Leveraging Lightweight AI for Video Querying in a RAG Framework

Adam Chun
Stanford University
adamchun @stanford.edu

Abstract

In recent years, the exponential growth of video con-
tent across diverse fields has necessitated the development
of advanced tools for managing, analyzing, and retriev-
ing information from extensive video archives. Current
approaches to video-language understanding that lever-
age large language models (LLMs) and multimodal pre-
processing are computationally expensive and slow, limit-
ing their utility in time-sensitive applications. This paper
builds upon existing research to streamline video content
querying using retrieval augmented generation (RAG) and
lightweight AI models for indexing.

Our study introduces a system designed to extract infor-
mation from videos efficiently by bypassing the extensive
video-to-text conversion process. QOur proposed solution
uses CLIP and DETR to produce frame embeddings and tex-
tual indices, respectively, which can then be used in RAG to
locate relevant video segments. We fine-tuned the out-of-box
CLIP model on MSR-VTT video-captioning data and aug-
mented the fine-tuning process using the Atemporal Probe
(ATP) model. Then, we evaluated our model against exist-
ing state-of-the-art model, VLog. We find that our approach
significantly reduces runtime and memory allocation during
the video pre-processing stage while maintaining compara-
ble accuracy in question-answering tasks.

1. Introduction

In recent years, the proliferation of video content across
various domains—ranging from education and entertain-
ment to healthcare and security—has led to an exponential
increase in the amount of long-form video data generated
daily. This surge has created a pressing need for advanced
tools and techniques to effectively manage, analyze, and re-
trieve information from these extensive video archives. Tra-
ditional video analysis methods, which often rely on man-
ual review, are becoming increasingly impractical due to the
sheer volume of data.

One emerging solution to this challenge is the develop-

Emily Hsu
Stanford University
ehsu24 @stanford.edu

ment of systems capable of understanding and responding
to natural language prompts about video content. Despite
the grand strides that large language models (LLMs) have
made in understanding text, video understanding remains a
frontier that is relatively unexplored. Recent attempts [2]
[15] have utilized multimodal LLMs (ex. ChatGPT-4V)
in combination with multimodal pre-processing (ex. auto-
matic speech recognition, or ASR) to analyze videos frame-
by-frame and output a long textual document that describes
the video’s scenes which can be inputted into an LLM for
video-understanding tasks.

However, this approach is both time intensive and com-
putationally costly because it converts all video data to text
upfront. Thus, it falls short for many real-world, time-
sensitive tasks that require fast and inexpensive retrieval of
objects in video footage, such as quickly identifying secu-
rity threats in many hours of security footage or identifying
inappropriate video content on social media platforms be-
fore it spreads to sensitive user groups. Our research aims
to address these limitations and enable querying within long
videos by employing retrieval augmented generation (RAG)
[13] with lightweight AI models for indexing.

1.1. Problem Statement

The problem we aim to address is how to streamline the
process of extracting information from videos for VQA (vi-
sual question-answer) tasks. That is, when prompted with
an "Is there ______ in the video?” question, it can accurately
identify the presence of the object (or lack thereof) along
with the reference time.

We will do this by circumventing the long multimodel
to text conversion times required for generating a full video
summary; instead, we introduce a faster method of video
processing that prepares an index for the content in the
video. Then, using a RAG approach [13], we select the rele-
vant index in the video and extract information based on the
user query. Specifically, our system will take in long-form
video content and generate text and frame embeddings, with
which we can then use to respond to user prompts about the
video.

2. Related Work

Many researchers have made significant contributions in
video-language understanding. Our proposed model builds
on top of existing work in the field using insights gained
from past experimentation.

2.1. Video-to-script generation

With the rise of LLMs, researchers are beginning to in-
tegrate pretrained models for video understanding. One
prominent example is VLog (Video as a Long Document)
[2], which uses BLIP-2 [14] and GRIiT [18] as dense im-
age captioners, Whisper for automatic speech recognition
(ASR), and ChatGPT as an LLM reasoner. VLog [2] gen-
erates a text script from a long video, which the LLM then
uses as input to respond to user queries.

Inspired by this architecture, a recent exemplar using
LLM:s for video understanding is MM-VID, which employs
GPT-4V(ision) to "’to transcribe multimodal elements into a
long textual script” [15]. Given an input video, MM-VID
performs multimodal pre-processing, including automatic
speech recognition (ASR) to extract transcriptions from the
video. The input video is then split into multiple clips us-
ing scene detection [4]. Then, clip-level video frames are
used as input for GPT-4V, which generates a detailed de-
scription for each video clip. Finally, GPT-4 generates a
coherent script for the full video from the clip-level video
descriptions, ASR, and available video metadata [15].

e+
Multimodal cip 2] o ons o |
Pre-Processing
Toaprom
cw-‘

(Scene Detection, ASR) l
External Knowledge P —
Input Video (Metadata, Title, Abstract, J—’Twmnl—» usi"l; e Script

Character Snapshot, etc.)

Clip-Level Video
-~ Description Generation (@ i
PT-4V) Script

Vide
Au

2]

Figure 1. MM-VID consists of four modules: (1) Multimodal Pre-
Processing, (2) External Knowledge Collection, (3) Clip-Level
Video Description Generation, and (4) Script Generation.

The strengths of this approach is that it can produce a
rich textual representation of the video for many down-
stream tasks like character identification, audio description
generation, and grounded question-answer (QA) [15]. The
drawback is that the upfront processing time for video-to-
text generation can be costly and slow, especially when us-
ing complex Al models like BLIP-2 [14] and GRiT [18] to
process long videos.

2.2. Lightweight AI models

To address the issue of model complexity, two pop-
ular lightweight Al models stand out: CLIP [17] and
DETR [9]. While BLIP (Bootrstrapping Language-Image
Pre-training) [14] is a transformer-based architecture that
uses off-the-shelf frozen pre-trained image encoders and

frozen large language models to enable image-to-text gen-
eration, CLIP (Contrastive Language-Image Pre-training)
[17] jointly trains an image encoder and a text encoder on
text-image pairs to enable zero-shot classification . Al-
though BLIP-2 is highly expressive, its lightweight coun-
terpart, CLIP, is highly efficient and is found to be more
accurate at zero-shot ImageNet classification [1].

—

—_

Text T

A R

- T T, | T3 Tx
I LTy [Ty [T | . [Ty

I, LT | LTy | LTy | . | ITy

I3 LTy | 13Ty | 3Ty | . | I3y

Pepper the
aussie pup

Image
Encoder

In INTy | INT2 | INT3

Figure 2. Architecture of CLIP.

Among state-of-the-art image-captioning models, GRiT
[18] (Generative Reglon-to-Text transformer) can produce
rich descriptive sentences of an image scene. Rather than
classifying objects from a closed set, GriT produces open-
set object descriptions in free-form using a text decoder that
“autoregressively generates a list of text tokens to describe
the given object” [18]. On the other hand, DETR (DEtec-
tion TRansformer) [9] views object detection as a direct-set
object prediction problem using a conventional CNN back-
bone. Although GRIiT [18] can generalize to unseen object
classes, DETR [9] is much faster at inference time because
it doesn’t rely on autogressive models.

2.3. Atemporal Probe (ATP)

Another recent breakthrough in the field of video under-
standing is the Atemporal Probe model (ATP) [&]. In this
paper, the researchers found that information of event tem-
porality is often not necessary to achieve strong state-of-
the-art performance, even compared with large-scale video-
language models. The ATP model selects the most informa-
tive frames from a video without leveraging temporal infor-
mation, making it more efficient than traditional methods
that maintain sequential data.

2.4. Retrieval Augmented Generation (RAG)

Finally, RAG [13] is a significant contribution to the
field of LLMs because it allows the pretrained model to
access an “external memory” as context for its output. In
relation to video understanding, LLMs can leverage text

documents generated from long videos using RAG to re-
spond to user queries. Solutions like MM-VID [15] use the
Naive RAG paradigm [! 1] to support interactive querying,
but there may be opportunities to expand the capabilities of
video understanding models with the Advanced or Modular
RAG paradigms that incorporates re-ranking to minimize
the parts of the long video that needs to be analyzed [1].

The most recent development in using RAG for video
understanding is iRAG [7], or incremental RAG. Instead,
converting the entire video into a text document upfront,
iRAG ”quickly indexes large repositories of multimodal
data, and in the incremental workflow, it uses the index to
opportunistically extract more details from select portions
of the multimodal data to retrieve context relevant to an
interactive user query” [7]. They also employ a novel re-
ranking method in the Advanced RAG paradigm [1] to re-
duce the portions of the video that need to be considered for
analysis.

3. Datasets and Features
3.1. MSR-VTT

Microsoft Research Video to Text (MSR-VTT) is
a large-scale video dataset commonly used for video-
captioning tasks. This dataset contains 10K video clips
from 20 different categories, and each video clip is anno-
tated with 20 English sentences by Amazon Mechanical
Turks, amounting to 200K clip-sentence pairs in total. We
use the standard split of 6,513 clips for training, 497 clips
for validation, and 2,990 clips for testing. The duration of
each clip is betwen 10 to 30 seconds.

inded by lots of people.
d

Figure 3. Examples from the MSR-VTT dataset. Each video is
represented by 4 frames and assigned five human-labeled sen-
tences.

Data preprocessing. Since CLIP is designed for pro-
cessing single images as opposed to videos, we prepro-
cessed the dataset by randomly extracting 16 frames from
each video clip and organizing them into directories. Since
each video is a continuous scene, we don’t need to sample

as frequently to get a good representation of the video. The
metadata for each split (train, validation, test) was stored in
CSV files, with each row containing the path to the video
frames directory and the associated caption.

3.2. VQA-v2

The dataset we use for evaluating our baseline model
against our proposed model is the Visual Question Answer-
ing (VQA-v2) dataset [6], which contains open-ended ques-
tions about images. These questions range across various
task domains, requiring the model to identify the presence,
orientation, number, location, color, type, or movement of
objects.

Who is wearing glasses? Where is the child sitting?
man woman arms

Is the umbrella upside down?
yes no_

Figure 4. Examples from the VQA-v2 dataset

The full dataset contains 265,016 images with at least 3
questions (5.4 questions on average) per image, 10 ground
truth answers per question, and 3 plausible (but likely incor-
rect) answers per question. Each image has a maximum di-
mension of 500x500 pixels with 72 DPI. For the purposes of
our experiment, we extract 7,799 questions from the dataset
that start with ”Is there...” to see how well our model per-
forms against the baseline on identifying the presence of
objects and retrieving the corresponding scene.

Data preprocessing. For the VQA-v2 dataset since the
dataset contains images, not videos, we concatenate the im-
ages together to form a 29-minute long video at 1 frame per
second. To do this, we define the dimensions of the video
by the first image in the stack, and then we resize, center,
and pad all subsequent frames to align with these dimen-
sions. Our video consists of 600 images, which is randomly
shown for a duration from 1-5 seconds.

4. Methods

For our baseline method, we use VLog [2] out-of-the-
box for preprocessing the video. VLog uses BLIP-2 [14]
and GRIT [18] as dense image captioners. The baseline
method outputs a text summary of each second in the video,
forming a document which is then used to respond to user
queries.

Our proposed method is a lightweight version of VLog
[2] that incorporates key frame sampling, the details of

which are expanded upon in the section below. All of the
training and fine-tuning was performed on a VM equipped
with 1 NVIDIA Tesla P4 GPU.

4.1. Finetuning CLIP using ATP for frame selection

Given that CLIP is a trained on a large corpus of on-
line images, we fine-tuned the CLIP using the pre-processed
MSR-VTT dataset that’s specialized for image-captioning
tasks. This takes advantage of transfer learning given
that image-captioning is very similar to identifying objects
present in a video. We utilized the pre-trained CLIP model
[3] from the Hugging Face library, which combines a Vi-
sion Transformer (ViT) for image processing and a Trans-
former for text processing. We use the ViT-B/32 vision
encoder-based CLIP mode for evaluation. Since the input
to CLIP is an image-text pair, we use the Atemporal Probe
(ATP) model [5] to extract a single frame from the video.
ATP is built [8] on top of frozen image and text encodings
from CLIP, and it learns to select a single (frozen, image-
derived) embedding that can provide as strong a signal as
possible for the final task™ [8].

Single
(@ Se:egted D Final Video-
Encoding Language Task
Discrete
Selection Atemporal
 a——
Probe (ATP)
No temporal
information | | | | | teeeoo

Frozen Language
Encodings
(Jointly Pre-trained
with Image Model)

Frozen
Image D D [
Encoding
@ ({ Pre-trained (frozen) image encoder M,J [Pre-trained MLJ)
1
Sparse Input Language
=000 s
Sample

Input
Video

time

Figure 5. Architecture of ATP.

At a high-level, we leverage CLIP to extract a set of im-
age and language representations; our ATP model then se-
lects a single frame from the representations, and forwards
that to our final CLIP model for the fine-tuning step. For-
mally, given a video V' with frames F' = {vy,va,..., v},
ATP processes these frames using CLIP to produce repre-
sentations:

Mi(F):{Il,SC27...,In} (1)

Finally, ATP select a single representation x; €
{z1,z2,...,2,} to pass to our final CLIP model for fine-
tuning. After selecting the best frame associated with the
caption, we fine-tuned CLIP on the selected frames using
the AdamW [12] optimizer with a learning rate of 1e-6 and

weight decay of 0.2. We trained the model for 50 epochs.
For each batch, we loaded in the frame-caption pair us-
ing the CLIP processor. The processed tensors were then
passed through the CLIP model, which computes a sym-
metric cross-entropy loss 6. CLIP aims to maximize the
cosine similarity of the image and text embeddings of the
N real pairs in the batch while minimizing the cosine sim-
ilarity of the embeddings of the N2 — N incorrect pairings
[17]. We optimize a symmetric cross entropy loss over these
similarity scores, which is used to update the model weights
through stochastic gradient descent.

symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits,
labels, axis=0)

loss_t = cross_entropy_loss(logits,
labels, axis=1)

loss = (loss_1i + loss_t)/2

Figure 6. Pseudocode of symmetric loss function in CLIP model
for image loss (loss_i) and text loss (loss_t) [17].

4.2. Integrating CLIP + DETR with RAG

We then processed the video inputs from the VQA-v2
dataset using the fine-tuned CLIP model and DETR [9] to
produce image-language encodings. As alluded to in the
Related Works section, these models are lighter versions of
the vision models utilized in VLog [2], namely BLIP2 [14]
and GRIT [18]. To leverage RAG for retrieving the index
of relevant clips, we build the following database structure
introduced by the recent iRAG paper [7] from scratch.

Query Planner

Embedding

TextDB
(DETR)

1<object list, text-embedding> <frame id, image-embedding>}

Figure 7. Architecture of iRAG’s Query Planner [7].

DETR forms our textual indices with descriptions of ob-
jects detected in the frame. Alongside these textual indices,
we include a database of frame vectors from CLIP to im-
prove the quality of the retrieved context. As a result, when
a user query is received, we retrieve the top-/N text chunks
and the top-F' frame chunks that are most similar to the
query. We merge then these two chunks to produce our
top-k context clips that is then fed as input into the LLM,

namely Chat-GPT 3.5. By utilizing lightweight models, we
seek to match the performance of our baseline while reduc-
ing pre-processing times and compute resources.

5. Experiments

We ran various experiments with the same setup as iRAG
[7] to compare the performance of the lightweight AI mod-
els against VLog: (1) DETR only, (2) CLIP only, and (3)
DETR + CLIP. We use the pre-processed VQA-v2 dataset
for evaluation.

5.1. Experimental Setup

For the DETR-only setup, we use DETR out-of-the-box
to produce captions of the video frames, which is then uti-
lized as a database which we search through utilizing FAISS
[10] and the OpenAl embeddings of the query. The CLIP-
only setup encodes each frame and stores it into a ImageDB;
when a query is given, the query is also encoded by CLIP
and is used to search ImageDB also utilizing FAISS.

5.2. Results
5.2.1 Results of Fine-tuning CLIP

We fine-tuned CLIP utilizing the same approach as Portillo-
Quintero et al. [16] on 1000 frames extracted from ATP
from the MSR-VTT dataset. Specifically, we extracted the
key frame from each video using ATP and encoded this
frame with CLIP. We then aim to maximize the cosine sim-
ilarity between this key frame embedding and the ground-
truth video caption embedding. We obtained a recall@1 of
23.2%.

5.2.2 Quantitave Results on VQA Task

To compare the runtime of our models to the baseline, we
run the model on a 29-minute video @ 1fps. This is an
important metric because we expect our lightweight models
to be significantly faster than the complex Al models used
in VLog [2]. In addition, we extract one frame from each
unique image by utilizing PySceneDetect to detect scene
changes [4].

Method Runtime

VLog (Baseline) 48 minutes
DETR only 83.85 seconds
CLIP only 10.50 seconds
DETR + CLIP 103.11 seconds

Table 1. Runtime comparison between different experiments on a
29-minute video @ 1fps.

Method Memory
VLog (Baseline) 10.92612 GB
DETR only 809.69 MB
CLIP only 923.49 MB
DETR + CLIP 1.714 GB

Table 2. Allocated memory comparison for preprocessing stage

In terms of runtime, the "DETR only” and ”CLIP only”
models are 34x and 288x faster than the VLog baseline, re-
spectively. The combined DETR+CLIP model is 28x faster
than the VLog baseline. This speed-up can be attributed
to the fact that DETR [9] uses a conventional CNN which
leverages parallel processing to process the video frames as
opposed to GRiT [18], which relies on autogressive meth-
ods for sequential text generation. Additionally, CLIP [17]
synthesizes into a linear classifier at inference time, so there
is no need for addition pre-processing during runtime.

For the same reasons, DETR and CLIP require signif-
icantly less memory allocation during the preprocessing
stage. We see a ten-fold difference from the combined
DETR+CLIP model compared to the baseline VLog when
it comes to memory allocated. We observe that the run-
time and computational costs are compounded the longer
the video is, and the inference cost for VLog will become
prohibitive for long videos.

Next, we evaluate the models on the pre-processed
VQA-v2 dataset. Since we are only using “’Is there...?”
questions, we can evaluate whether the model accurately
identifies the presence of the object anywhere in the video.

Method Accuracy Recall Precision Fl1

VLog (Baseline) 0.52 0.60 0.54 0.57
DETR only 0.45 0.30 0.47 0.37
CLIP only 0.46 0.40 0.46 0.43
DETR + CLIP 0.51 0.50 0.61 0.55

Table 3. Accuracy of models on ”Is there...? ” VQA task.

From the results, we observe that the baseline model has
the highest accuracy but DETR+CLIP produces near iden-
tical accuracy as VLog. The DETR+CLIP model has no-
ticeably higher precision among the variants. This could be
attributed to the fact that it is more sensitive to certain high-
confidence object detections in an image, but this could
lead to missing less prominent details, which corresponds
to lower recall.

Since temporal information is important for video under-
standing tasks, we also evaluated whether the model can re-
trieve the frame / timestamp in which the object was present.
Furthermore, we calculated the percentage of timestamps
which overlap with the timestamps retrieved by the base-

line model. This is an important preliminary step because
an object can appear multiple times in the video. Therefore,
the models may retrieve multiple timestamps, so we want to
see how much they overlap with each other.

Method Timestamp Acc. Timestamp Overlap
VLog (Baseline) 0.21 -

DETR only 0.18 0.71

CLIP only 0.16 0.75

DETR + CLIP 0.25 0.79

Table 4. Accuracy of retrieving the correct timestamp where the
object in question was present in the video.

For the "DETR only” and ”CLIP only” models, we no-
tice a slight decrease in timestamp retrieval accuracy com-
pared to the baseline. This can likely be attributed to the
fact that VLog produces a more extensive and rich text rep-
resentation of the video compared to individual lightweight
models. However, the lightweight counterparts still retrieve
a majority of the timestamps, although not all the same
as VLog. Noticeably, the best performing model on the
text-to-clip retrieval task is the combined "DETR + CLIP”
model. This may be because we use both the text embed-
dings and image embeddings to retrieve the relevant frame
for the query.

5.2.3 Qualitative Results on VQA Task

Figure DETR, CLIP,

8. Frames retrieved by baseline,
DETR+CLIP in respective order to query “Is there a fire
hydrant?”

Qualitatively, we found that the frames retrieved by the
different variations of models corresponded closely to the
query’s main subject. As seen in 8, all of our lightweight
variations were able to successfully identify fire hydrants
despite large variations in color, lighting, and perspective;
this consistency indicates that these lightweight models are
sufficient for our query type without utilizing details with
more fine-grained textual details.

5.3. Discussion

Analyzing results from the experiments, we observe that
the lightweight AT models take significantly less time and

memory to process long videos, while producing compara-
ble results to the VLog baseline. We view this as a relatively
small trade-off between runtime/memory and accuracy. In
the context of processing and understanding long videos,
our research shows that we can dramatically reduce the time
it takes to process videos by using lightweight Al models
for video-language understanding coupled with RAG to in-
dex and retrieve relevant frames.

We also find that by including lightweight vision-
language models such as CLIP, we improve the quality of
our indexing as seen in the improved performance from our
DETR only model to DETR + CLIP model in Table 3.

A limitation of our experiment is that we are only run-
ning the models on ”Is there...?” V-QA tasks, which do not
require rich descriptions of the video. While the lightweight
Al models can accurately identify the presence of objects
in videos, they may not be suited for tasks that require a
deeper level of video understanding like generating audio
transcription, recognizing different characters or activities,
and identifying the causality of events.

Nevertheless, our research makes a significant contribu-
tion to the growing effort to understand long-form videos
and explores a novel way to encode them for downstream
LLM tasks.

6. Conclusion

In conclusion, our research demonstrates that a system
using lightweight Al models, CLIP and DETR, can ef-
fectively streamline video content querying through RAG.
By avoiding the extensive and computationally expensive
video-to-text conversion process of traditional models, our
approach significantly reduces processing time while main-
taining comparable accuracy for question-answering tasks.
The experimental results show that the CLIP+DETR model
provides a substantial speed-up, up to 28x faster than the
VLog baseline, and performs comparably to the baseline in
terms of identifying and retrieving relevant video segments.

Our findings underscores the potential of using more ef-
ficient models for real-time and resource-constrained appli-
cations. This efficiency is particularly beneficial for scenar-
ios where quick identification of objects and events in video
footage is crucial, such as security surveillance and content
moderation on social media platforms.

For future work, there are several avenues worth explor-
ing. Further fine-tuning and optimization of the CLIP and
DETR models on video-language datasets could enhance
their performance. Investigating the integration of more
advanced RAG paradigms, such as the Advanced or Mod-
ular RAG [11], could potentially improve the retrieval of
relevant video segments. Specifically, if given a complex
query that requires granular details beyond the capabili-
ties of DETR + CLIP, we would prompt our model to pro-
cess retrieved frames with more heavyweight models. Fi-

nally, given more time, we would also want to evaluate the
lightweight Al models on more benchmarks like MSR-VTT
[20] for video-captioning and NeXT-QA [19] for reasoning
about causal and temporal actions.

7. Contributions & Acknowledgements

Team Contributions. Adam spearheaded the code im-
plementation in this project, including the data preprocess-
ing of the VQA-v2 dataset, and integrating it with VLog,
DETR, and CLIP. Emily took the lead on writing the project
milestone and final report, conducting a literature review of
the existing work in the space of video-based Al models and
RAG, outlining the methods for the project, and analyzing
the results by understanding the underpinnings of existing
models. Together, we explored, discussed, decided on the
frameworks and approaches we would use for this project.

References

[1] Clip: Connecting text and images.
com/index/clip/,2021. 2

[2] Vlog: Video as a long document. https://github.
com/showlab/VLog,2023. 1,2,3,4,5

[3] Clip. https://github.com/openai/CLIP, 2024. 4

[4] Pyscenedetect.

https://openai.

https://www.scenedetect.com/,

2024. 2,5
[5] Revisiting the “video” in video-language understand-
ing. https://github.com/StanfordvL/

atp-video-language, 2024. 4
[6] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zit-
nick, and D. Parikh. VQA: Visual Question Answering. In
International Conference on Computer Vision (ICCV), 2015.
3
[7] M. A. Arefeen, B. Debnath, M. Y. S. Uddin, and S. Chakrad-
har. irag: An incremental retrieval augmented generation
system for videos, 2024. 3,4, 5
[8] S. Buch, C. Eyzaguirre, A. Gaidon, J. Wu, L. Fei-Fei, and
J. C. Niebles. Revisiting the “video” in video-language un-
derstanding, 2022. 2, 4
[9] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov,
and S. Zagoruyko. End-to-end object detection with trans-
formers, 2020. 2,4, 5
[10] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-
E. Mazaré, M. Lomeli, L. Hosseini, and H. Jégou. The faiss
library. 2024. 5
[11] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun,
M. Wang, and H. Wang. Retrieval-augmented generation for
large language models: A survey, 2023. 3, 6
[12] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization, 2014. 4
[13] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktéschel,
S. Riedel, and D. Kiela. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Proceedings of the 34th
International Conference on Neural Information Processing

(14]

[15]

(16]

(17]

(18]

(19]

[20]

Systems, NIPS *20, Red Hook, NY, USA, 2020. Curran As-
sociates Inc. 1, 2

J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Boot-
strapping language-image pre-training with frozen image en-
coders and large language models. In Proceedings of the 40th
International Conference on Machine Learning, ICML23.
JMLR.org, 2023. 2, 3,4

K. Lin, F. Ahmed, L. Li, C.-C. Lin, E. Azarnasab, Z. Yang,
J. Wang, L. Liang, Z. Liu, Y. Lu, C. Liu, and L. Wang.
Mm-vid: Advancing video understanding with gpt-4v(ision),
2023.1,2,3

J. A. Portillo-Quintero, J. C. Ortiz-Bayliss, and
H. Terashima-Marin. A straightforward framework for
video retrieval using clip, 2021. 5

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and . Sutskever. Learning transferable visual
models from natural language supervision, 2021. 2, 4, 5

J. Wu, J. Wang, Z. Yang, Z. Gan, Z. Liu, J. Yuan, and
L. Wang. Grit: A generative region-to-text transformer for
object understanding, 2022. 2, 3,4, 5

J. Xiao, X. Shang, A. Yao, and T.-S. Chua. Next-qa: Next
phase of question-answering to explaining temporal actions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9777-9786,
June 2021. 7

J. Xu, T. Mei, T. Yao, and Y. Rui. Msr-vtt: A large video
description dataset for bridging video and language. IEEE
International Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. 7

https://openai.com/index/clip/
https://openai.com/index/clip/
https://github. com/showlab/VLog
https://github. com/showlab/VLog
https://github.com/openai/CLIP
https://www.scenedetect.com/
https://github.com/StanfordVL/atp-video-language
https://github.com/StanfordVL/atp-video-language

