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Abstract 

 
 We construct an image classification model combining 
convolutional neural networks (CNNs) with YOLO (a 
computer vision model for computing object bounding 
boxes) in order to accurately classify tennis strokes. The 
aim of this project is to better enable players to study and 
analyze their own performance, as well as that of their 
opponents. Our approach was to use tennis footage as 
input and then use YOLO to create bounding boxes to 
focus on the portion of each frame containing the player. 
A 3D CNN was then applied in order to categorize each 
player’s stroke during the period over which the ball is 
hit. Our baseline model, a vanilla 3D CNN, required an 
excessive amount of time to train, a problem that we 
aimed to alleviate by incorporating YOLO bounding 
boxes. We find that overall, passing the player bounding 
boxes obtained by YOLO into our 3D CNN improved the 
model’s accuracy and efficiency, likely because YOLO 
was able to extract the most important features of the 
footage (the player), thereby decreasing the volume of 
input data while still preserving the most important, high-
resolution information.  
 
Introduction 
 

Computer vision models can be used to allow more 
comprehensive analysis of athletic performance. Often, 
athletes want to understand, in detail, their own 
performance and technique as well as that of other players. 
They may do so as a means of gaining greater 
consciousness of their own playing, or as a means of better 
understanding the playing style of their competition. In the 
context of tennis, this would normally require taking 
footage of the player in action and manually identifying 
their strokes, as well as tracking the relative frequencies of 
each kind of stroke. For the purposes of this project, we 
adopt classifications for nine different strokes: top-spin 
forehand, return forehand, slice forehand, volley forehand, 
serve, top-spin backhand, return backhand, slice backhand,  
and volley backhand.  

In order to automate the task of classifying tennis 
strokes given footage of players, we use a 3D CNN. This 
is a convolutional neural network with an extra temporal  
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dimension that allows us to perform convolutions over 
multiple frames of footage. The input to our model is a 
segment of video, and the output to our model is a 
classification of which stroke the player in the video is 
performing. Our results demonstrate that a 3D CNN can 
be applied to footage of tennis players in order to classify 
strokes with acceptable accuracy, and that using YOLO to 
create bounding boxes can further speed up the process by 
removing unneeded features and focusing only on the 
relevant objects in the footage. 

1.1. Results 

Our results show somewhat improved accuracies when 
applying the first version of YOLO compared to our 
vanilla CNN without YOLO.  Our vanilla CNN obtained a 
final loss of 0.82 on the test set (see Figure 1), while 
adding YOLO to the CNN yielded a somewhat lower loss, 
of around 0.79, and took substantially less time when run 
on the testing data. However, training the models took an 
extremely long time for both models, and showed lower 
efficiency with YOLO.   
 
2. Related Work 
 

We referenced several pieces of existing work that seek 
to use neural networks to classify sports footage. For 
instance, our project is a different application of the 
methods and objectives proposed by Xu-Hong Meng et al. 
In this study, the authors construct and label a dataset 
comprising footage of basketball players performing 
various techniques. In order to classify these techniques, the 
authors use a 3D convolutional network framework in order 
to track and identify “technical actions” taking place in 
footage of basketball players [10]. The authors initially test 
their approach on footage in which the players are relatively 
stationary, and obtain promising results while also 
proposing ways in which contextual information, such as 
the player’s position on the court, can be used to improve 
the model’s accuracy in the future. We apply a similar 
approach to the sport of tennis, providing a starting point 
that can be expanded in similar ways.  

Our research also builds on that detailed in the paper 
“3D Convolutional Networks for Action Recognition: 
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Application to Sport Gesture Recognition” by Pierre-
Etienne Martin et al., in which the authors adopts a similar 
approach to classifying moves in table tennis. This 
research is similar to that outlined above, although the 
authors also use attention modules to improve the model’s 
efficiency and classification accuracy [6]. We also 
referenced “Convolutional Neural Networks for 
Classification of Noisy Sports Videos” by Joey Asperger 
and Austin Poore, a former CS 231N final project, which 
builds on this research by detailing the architecture and 
data processing pipeline for a 3D CNN meant to classify 
moves found in noisy sports footage [3]. 

We considered various methods of using bounding 
boxes to accelerate our model. One was using an R-CNN 
(regions with convolutional neural networks) model, 
proposed in a 2014 paper by Ross B. Girshick et al. [8]. In 
an R-CNN, regions of the image are proposed and then 
convolutional neural networks are applied in order to help 
optimize and classify the bounding boxes. This method 
significantly improved accuracy at the time of its 
inception, and became significantly faster in 2015 when 
Girshick proposed the “Fast R-CNN”, which jointly 
classifies object proposals and refines their locations, 
among other improvements, thereby making the R-CNN 
markedly faster at test-time [7]. We also considered using 
a Single Shot MultiBox Detector, an alternative method 
proposed by Wei Liu et al. in a 2015 paper. In the paper, 
the authors propose predetermining a set of default 
bounding boxes for each feature location, then find 
scoresfor each and determine which boxes to use 
accordingly [9]. This approach offers simplicity, speed, 

and ease of implementation, although it performs poorly 
on small objects since the default bounding boxes are 
given large sizes.  

Finally, however, we chose to implement YOLO, which 
we did by referencing several paper, the first of which was 
“You Only Look Once: Unified, Real-Time Object 
Detection” by Joseph Redmon et al [5]. This paper, 
published in 2015, proposes the first version of YOLO, 
standing for “You Only Look Once,” referencing the fact 
that a single pass over the image is used to detect and 
bound objects, a key aspect of functionality that gives 
YOLO its high computational efficiency. Indeed, the 
authors write that their full YOLO architecture is capable 
of processing images in real time at 45 frames per second 
[5]. This architecture makes multiple predictions about 
bounding box locations, and uses a single convolutional 
network, giving the network its appealing simplicity and 
efficiency. Later research has expanded on and modified 
this approach in various ways.  For instance, Joseph 
Redmon and Ali Farhadi, who worked on the initial 
YOLO paper, proposed in 2016 an improved version of 
YOLO called “YOLO9000”, which included several 
modifications and augmentations to YOLO that made it 
work even faster with over 9,000 different classifications 
[4].  

Most of the YOLO-related implementations after 
YOLO9000 have been incremental in nature. For instance, 
a 2020 paper by Alexey Bochkovskiy et al. proposes a 
fourth version of YOLO and makes several modifications 
to the YOLO model, including self-adversarial training 
and the use of CIOU loss, to help further optimize the 

Figure 1: Proposed network architecture for YOLOv1 [5]. 
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model [1]. The current state-of-the-art version when it 
comes to YOLO is “YOLOv7”, proposed in 2022 by 
Bochkoviskiy et al., an updated model that manages to 
outperform other state-of-the-art detectors in both speed 
and accuracy by introducing various low-cost 
improvements into the model bag-of-freebies style; 
compared to then-state-of-the-art models, YOLOv7 
showed speeds that were faster by factors as high as 500% 
[2]. This version of YOLO is the current standard in 
neural-network-based object detection.  

 
3. Data 

 
In order to train our vanilla 3D-CNN for stroke 

classification, the project utilizes a dataset featuring 
labeled tennis strokes and the time-stamps at which they 
occur in the 2019 Australian Open Final. To prepare the 
data to train the model, the match footage is cycled 
through, extracting the frames at these time-stamps as well 
as the frames within 1 second before and after the marked 
frame and reducing their dimensions to 64x64 for faster 
convolution. The resulting processed data takes the form 
of sequential frame “blocks” (with dimensions H * W * T) 
from which the model can extract the spatial-temporal 
information associated with each stroke. Each frame block 
is assigned a true classification label as one of nine 
possible shot descriptions: “Topspin Forehand” (0), 
“Return Forehand” (1), “Slice Forehand” (2), “Volley 
Forehand” (3), “Serve Forehand” (4), “Top-spin 
Backhand” (5), “Return Backhand” (6), “Slice Forehand”  

 
 

(7), “Volley Forehand” (8). The frame blocks and their 
labels are randomly assigned to batches of size 32 via 
NumPy’s Dataloader capabilities.  

 
 

 

 
 We also used the dataset “Tennis ball” from user 
Conrad Takasi on Kaggle in order to train the model to 
identify and track the movements of the tennis ball in the 
test footage. This data was already labelled and did not 
require additional labelling or processing.  
 Finally, in order to identify the position of the player 
and construct a bounding box around them, we used the 
dataset “Human Tracking & Object Detection Dataset” 
from Kaggle user Training Data. The data contains 40 of 
various groups of people, each annotated with a set of  

 
 

Figure 3: Training loss for vanilla CNN for tennis ball tracking. 

Figure 2: Labeled tennis footage with bounding boxes 
around the players. 
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rectangular bounding boxes that surround the people in the 
photo. This data was used to train our model to accurately 
place bounding boxes around the players in the footage 
using YOLO, thereby reducing data volume and 
computation time at test-time. 
 For YOLO, once we found our dataset, we imported the 
bounding-box annotations as .xml files, in which each 
box’s lower-left and upper-right coordinates are specified 
under a child node in the xml tree. We parsed through 
these files in order to reconstruct the bounding-box 
coordinates, and used these coordinates to train our YOLO 
CNN. 
 
4. Methods 
 

Our baseline model is a 3D convolutional neural 
network with dimensions for height, width, and 
temporality. The architecture of the 3D CNN comprises 
three convolutional layers, each followed by a ReLU 
activation and max-pooling layer to progressively extract 
and downsample spatio-temporal features from the input 
video blocks. The extracted features are then flattened and 
passed through two fully connected layers, the first of 
which includes a dropout layer for regularization, reducing  
the risk of overfitting. The final layer outputs the class 
probabilities for the given input sequence, and weights are 
updated using Adam optimization. This approach 
integrates advanced deep learning techniques to 
effectively classify tennis strokes, leveraging the spatio-
temporal dynamics captured in video sequences for 
comprehensive performance analysis. The baseline 
objective is to achieve a low average loss on the test data. 

In order to improve the model’s test-time speed, as well 
as potentially improve accuracy, we decided to add 
bounding boxes to our model. Of the aforementioned 
methods for implementing bounding-box generation, we 
decided to choose YOLO for our model. We chose YOLO 
because of its relative computational simplicity, and we 
opted for the first version of YOLO simply to assess 
whether YOLO can have an impact on the model’s 
performance, with other proposed optimizations serving to 
refine the model in the future. For the CNN for our YOLO 
implementation, which determines bounding boxes for 
both the player and the ball, our architecture consists of a 
single convolutional neural network, the architecture of 
which consists of 24 convolutional layers, 4 Max Pool 
layers, and two fully connected layers (Figure 1). This 
closely follows the architecture outlined in the original 
paper for YOLOv1. When training this convolutional 
layer, we use a loss function specifically designed for 
detection problems. The loss function, first outlined by 
Redmon et al. in [5], is as follows:  

 
 
 

 
When implementing YOLO on the training data, we had 

to choose hyperparameters that optimized our ability to 
accurately detect objects. This included running the model 
with different hyperparameters for the CNN portion of 
YOLO, including learning rate and batch size, as well as 
selecting values for YOLO-specific hyperparameters, 
notably the confidence threshold, which determines how 
confident we must be about whether an object is detected 
before we report it as a positive, and the non-maximum-
suppression threshold, which determines which bounding 
boxes will be eliminated as redundant. For the 3D CNN, 
we compromised between efficiency and accuracy by 
choosing a batch size of 16 and a learning rate of 2e-5. We 
chose values similar to those used by Redmon et al., 
setting the confidence threshold to 0.5 and the non-
maximum-suppression threshold to 0.4.  

 
5. Experiments 

 
5.1 Hyperparameters and Optimization 
 

From our experiments, we chose a learning rate of 2e−5 
to use with the Adam optimizer. This choice was 
motivated by our initial trials, for which higher rates were 
resulting in unstable training, and lower rates were leading 
to very slow convergence. We set the mini-batch size to 
16 due to memory constraints and the practical 
consideration of achieving a balance between noise in 
gradient estimates and training stability, as well as training 
time. From graphing the model’s loss against the number 
of epochs, the loss appeared to plateau at around 20 
epochs. Because of this and for training time 
considerations, we chose to use 20 epochs for training. 
Cross-validation was performed using an 80-20 split for 
training and validation sets, providing a robust estimate of 
model performance.  
 
5.2 Primary Metrics 
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Our primary metrics for evaluating the YOLOv1 model 
are Mean Average Precision (mAP) and Mean Squared 
Error (MSE). mAP is calculated as: 
 

 
 
where QQ is the set of queries, and AP(q)AP(q) is the 

Average Precision for query qq. MSE is calculated for 
bounding box regression and object confidence predictions 
to assess the alignment and confidence of the predicted 
boxes against the ground truth. 
 
5.3 Results 
 

The YOLOv1 model for player tracking achieved a 
final training loss of 2.51 and a validation loss of 8.07 
with corresponding mAPs of 0.45 for training and 0.42 for 
validation. The YOLOv1 model for tennis ball tracking 
achieved a final training loss of 16.45 and a validation loss 
of 17.23, with mAPs of 0.51 for training and 0.48 for 
validation. 

The final training and validation accuracies for the 3D 
CNN used for stroke classification based on the bounded 
player boxes passed from the YOLOv1 player tracking 
model were 0.62 and 0.58 respectively. The final 
validation accuracy using the player boxes was marginally 
better than the original validation accuracy of the vanilla 
3D-CNN, which achieved an accuracy of 0.58. 

To represent the performance of our model visually, we 
utilized class visualizations and confusion matrices to 
further analyze the performance of our model. The 
visualizations for the different object classes portrayed the 

model’s general ability to identify players and tennis balls 
in various match scenarios. Through the use of confusion 
matrices, we noticed certain areas of confusion between 
similar classes (different types of strokes). The model 
somewhat regularly confused the previous player's shot 
with the current player's shot, likely related to 
inaccuracies/miscalculations in the tennis ball’s trajectory. 
 
5.4 Discussion 
 

The results of our experiment indicate that the 3D-CNN 
with bounding box inputs from the YOLOv1 models 
marginally outperforms the vanilla 3D-CNN. The 
YOLOv1 models for both player and tennis ball tracking 
performed suboptimally, despite our efforts to modify our 
code and prevent the stereotypical pitfalls of machine 
learning models, such as exploding gradients, for which 
we introduced batch normalization. The low recorded 
MAPs on the validation set for player tracking and for 
tennis ball tracking suggest that the models may struggle 
to generalize. 

The frequent confusion between a player’s stroke with 
the previous players due to ball trajectory inaccuracies 
requires further research and experimentation to improve. 
Improving the trajectory calculation by incorporating  

temporal information or using a more sophisticated 
tracking algorithm may reduce these errors. But perhaps 
more importantly, enhancing the robustness of the model 
through data augmentation and incorporating more diverse 
training data would likely mitigate issues like overfitting 
and help improve generalization. Ultimately, a model with 
more accurate bounding boxes for tennis ball tracking 
would improve the accuracy of the ball location estimates 
and therefore the trajectory predictions.  

Figure 4: Training loss for YOLO for tennis ball tracking. 
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Additionally, to test the performance of the YOLOv1 
models in different match contexts, we passed in a small 
set of hand-labeled images from unseen match contexts 
(different court colors and players). We noticed that the 
player bounding box model performed noticeably worse  
when processing these frames than those in the 
training/validation sets. This likely stems from overfitting 
to the specific visual characteristics of the frames (i.e. 
court surface) in the training data. When the model 
encountered a court with different coloring for example, 
its ability to accurately detect players diminished. This 
issue underscores the importance of further training on a 
diverse dataset featuring a wide array of courts and 
players. 
 
6. Conclusion 
 

Our experiments suggest that adding YOLO to a 3D 
CNN classifying tennis strokes can yield improvements to 
accuracy and speed at test-time. We implemented 
YOLOv1, the initial version of YOLO proposed by Joseph 
Redmon et al. in [5] on the subject, and obtained 
promising results. In the future, our model could be 
improved by incorporating the optimizations and updates 
proposed by later researchers, such as alterations to the 
backbone of its network or any of the small, incremental 
improvements proposed in each subsequent paper. To this 
point, there is room for more experimentation with 
hyperparameters. 

Moreover, labelled data related to tennis footage is 
scarce, and the limited existing options when searching for 
data likely had a limiting effect on the performance of our 
model. Our training data was limited to footage of a single 
match, and future data could increase the diversity of the 
matches shown, as well as including matches 
incorporating different players, times of day, locations, 
and camera angles. In the future, in order to improve such 
models’ robustness and prevent overtraining on unwanted 
aspects of the footage, it would likely be worthwhile to 
label a greater, more diverse set of data specifically 
tailored to these tasks. As future researchers explore 
avenues of improving models’ performance, the might 
also work on gathering and labelling new data, and adding 
this data both to their own models and to the existing body 
of datasets for future researchers to use.  

Finally, there exists significant potential for future 
research to modify the basic architecture of our classifier. 
For the sake of comparison, we use a vanilla 3D CNN that 
we then modify with YOLO, but there is room for future 
research to experiment with architectures, parameters, and 
even more significant modifications to the model. One 
such modification that could impact the model’s 
performance in interesting ways would be a transformer. 
A transformer’s built-in attention mechanisms could help 
the model focus on the most important parts of a player’s 

motion, and given their known efficiency with sequential 
tasks, could also help the model process the video’s 
temporal information efficiently. Overall, our results 
provide a simple, but promising baseline for future sport-
technique classification tasks, and offer numerous 
opportunities for expansion, experimentation, and 
improvement.  
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