skip connec-
tions are implemented through additional ResNet blocks,
allowing for the transfer of high-frequency content before
filtering them out with the sinc filter as the input progresses
deeper into the encoder. This design choice enables the
high-frequency content to be not only recreated with the ac-
tivation function but also modified through the intermediate
networks. As a result, CNO establishes a multiscale opera-
tor learning architecture, capable of capturing and process-
ing features at various spatial scales efficiently.

Figure 5: CNO model architecture [19].

6. Experiments
In this section, we provide training and implementation

details for three different neural operators, namely the base-
line model U-FNO, FNO, and CNO. Trained and tested on
the dataset for CO2-water flow system, we have compared
the performances between three neural operators, where the
predicted spatial-temporal fields, mesh-invariance testing,
and computational efficiencies are all demonstrated.

6.1. Training and Implementation of Neural Oper-
ators

To find a good baseline U-FNO model, we focus on tun-
ing different hidden dimensions (16, 32, 64) and block num-
bers (2, 3, 4, 5) of fourier blocks. We have identified hidden
dimension size has a prominent impact while block number
is found to be 4. Figure 6 shows that the effects of hid-
den dimensions on the training and testing curves with 400
training cases. We find that hidden dimension of 32 strike a
good balance between model parameters and performances
(see Table 1). The detailed model architecture of the base-
line U-FNO is given in Table 5.

Figure 6: Effects of hidden dimensions on training/testing
curves. Width means hidden dimensions used in fourier
blocks.

Table 1: Model Performance Metrics with U-FNO Across
Different Hidden Dimensions

Metric 16 32 64

Train Loss 0.2047 0.162 0.1321
Test Loss 0.2883 0.2744 0.2699
Best Gas Sat. Error 0.04553 0.04287 0.04183
Training time (s) 744.0 833.0 1038.0
Model parameters 486,945 1,941,313 7,753,089

We also find that using a proper normalization layer en-
sures the stable and convergent behavior during the training,
as the recurrent model often suffers from gradient exploding
issues. Batchnorm is used for U-FNO model in this project.
We have trained all models with 200 epochs with a training
batch size of 128 to speed up the training. The dataset sizes
for training and testing are 400 and 100, respectively. Adam
optimizer with a learning rate of η is used to minimize the
l2-loss function. We also use a weight decay of magnitude
w and a step learning rate scheduler and reduce the learning
rate of each parameter group by a factor γ. All the training
parameters are listed in Table 2. Note that we use the same
set of training parameters for training all neural operator
models.

6.2. Predicting Spatial-Temporal Distributions with
Neural Operators

In this section, we compare U-FNO against the origi-
nal FNO and CNO in terms of prediciting gas saturation
sequences. The model details of U-FNO is given in ap-
pendix 8.2.
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Table 2: Hyperparameters used for training.

Parameter name value
Loss function l2 Relative Loss
Number of epochs 200
Training Batch size 128
Learning rate, η 0.0001
Weight decay, γ 5e− 4
Optimizer Adam
Optimizer scheduler step
Learning reduction factor, γ 50

6.2.1 U-FNO Performance

We consider unseen mesh 450 from the test set as an ex-
amples to first demonstrate the accuracy of the baseline
model, U-FNO. Figure 7 shows the predicted sg maps at
50, 300 and 550 days. Overall, our recurrent model has
learned the tempo-spatial dynamics of CO2 plume migra-
tion in a faulted system. The shapes of plumes at different
timesteps resemble that of ground truth. However, the pre-
diction around the plume edge still manifest large errors, as
highlighted in the last column of Figure 7.

6.2.2 FNO and CNO Performances

Figure 8 compares the model predictions of three operators
for gas saturation with unseen mesh 400 at 550 days, which
demonstrates that FNO and UFNO perform similarly and
can capture the complex CO2 shapes. However, CNO pre-
diction is very blurried and fails to track the shape of CO2

plumes.

Table 3: Performance Metrics Comparison between U-
FNO, FNO, and CNO. Sg error denotes the gas plume er-
rors, defined in Equ. 5. Test loss denotes relative l2 loss.
The training resolution is 40, where other resolutions are
only seen during testing.

Metric FNO U-FNO CNO

Sg Error 120 0.04572 0.1092 0.05023
Sg Error 24 0.05175 0.07083 0.04962
Sg Error 40 0.045 0.04503 0.04857
Sg Error 56 0.04656 0.0619 0.04839

Test Loss 120 0.6296 1.173 0.3385
Test Loss 24 0.4938 0.503 0.3602
Test Loss 40 0.2795 0.2862 0.3141
Test Loss 56 0.4003 0.4405 0.3257
Runtime (seconds) 647 833 11771

Figure 7: Prediction accuracy for gas saturation after rolling
out for (a) 50, (b) 300, and (c) 550 days. Prediction column
is the model inference, whereas the last two columns are
ground truth and relative error. Testing is done with mesh
450.

6.3. Mesh-Invariance Testing Between Neural Op-
erators

An important feature of an operator learning model is
its mesh-invarience property, namely maintaining relatively
similar test errors when evaluated on various resolutions or
discretizations [10]. In this section, we compared the mesh
invariance of three neural operators by computing the test-
ing errors with different resolutions. Specifically, all the
models are trained with simulation data of baseline resolu-
tion, namely 40x40, and then tested on three unseen resolu-
tions, ranging from 24x24 to 120x120. The test cases with
new resolutions are generated from interpolating from the
base-resolution simulation data, whose gas saturation maps
are demonstrated in Figure 9.

During testing, FNO and U-FNO can take input with dif-
ferent sizes, whereas CNO requires the input with a fixed
size. Particularly, for CNO, we need to first transform in-
put maps with unseen resolutions into the base resolution,
which is fed into the trained CNO for generating predic-
tions at the base resolution. Then, the prediction sequence
is transformed back to the testing resolutions. Note that all
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Figure 8: Prediction accuracy for gas saturation after rolling
out for 550 days with U-FNO, FNO and CNO. The first
column is the model output, whereas the last two columns
are ground truth and relative error.

Figure 9: Ground truths of gas saturations with mesh 499
after 550 days. Testing cases with new resolutions are inter-
polated.

transformations involved need to follow the sampling the-
orm, whose details are given in the original paper [19].

Table 3 lists the test losses and sg errors across differ-

Figure 10: gas predictions at a resolution of 120 for UFNO,
CNO, and FNO. For each model, the first column de-
picts the surrogate prediction, the second column shows the
ground truth, and the third column visualizes the relative er-
ror between the prediction and ground truth.

ent resolutions for the multiphase flow benchmark. The gas
predictions with the resolution of 120 is also plotted to vi-
sualize the locations of prediction mismatches. The CNO
model exhibits the greatest stability in response to resolu-
tion variations, maintaining an approximately constant error
rate of around 0.049, demonstrating its invariance to resolu-
tion changes. Particularly, with the resolution of 120, CNO
is the only model among others, which can predict the gas
plume size without introducing patch-like predictions, as
UFNO and FNO does (see Figure 10). The FNO also dis-
plays a certain degree of mesh-invariance, with downsam-
pling cases (20x20) typically yielding the highest errors,
while upsampling cases seem to preserve mesh invariance
effectively. In contrast, the U-FNO’s test error increases
markedly with varying resolutions and shows a maximum
increase by a factor of 2, indicating that U-FNO does not
maintain mesh invariance.

6.4. Learning Efficiency Comparisons Between
Neural Operators

This section focuses on comparing the learning effi-
ciency of different neural operators. The computational ef-
ficiency is measured by the parameter size of models while
achieving the same level of testing errors. To this end, we
plot the model size against the testing erros, as shown in
Figure 11, for our multiphase flow problem. Clearly, for
the similar model size, FNO models lead to significantly
smaller test losses and gas errors in a consitent manner.

Another important factor affecting the efficiency of neu-
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Figure 11: Test Losses/Gas errors versus Model size.

ral operators is the speed of training time. This is a critical
metric for a good surrogate model. We also highlight the
training time used for achieving certain testing errors, as
shown in Table 3, where FNO-based models greatly outpe-
form CNO by 18 folds. This result contradicts the original
CNO paper’s claim that CNO surpasses other neural oper-
ators. The discrepancy may be due to the simplistic imple-
mentation of the CDE-preserving activation function using
the torch interpolation function.

6.5. Inference Efficiency Comparisons Between
Surrogate Models and Numerical Simulators

The most prominent advantage of using DL-based mod-
els for building surrogate models is its computational effi-
ciency over traditional simulators. To this end, we compare
the inference times of FNO, U-FNO, CNO against the nu-
merical simulator, GEOS, as demonstrated in Table 4. Uti-
lizing the same dataset for multiphase flow problems, FNO
requires an average of 0.0247 seconds for a 11-step rollout
on an NVIDIA Tesla A100 GPU to process a single batch.
Moreover, FNO outperforms both U-FNO and CNO.

Comparing these surrogate models with GEOS demon-
strates a significant performance gain. Specifically, on the
same dataset, FNO exhibits a nearly 900-fold reduction in
execution time in comparison to GEOS, which operates on
a CPU Intel(R) Xeon(R) E5-2680 v4 2.10GHz. We ex-
pect that this performance gain will be even more prominent
with a larger mesh size.

Table 4: Average inference times for UFNO, FNO, and
CNO with 11-step rollouts over 550 days, compared with
GEOS run times.

Model Inference Time (s)

11-step Rollouta GEOS Run Timeb

FNO 0.0247 22.12
U-FNO 0.04827 22.12
CNO 0.1133 22.12
a On an NVIDIA Tesla A100 GPU, single-batch inference run.
b On an Intel Xeon E5–2695 v4, single-core serial run.

7. Conclusion and Future Work
In this course project, we have successfully applied three

state-of-art neural operators, including UFNO, FNO, and
CNO to a challenging multiphase flow benchmark. The
neural operators are employed in autoregressive manner to
predict a long sequence of CO2 plumes with high fidelity
and some models are demonstrated to achieve mesh invari-
ance.

We systematically compared model performances in
terms of testing errors and computational efficiency. We
find that FNO, without enhancement, achieved the best
testing results and was more sample-efficient than UFNO
and CNO. CNO maintained the best mesh-invariance but
produced blurred predictions that failed to capture sharp
edges. FNO outperformed other operators computationally,
achieving a 900-fold speedup over traditional simulators.
These findings demonstrate the effectiveness of FNO-based
models for learning subsurface flow physics compared to
CNO, guiding surrogate model choice when data is scarce,
which is often encountered in geoscience applications.

Although we have demonstrated the effictiveness of
neural-operator-based surrogate models for predicting CO2

plume, there are several limitations and possible future di-
rections to further improve the applicability of the neural
surrogates. The current model assumes the underlying sim-
ulation data are grid based, which is a big limitation as
the unstructured mesh data with complex geometry is of-
ten of great interest to CCS community. One possible way
to mitigate this limitation is to use a graph-based encoder
to first map the geometrical data into a grid-based data,
which later can be processed by the neural operators. An-
other limitation of our study is that we did not explicitly im-
pose the physical laws, such as mass/energy balances, into
the loss fucntion to ensure the trained surroage honor these
important inductive bias. Correspondingly, incorporating a
physics-informed loss terms during the training would be
a natural choice to inject stronger inductive bias to achieve
even higher sample efficiency.
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8. Appendix
8.1. Governing Equations of CO2-Brine Flow

In this work, we consider miscible two-phase (gas and
aqueous) two-component (H2O and CO2) flow in a com-
pressible porous medium. The H2O component is only
present in the aqueous phase, while the CO2 component can
be present in both the aqueous and the gas phases. We de-
note the aqueous and the gas phases using the subscripts a
and g, respectively. The mass conservation of each compo-
nent reads:

∂

∂t

(
ϕ

2∑
ℓ=1

xcℓρℓsℓ

)
+∇ ·

(
2∑

ℓ=1

xcℓρℓvℓ

)

+

2∑
ℓ=1

xcℓρℓqℓ = 0, c = {H2O,CO2},

(7)

where ϕ is the porosity, xcℓ is the mass fraction of com-
ponent c in phase ℓ, ρℓ is the density of phase ℓ, sℓ is the
saturation of phase ℓ, vℓ is the Darcy velocity of phase ℓ,
and qℓ is the source flux for phase ℓ. Using the multiphase
extension of Darcy’s law, we write that the Darcy velocity
is proportional to the gradient of the pressure:

vℓ = −krℓ
µℓ

k̄ · ∇pℓ, ℓ = {a, g}, (8)

where krℓ is the relative permeability of phase ℓ, µℓ is the
viscosity of phase ℓ, k̄ is the permeability tensor, and pℓ is
the phase pressure. In this work, we assume that the perme-
ability tensor is diagonal with an equal value for each entry.
The system is closed with the following constraints

sg + sa = 1, (9)
pg − pa = pc(sg), (10)
xH2O,ℓ + xCO2,ℓ = 1, ℓ ∈ {a, g}, (11)

as well as standard thermodynamics constraints on fugaci-
ties. A well injects pure supercritical CO2 at a rate of 0.058
kg/s for 950 days, assuming a storage reservoir with unit
meter thickness.

8.2. U-FNO and FNO Model Architectures

For U-FNO, see Table 5. For FNO, see Table 6.

Table 5: The U-FNO model runs simulations at base reso-
lutions. Padding handles non-periodic boundaries. Linear
layers elevate and project input dimensions back. Fourier2d
applies a 2D Fourier transform, and Conv1d adds a bias
term. UNet2d is a two-stage 2D U-Net. The Add opera-
tion combines layer outputs, while ReLU introduces non-
linearity. BatchNorm standardizes outputs, improving con-
vergence and training stability. The model has 1,941,313
parameters.

Part Layer Output Shape

Input – (40, 40, 1)
Padding Padding (48, 48, 1)
Lifting Linear (48, 48, 32)

Fourier 1
Fourier2d/Conv1d/Add/

BatchNorm/ReLu
(48, 48, 32)

Fourier 2
Fourier2d/Conv1d/Add/

BatchNorm/ReLu
(48, 48, 32)

U-Fourier 1
Fourier2d/Conv1d/UNet2d/Add/

BatchNorm/ReLu

(48, 48, 32)

U-Fourier 2
Fourier2d/Conv1d/UNet2d/Add/

BatchNorm/ReLu

(48, 48, 32)

Projection 1 Linear (48, 48, 32)
Projection 2 Linear (48, 48, 1)
De-padding – (40, 40, 1)

Table 6: The FNO model runs simulations at base reso-
lutions. Padding handles non-periodic boundaries. Linear
layers elevate and project input dimensions back. Fourier2d
applies a 2D Fourier transform, and Conv1d adds a bias
term. The Add operation combines layer outputs, while
ReLU introduces non-linearity. BatchNorm standardizes
outputs, enhancing convergence and training stability. The
model has 1,656,706 parameters.

Part Layer Output Shape

Input – (40, 40, 1)
Padding Padding (48, 48, 1)
Lifting Linear (48, 48, 32)

Fourier 1
Fourier2d/Conv1d/Add/

BatchNorm/ReLu
(48, 48, 32)

Fourier 2
Fourier2d/Conv1d/Add/

BatchNorm/ReLu
(48, 48, 32)

Fourier 3
Fourier2d/Conv1d/Add/

BatchNorm/ReLu
(48, 48, 32)

Fourier 4
Fourier2d/Conv1d/Add/

BatchNorm/ReLu
(48, 48, 32)

Projection 1 Linear (48, 48, 32)
Projection 2 Linear (48, 48, 1)
De-padding – (40, 40, 1)

9
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