

1

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Dominic Borg

Stanford University
dborg22@stanford.edu

Abstract

 We construct an image classification model combining
convolutional neural networks (CNNs) with YOLO (a
computer vision model for computing object bounding
boxes) in order to accurately classify tennis strokes. The
aim of this project is to better enable players to study and
analyze their own performance, as well as that of their
opponents. Our approach was to use tennis footage as
input and then use YOLO to create bounding boxes to
focus on the portion of each frame containing the player.
A 3D CNN was then applied in order to categorize each
player’s stroke during the period over which the ball is
hit. Our baseline model, a vanilla 3D CNN, required an
excessive amount of time to train, a problem that we
aimed to alleviate by incorporating YOLO bounding
boxes. We find that overall, passing the player bounding
boxes obtained by YOLO into our 3D CNN improved the
model’s accuracy and efficiency, likely because YOLO
was able to extract the most important features of the
footage (the player), thereby decreasing the volume of
input data while still preserving the most important, high-
resolution information.

Introduction

Computer vision models can be used to allow more
comprehensive analysis of athletic performance. Often,
athletes want to understand, in detail, their own
performance and technique as well as that of other players.
They may do so as a means of gaining greater
consciousness of their own playing, or as a means of better
understanding the playing style of their competition. In the
context of tennis, this would normally require taking
footage of the player in action and manually identifying
their strokes, as well as tracking the relative frequencies of
each kind of stroke. For the purposes of this project, we
adopt classifications for nine different strokes: top-spin
forehand, return forehand, slice forehand, volley forehand,
serve, top-spin backhand, return backhand, slice backhand,
and volley backhand.

In order to automate the task of classifying tennis
strokes given footage of players, we use a 3D CNN. This
is a convolutional neural network with an extra temporal

Cameron Camp

Stanford University
dborg22@stanford.edu

dimension that allows us to perform convolutions over
multiple frames of footage. The input to our model is a
segment of video, and the output to our model is a
classification of which stroke the player in the video is
performing. Our results demonstrate that a 3D CNN can
be applied to footage of tennis players in order to classify
strokes with acceptable accuracy, and that using YOLO to
create bounding boxes can further speed up the process by
removing unneeded features and focusing only on the
relevant objects in the footage.

1.1. Results

Our results show somewhat improved accuracies when
applying the first version of YOLO compared to our
vanilla CNN without YOLO. Our vanilla CNN obtained a
final loss of 0.82 on the test set (see Figure 1), while
adding YOLO to the CNN yielded a somewhat lower loss,
of around 0.79, and took substantially less time when run
on the testing data. However, training the models took an
extremely long time for both models, and showed lower
efficiency with YOLO.

2. Related Work

We referenced several pieces of existing work that seek
to use neural networks to classify sports footage. For
instance, our project is a different application of the
methods and objectives proposed by Xu-Hong Meng et al.
In this study, the authors construct and label a dataset
comprising footage of basketball players performing
various techniques. In order to classify these techniques, the
authors use a 3D convolutional network framework in order
to track and identify “technical actions” taking place in
footage of basketball players [10]. The authors initially test
their approach on footage in which the players are relatively
stationary, and obtain promising results while also
proposing ways in which contextual information, such as
the player’s position on the court, can be used to improve
the model’s accuracy in the future. We apply a similar
approach to the sport of tennis, providing a starting point
that can be expanded in similar ways.

Our research also builds on that detailed in the paper
“3D Convolutional Networks for Action Recognition:

Leveraging 3D CNNs and YOLO for Tennis Stroke Classification

2

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

Application to Sport Gesture Recognition” by Pierre-
Etienne Martin et al., in which the authors adopts a similar
approach to classifying moves in table tennis. This
research is similar to that outlined above, although the
authors also use attention modules to improve the model’s
efficiency and classification accuracy [6]. We also
referenced “Convolutional Neural Networks for
Classification of Noisy Sports Videos” by Joey Asperger
and Austin Poore, a former CS 231N final project, which
builds on this research by detailing the architecture and
data processing pipeline for a 3D CNN meant to classify
moves found in noisy sports footage [3].

We considered various methods of using bounding
boxes to accelerate our model. One was using an R-CNN
(regions with convolutional neural networks) model,
proposed in a 2014 paper by Ross B. Girshick et al. [8]. In
an R-CNN, regions of the image are proposed and then
convolutional neural networks are applied in order to help
optimize and classify the bounding boxes. This method
significantly improved accuracy at the time of its
inception, and became significantly faster in 2015 when
Girshick proposed the “Fast R-CNN”, which jointly
classifies object proposals and refines their locations,
among other improvements, thereby making the R-CNN
markedly faster at test-time [7]. We also considered using
a Single Shot MultiBox Detector, an alternative method
proposed by Wei Liu et al. in a 2015 paper. In the paper,
the authors propose predetermining a set of default
bounding boxes for each feature location, then find
scoresfor each and determine which boxes to use
accordingly [9]. This approach offers simplicity, speed,

and ease of implementation, although it performs poorly
on small objects since the default bounding boxes are
given large sizes.

Finally, however, we chose to implement YOLO, which
we did by referencing several paper, the first of which was
“You Only Look Once: Unified, Real-Time Object
Detection” by Joseph Redmon et al [5]. This paper,
published in 2015, proposes the first version of YOLO,
standing for “You Only Look Once,” referencing the fact
that a single pass over the image is used to detect and
bound objects, a key aspect of functionality that gives
YOLO its high computational efficiency. Indeed, the
authors write that their full YOLO architecture is capable
of processing images in real time at 45 frames per second
[5]. This architecture makes multiple predictions about
bounding box locations, and uses a single convolutional
network, giving the network its appealing simplicity and
efficiency. Later research has expanded on and modified
this approach in various ways. For instance, Joseph
Redmon and Ali Farhadi, who worked on the initial
YOLO paper, proposed in 2016 an improved version of
YOLO called “YOLO9000”, which included several
modifications and augmentations to YOLO that made it
work even faster with over 9,000 different classifications
[4].

Most of the YOLO-related implementations after
YOLO9000 have been incremental in nature. For instance,
a 2020 paper by Alexey Bochkovskiy et al. proposes a
fourth version of YOLO and makes several modifications
to the YOLO model, including self-adversarial training
and the use of CIOU loss, to help further optimize the

Figure 1: Proposed network architecture for YOLOv1 [5].

3

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

model [1]. The current state-of-the-art version when it
comes to YOLO is “YOLOv7”, proposed in 2022 by
Bochkoviskiy et al., an updated model that manages to
outperform other state-of-the-art detectors in both speed
and accuracy by introducing various low-cost
improvements into the model bag-of-freebies style;
compared to then-state-of-the-art models, YOLOv7
showed speeds that were faster by factors as high as 500%
[2]. This version of YOLO is the current standard in
neural-network-based object detection.

3. Data

In order to train our vanilla 3D-CNN for stroke

classification, the project utilizes a dataset featuring
labeled tennis strokes and the time-stamps at which they
occur in the 2019 Australian Open Final. To prepare the
data to train the model, the match footage is cycled
through, extracting the frames at these time-stamps as well
as the frames within 1 second before and after the marked
frame and reducing their dimensions to 64x64 for faster
convolution. The resulting processed data takes the form
of sequential frame “blocks” (with dimensions H * W * T)
from which the model can extract the spatial-temporal
information associated with each stroke. Each frame block
is assigned a true classification label as one of nine
possible shot descriptions: “Topspin Forehand” (0),
“Return Forehand” (1), “Slice Forehand” (2), “Volley
Forehand” (3), “Serve Forehand” (4), “Top-spin
Backhand” (5), “Return Backhand” (6), “Slice Forehand”

(7), “Volley Forehand” (8). The frame blocks and their
labels are randomly assigned to batches of size 32 via
NumPy’s Dataloader capabilities.

 We also used the dataset “Tennis ball” from user
Conrad Takasi on Kaggle in order to train the model to
identify and track the movements of the tennis ball in the
test footage. This data was already labelled and did not
require additional labelling or processing.
 Finally, in order to identify the position of the player
and construct a bounding box around them, we used the
dataset “Human Tracking & Object Detection Dataset”
from Kaggle user Training Data. The data contains 40 of
various groups of people, each annotated with a set of

Figure 3: Training loss for vanilla CNN for tennis ball tracking.

Figure 2: Labeled tennis footage with bounding boxes
around the players.

4

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

rectangular bounding boxes that surround the people in the
photo. This data was used to train our model to accurately
place bounding boxes around the players in the footage
using YOLO, thereby reducing data volume and
computation time at test-time.
 For YOLO, once we found our dataset, we imported the
bounding-box annotations as .xml files, in which each
box’s lower-left and upper-right coordinates are specified
under a child node in the xml tree. We parsed through
these files in order to reconstruct the bounding-box
coordinates, and used these coordinates to train our YOLO
CNN.

4. Methods

Our baseline model is a 3D convolutional neural
network with dimensions for height, width, and
temporality. The architecture of the 3D CNN comprises
three convolutional layers, each followed by a ReLU
activation and max-pooling layer to progressively extract
and downsample spatio-temporal features from the input
video blocks. The extracted features are then flattened and
passed through two fully connected layers, the first of
which includes a dropout layer for regularization, reducing
the risk of overfitting. The final layer outputs the class
probabilities for the given input sequence, and weights are
updated using Adam optimization. This approach
integrates advanced deep learning techniques to
effectively classify tennis strokes, leveraging the spatio-
temporal dynamics captured in video sequences for
comprehensive performance analysis. The baseline
objective is to achieve a low average loss on the test data.

In order to improve the model’s test-time speed, as well
as potentially improve accuracy, we decided to add
bounding boxes to our model. Of the aforementioned
methods for implementing bounding-box generation, we
decided to choose YOLO for our model. We chose YOLO
because of its relative computational simplicity, and we
opted for the first version of YOLO simply to assess
whether YOLO can have an impact on the model’s
performance, with other proposed optimizations serving to
refine the model in the future. For the CNN for our YOLO
implementation, which determines bounding boxes for
both the player and the ball, our architecture consists of a
single convolutional neural network, the architecture of
which consists of 24 convolutional layers, 4 Max Pool
layers, and two fully connected layers (Figure 1). This
closely follows the architecture outlined in the original
paper for YOLOv1. When training this convolutional
layer, we use a loss function specifically designed for
detection problems. The loss function, first outlined by
Redmon et al. in [5], is as follows:

When implementing YOLO on the training data, we had

to choose hyperparameters that optimized our ability to
accurately detect objects. This included running the model
with different hyperparameters for the CNN portion of
YOLO, including learning rate and batch size, as well as
selecting values for YOLO-specific hyperparameters,
notably the confidence threshold, which determines how
confident we must be about whether an object is detected
before we report it as a positive, and the non-maximum-
suppression threshold, which determines which bounding
boxes will be eliminated as redundant. For the 3D CNN,
we compromised between efficiency and accuracy by
choosing a batch size of 16 and a learning rate of 2e-5. We
chose values similar to those used by Redmon et al.,
setting the confidence threshold to 0.5 and the non-
maximum-suppression threshold to 0.4.

5. Experiments

5.1 Hyperparameters and Optimization

From our experiments, we chose a learning rate of 2e−5
to use with the Adam optimizer. This choice was
motivated by our initial trials, for which higher rates were
resulting in unstable training, and lower rates were leading
to very slow convergence. We set the mini-batch size to
16 due to memory constraints and the practical
consideration of achieving a balance between noise in
gradient estimates and training stability, as well as training
time. From graphing the model’s loss against the number
of epochs, the loss appeared to plateau at around 20
epochs. Because of this and for training time
considerations, we chose to use 20 epochs for training.
Cross-validation was performed using an 80-20 split for
training and validation sets, providing a robust estimate of
model performance.

5.2 Primary Metrics

5

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

Our primary metrics for evaluating the YOLOv1 model
are Mean Average Precision (mAP) and Mean Squared
Error (MSE). mAP is calculated as:

where QQ is the set of queries, and AP(q)AP(q) is the

Average Precision for query qq. MSE is calculated for
bounding box regression and object confidence predictions
to assess the alignment and confidence of the predicted
boxes against the ground truth.

5.3 Results

The YOLOv1 model for player tracking achieved a
final training loss of 2.51 and a validation loss of 8.07
with corresponding mAPs of 0.45 for training and 0.42 for
validation. The YOLOv1 model for tennis ball tracking
achieved a final training loss of 16.45 and a validation loss
of 17.23, with mAPs of 0.51 for training and 0.48 for
validation.

The final training and validation accuracies for the 3D
CNN used for stroke classification based on the bounded
player boxes passed from the YOLOv1 player tracking
model were 0.62 and 0.58 respectively. The final
validation accuracy using the player boxes was marginally
better than the original validation accuracy of the vanilla
3D-CNN, which achieved an accuracy of 0.58.

To represent the performance of our model visually, we
utilized class visualizations and confusion matrices to
further analyze the performance of our model. The
visualizations for the different object classes portrayed the

model’s general ability to identify players and tennis balls
in various match scenarios. Through the use of confusion
matrices, we noticed certain areas of confusion between
similar classes (different types of strokes). The model
somewhat regularly confused the previous player's shot
with the current player's shot, likely related to
inaccuracies/miscalculations in the tennis ball’s trajectory.

5.4 Discussion

The results of our experiment indicate that the 3D-CNN
with bounding box inputs from the YOLOv1 models
marginally outperforms the vanilla 3D-CNN. The
YOLOv1 models for both player and tennis ball tracking
performed suboptimally, despite our efforts to modify our
code and prevent the stereotypical pitfalls of machine
learning models, such as exploding gradients, for which
we introduced batch normalization. The low recorded
MAPs on the validation set for player tracking and for
tennis ball tracking suggest that the models may struggle
to generalize.

The frequent confusion between a player’s stroke with
the previous players due to ball trajectory inaccuracies
requires further research and experimentation to improve.
Improving the trajectory calculation by incorporating

temporal information or using a more sophisticated
tracking algorithm may reduce these errors. But perhaps
more importantly, enhancing the robustness of the model
through data augmentation and incorporating more diverse
training data would likely mitigate issues like overfitting
and help improve generalization. Ultimately, a model with
more accurate bounding boxes for tennis ball tracking
would improve the accuracy of the ball location estimates
and therefore the trajectory predictions.

Figure 4: Training loss for YOLO for tennis ball tracking.

6

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

Additionally, to test the performance of the YOLOv1
models in different match contexts, we passed in a small
set of hand-labeled images from unseen match contexts
(different court colors and players). We noticed that the
player bounding box model performed noticeably worse
when processing these frames than those in the
training/validation sets. This likely stems from overfitting
to the specific visual characteristics of the frames (i.e.
court surface) in the training data. When the model
encountered a court with different coloring for example,
its ability to accurately detect players diminished. This
issue underscores the importance of further training on a
diverse dataset featuring a wide array of courts and
players.

6. Conclusion

Our experiments suggest that adding YOLO to a 3D
CNN classifying tennis strokes can yield improvements to
accuracy and speed at test-time. We implemented
YOLOv1, the initial version of YOLO proposed by Joseph
Redmon et al. in [5] on the subject, and obtained
promising results. In the future, our model could be
improved by incorporating the optimizations and updates
proposed by later researchers, such as alterations to the
backbone of its network or any of the small, incremental
improvements proposed in each subsequent paper. To this
point, there is room for more experimentation with
hyperparameters.

Moreover, labelled data related to tennis footage is
scarce, and the limited existing options when searching for
data likely had a limiting effect on the performance of our
model. Our training data was limited to footage of a single
match, and future data could increase the diversity of the
matches shown, as well as including matches
incorporating different players, times of day, locations,
and camera angles. In the future, in order to improve such
models’ robustness and prevent overtraining on unwanted
aspects of the footage, it would likely be worthwhile to
label a greater, more diverse set of data specifically
tailored to these tasks. As future researchers explore
avenues of improving models’ performance, the might
also work on gathering and labelling new data, and adding
this data both to their own models and to the existing body
of datasets for future researchers to use.

Finally, there exists significant potential for future
research to modify the basic architecture of our classifier.
For the sake of comparison, we use a vanilla 3D CNN that
we then modify with YOLO, but there is room for future
research to experiment with architectures, parameters, and
even more significant modifications to the model. One
such modification that could impact the model’s
performance in interesting ways would be a transformer.
A transformer’s built-in attention mechanisms could help
the model focus on the most important parts of a player’s

motion, and given their known efficiency with sequential
tasks, could also help the model process the video’s
temporal information efficiently. Overall, our results
provide a simple, but promising baseline for future sport-
technique classification tasks, and offer numerous
opportunities for expansion, experimentation, and
improvement.

References

[1] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao.

YOLOv4: Optimal speed and accuracy of object
detection.” arXiv, 2020.

[2] C. Y. Wang, et al. YOLOv7: Trainable Bag-of-
Freebies Sets New State-of-the-Art for Real-Time
Object Detectors. arXiv, 2207(02696), 2022.

[3] J. Asperger and A. Poore. Convolutional Neural
Networks for Classification of Noisy Sports Videos,
2017.

[4] J. Redmon and A. Farhadi, “YOLO9000: Better,
faster, stronger.” arXiv, 2016.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object
detection.” arXiv, 2016.

[6] P. E. Martin, J. Benois-Pineau, R. Péteri, A.
Zemmari, and J. Morlier. 3D convolutional networks
for action recognition: Application to sport gesture
recognition. Multi-faceted Deep Learning, 2021.

[7] R. Girshick. Fast R-CNN. arXiv, 2015.
[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik.

Rich feature hierarchies for accurate object detection
and semantic segmentation. arXiv, 2014.

[9] W. Liu et al. SSD: Single shot MultiBox detector.
9905: 21–37, 2016.

[10] X. H. Meng, H.-Y. Shi, and W.-H. Shang. Analysis
of basketball technical movements based on human-
computer interaction with deep learning,”
Computational Intelligence and Neuroscience,
2022(1): 4247082, 2022.

