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Abstract

The inability to express verbal language communication
is a monumental barrier for thousands of individuals glob-
ally. The utilization of American Sign Language (ASL) of-
fers some partial solution to this problem, enabling human
communication through hand gestures. However, the in-
frequent familiarity with sign language among the general
public still results in substantial hurdles for those unable
to speak. This is made worse by the fact there is not cur-
rently any live on-demand sign language interpreters. In
this research project, we attempt to address the major chal-
lenges facing engineering a sign language interpreter. Our
goal is to develop a model that can accurately translate ei-
ther live video feed or video files of ASL into English text.
We trained several models with different architectures and
training sets and evaluated their performance and potential
uses in the real world. From existing literature, we found
there is currently no accurate live ASL translation models.
Our work builds off existing video classifiers that identify
ASL words from videos. The inputs for our models were ei-
ther live video feeds or existing videos of ASL and the out-
puts are a sequence of translated English text. We found
frame analysis with Google’s MediaPipe Hand Recognition
provided the best performance on live video to text transla-
tions given its lightweight nature. For longer video to se-
quence translations, a Vision Transformer (ViT) model with
transfer learning provides the most accurate results. These
two models were trained to recognize letters from the ASL
alphabet, and far exceeded existing benchmarks. For the
expanded ASL vocabulary with high volume of classes, the
Video Vision Transformer (ViViT) model or our Isolated Me-
diaPipe Transformers Model is more suitable. We’ve also
identified several data augmentation and generative tech-
niques to enhance our models’ translation ac curacies as
well as isolated several challenging points for further ex-
ploration.

1. Introduction
One of the primary applications with enormous positive

potential for computer vision is interpreting human gestures
and motions. When applied to the realm of American Sign
Language, there is ample space for computer vision to elim-
inate existing linguistic barriers for the deaf and hard of
hearing community. We plan on creating a sign language
interpreter, which can both translate real time through live
video feed and analyze existing video files. We want to
discover the most effective model architecture at capturing
human hand motions by comparing different architectures.
This would guide the most effective implementation of this
model on smaller devices and under different contexts.

1.1. Problem Statement

We aim to solve the problem of non-isolated live
sign language interpretation. The problem of live video
interpretations is capturing important parts of the video
(hands, arms, face, etc.) and with the context of the
surrounding frames in addition to previous and following
signs. The sheer amount of data presented by each video is
astounding, given the frames, pixels, and dimensions. This
memory usage has severely limited our computers’ abilities
to preprocess and manipulate our datasets. Our inputs
to the models are videos of sign language sentences and
words. The output would be a translation of a particular
word/sentence.

The other significant challenge for this project is the
lack of sequence to sequence data. Most existing neural
machine translations (nmts) are trained on an abundance of
sequence to sequence data in both the original and target
language. However, ASL possesses no such large datasets.
Thus, all models are trained on short videos that capture
only one word. A live ASL translator would have to capture
not only the class label for words, but also distinguish
changes or transitions between words.

After some initial tests and models, we’ve decided
two key tasks must be accomplished for a viable live
ASL interpreter. Firstly, correct classification of all 26
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letters of the English alphabet enabling users to spell any
words in speech. Secondly, an extended model able to
identify a large quantity of gestures corresponding to words
in a vocabulary. The latter necessitates processing and
identifying motion of the hands and body.

We started by first training classifiers. The general
approach for our models was to train a high accuracy
classifier on either images or videos, run these classi-
fiers on a subset of frames from test data with further
algorithmic scaling, and pass a noisy sequence into a
word model to obtain our fluent translation. To ensure
our project is not lagging behind existing work, we en-
sured our classifiers outperform existing baseline models.
Our baseline model for videos is the ACM paper which
achieved an accuracy of 62.79% on short videos of ASL
words. Our baseline for identifying ASL letters from
images is 83%, accomplished by an IEEE paper by Raval
and Gajjar. After outperforming the baseline models, we
moved to developing a live ASL interpreter. This led us to
developing several video processing techniques to continu-
ously apply our classifiers to a high resolution video stream.

2. Related Works

2.1. MediaPipe Coordinate Classification

MediaPipe is a hand landmark identifier developed by
google [17]. It’s a real time video processor that is able to
locate key points of the hands in videos. MediaPipe gives
coordinates of the palm and each finger found in the input
image. The key coordinates of the hand locations can be
used to train models to recognize and process human hand
gestures. We plan to explore the potential for MediaPipe
within our lightweight live ASL interpreter. The following
studies also feature the use of MediaPipe.

A study by Paul and Walid compares three different
model architectures to interpret sign language, a ResNet
CNN, a gated recurrent network (GRU), and the long short
term memory (LSTM) [13]. The study finds the LSTM
performing the best out of the three. All three networks are
trained on data preprocessed by MediaPipe, making all the
inputs tensors of hand coordinates. The tensors are then
formatted and passed into their respective models. All three
models have identical dropout rates, loss function calcula-
tions, activation functions, and optimization. The LSTM,
which performed better than the GRU and the ResNet
CNN achieved f1 scores of around 93.8% across multiple
classes. The models are trained on images with 26 classes,
corresponding to the 26 letters of the English alphabet. This
serves as a great benchmark for our MediaPipe alphabet
classifier. They also trained a LSTM for videos comprised

of three classes, and achieved an accuracy of 94.3%.

Another study by Luna and Jimenez serves as a great
benchmark and framework for the work we are doing for
sign language interpretation. The paper aims to highlight
the most important features regarding interpreting sign
language, in other words, what areas of images/frames
should models focus on to make their classifications. The
creators preprocess their training data through MediaPipe.
In addition, they also use VisionAPI which is another
video feature extraction tool we could experiment with to
augment our dataset before training. The combined tensors
from these two preprocessors are concatenated for their
inputs. For their training model, they fine tuned SPOTER
[3], a transformers based model that uses non traditional
positional encodings and “Class Query,” a randomly
initialized learnable parameter before decoding instead of
the traditional contextual sequence. They achieved a test
accuracy of 62.79% on videos which serves as our most
basic baseline. [9]

In addition to reviewing papers, we scoured the internet
for “homemade” architectures to solve video recognition.
One such example is the code of the first-place winner
to the now-finished Kaggle-hosted and Google-sponsored
competition under the title Isolated Sign Language Recog-
nition, which ranked users’ abilities to train models that
could classify isolated videos of humans performing sign
language into one of 250 different classes. Each of the
94, 744 videos provided for the competition had already
been preprocessed using Google’s MediaPipe API [6]
to provide landmarkers. The first-place user, Hoyso48,
identified 118 specific landmarks to train on and used a
cycle of 3 1-dimensional convolutional layers followed by
1 transformer layer in TensorFlow to achieve a validation
accuracy of approximately 80% on isolated video segments.
This model offers a great blueprint for our own custom
model architecture for classifying video words, specifically
the authors insight of tracking not just position, but also
instantaneous velocity and acceleration over time. [7]

Another solution to this competition, also written in Ten-
sorFlow, by Mark Wijkhuizen uses a custom-built embed-
ding layer followed by a transformer layer and lastly by a
classifier layer. [16] A hallmark of this solution, besides the
model architecture, was the very efficient and straight for-
ward data processing, specifically in terms of determining
the dominant hand at use in a given video.

2.2. Non-Landmark Based Hand Classification

In a study by Bantupalli and Xiem, human gestures
in videos are classified to their respective sign language
interpretations (Bantupalli) [2]. The data was gathered
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from custom recorded videos, where videos were broken
down into frames then converted to images. To classify
the images, the authors used Inception [15], a CNN
based image recognition model developed by Google. The
authors pass both the outputs from the Softmax layer and
the Pool layer into a LSTM for classification. The results
were compared and the authors achieved a test accuracy of
91% using Softmax and 58% using the Pool Layer. This
inspired us to pursue some LSTM variant for our initial
models.

We discovered another study that tries to classify ASL
alphabet letters. Raval and Gajjar designed a convolutional
neural network with Softmax to map images to their
respective letters. They ended up accomplishing a final
classification accuracy of 83%, serving as a benchmark for
our ASL alphabet classifier. Crucially, they made use of a
skin color mask, where HSV or Hue Saturation Value is
used to detect skin color of hands to apply masking. Further
blurring to control for noise and dilation with erosion is
applied to enable better generalization of the model to a
greater selection of skin tones (Raval) [14].

Another study conducted by Deepali performed SVD to
classify images into their respective alphabet letter classes.
We don’t plan to explore SVMs in this project but we’ll
take their 95.31% accuracy as a good baseline [10].

3. Methods

3.1. Data Preprocessing

3.1.1 Image and Video Preprocessing

We began our project with a simpler problem: individual
character recognition. One of the first steps was to gener-
ate even more training data for our ASL character alpha-
bet. Since our ”ASL Alphabet” dataset from Kaggle con-
tained no backgrounds for hands, we added backgrounds
with random RBG values so our models learn how to sepa-
rate background noise. Additionally, we stretched, flipped,
rotated, scaled, and translated the images. We applied a
random combination of these transforms to a sample from
our dataset. Through these extra transform combinations,
we were able to increase our dataset by 20% arriving at just
over 100, 000 images. For our extended vocabulary model
of videos, a different approach was necessary. To compress
the amount of data needed, each short video (around 4 sec-
onds each) was evenly divided into 16 frames. Each frame
was converted to 1 channel (grayscale) with 224 by 224 di-
mensions. Our final training tensors were shaped N x 16 x
1 x 224 x 244.

3.1.2 MediaPipe Preprocessing

For models that take MediaPipe coordinates, images
(and later videos) are first passed through Google’s Medi-
aPipe algorithm to generate a set of “landmarks” and their
respective x, y, and z coordinates. Specifically, the follow-
ing landmarks were tracked and stored for training: left
hand, right hand, lips, pose, and nose; lips, pose, and nose
landmarks were occasionally omitted, as they are not fully
necessary for letter translation (which is done by the hands).

Before performing any augmentations, each data point is
normalized about its 17th left hand landmark as a sort of
reference point, with NaN values being either filtered out
or replaced with a predetermined pad value [7]. For video
inputs, we implement a dynamic frame handling algorithm
that first removes all entirely empty frames then either crops
down to, pads up to, or repeats a given video as many times
as possible in a set maximum frame length (generally 64
from the Google Isolated Sign Language Recognition Kag-
gle competition dataset) [16]. In some tests, we compute
the first derivative (velocity) and the second derivative (ac-
celeration) [7] across frames for each landmark to capture
the dynamics of hand, lip, and pose movement:

vt = xt − xt−1

at = vt − vt−1

where xt represents the landmark position at time t. Lastly,
before performing any augmentations, left versus right side
dominance was determined by comparing the number of
non-NaN left-sided landmarks and comparing that to the
number of non-NaN right sided landmarks. [16]

3.2. Character Recognition Model Architectures

We trained multiple models, four were trained to identify
ASL alphabet letters and six were trained to classify words
from our expanded vocabulary. Our ASL alphabet classi-
fiers are trained on images whereas our expanded vocabu-
lary models are trained on videos. In the following sections,
we outline and detail the model architecture for some of our
significant models. These models could be conjoined to en-
hance total translation ability from ASL to spoken/textual
English.

This character recognition portion of our study is in-
tended to be a base point and key component of live ASL
translation both with direct image useage and MediaPipe
useage. To experiment with live translation, we perform a
comparative study by training multiple image-identification
models.
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3.2.1 Note on Activation Functions

We will be employing various activation functions
throughout our model development process, namely ReLU,
LeakyReLU, GELU, and SiLU:

Function Formula Output
ReLU f(x) = max(0, x) [0,∞)

Leaky ReLU f(x) =

{
0.01x if x ≤ 0

x if x > 0
(−∞,∞)

GELU f(x) = xΦ(x) (−∞,∞)

Φ(x) = 1
2

(
1 + erf

(
x√
2

))
SiLU (Swish) f(x) = x

1+e−x (−∞,∞)

3.2.2 ViT Model

With our augmented dataset for ASL letters, we engi-
neered our first model by finetuning a Vision Transformers
(ViT) computer vision architecture [5]. Images are broken
down into P smaller C x C panels forming grid, going from
N x W x H to N x P x C2. These panels are then sequentially
passed into our transformers encoder and into our multi-
headed attention mechanisms.

Figure 1: Architecture of the Vision Transformer (ViT)
model.

The above visualizes our model architecture. In our
eventual model we chose to divide our images into a 4 by 4
grid. We were able to take advantage of transfer learning by
starting with pretrained weights from the ImageNet dataset
[4].

3.2.3 Isolated MediaPipe Character Model: Linear
Neural Network

The first MediaPipe character recognition model we
created is a fully connected neural network, which starts
by taking the pre-processed inputs into a dense layer that
maps them to a higher dimensional space, facilitated by
an activation function from the above choices and batch
normalization to ensure effective forward propagation of
gradients. Dropout is used after each activation to reduce

overfitting risks. The network architecture progressively
reduces the dimensionality through three fully connected
layers, incorporating the same non-linearity and normal-
ization strategies, and ending with a layer that outputs
class scores, which are transformed into probabilities using
softmax.

3.2.4 Isolated MediaPipe Character Model: CNN,
LinNN, normNN

The second significant model we trained was a Medi-
aPipe character recognition model employs a 1-dimensional
convolutional neural network (CNN) that processes the in-
put with 16 filters, each with a kernel size of 3 and padding
of 1, maintaining the dimension while capturing basic
spatial features. This is followed by batch normalization,
and max pooling. A second 1-dimensional convolutional
layer increases the depth to 32 channels, allowing the
model to learn more complex patterns before another round
of activation, batch normalization, and max pooling. The
network ends with a set of fully connected layers where the
features are flattened and passed through dense layers with
dropout in between to prevent overfitting, and ultimately
using a final classification layer that outputs probabilities
for each class through a softmax activation.

3.3. Gesture Recognition Model Architectures

The following subsections detail the two models we cre-
ated to recognize a wider vocabulary of ASL gestures. Our
ViViT model was trained on our raw videos whereas the in-
puts for FFIMpGIM were our MediaPipe landmark coordi-
nates from the Google Isolated Sign Language Recognition
dataset.

3.3.1 ViViT Model

ViViT is a transformer model architecture utilized for
video classification [1]. ViViT utilizes spatiotemporal at-
tention and patch embeddings followed by a temporal self
attention block. The spatiotemporal attention mechanism is
based off the ViT Model described above, and captures in-
teractions between captured tokens in the same time frame.
Afterwards, the output of the spatiotemporal self-attention
block is passed into the temporal self attention mechanism,
which captures interactions between different time steps.

Because video tensors take up an excessive amount of
space, we only parsed our videos with one depth channel,
as detailed in the data preprocessing step. This drastically
cut down on the space we needed to store our tensors. We
created a custom CNN convolutional layer to perform this
operation.
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Figure 2: Architecture of the ViViT model.

3.3.2 Frankenstein-more-like-Freakystein Isolated
MediaPipe Gesture Identification Model
(FFIMpGIM)

Input

Embedding Layer

Dominant Hand
Positional

Embedding

Pose Positional
Embedding

Lips Positional
Embedding

Transformer Layer

Linear Clas-
sifier Layer

Output

FFIMpGIM’s most unique feature is its complex embed-
ding layer [16] that processes raw input data (specifically
spatial and sequential features) into a form that the fol-
lowing transformer layer will be able to process, focusing
on capturing both static and dynamic aspects of the
predetermined dominant hand landmarks, lip landmarks,
and pose landmarks. It begins with positional embedding,
assigning a unique vector to each possible position in
the input sequence to help the model understand frame
ordering. Then we perform feature-specific embedding to
relate spatial features and relationships between body parts.
Learnable weights are set and adjusted during training to
determine the emphasis placed on each landmark type.
Lastly, the combined and weighted landmarks are passed
through a set of linear layers and returned to the PyTorch’s
dynamic Transformer layer [12].

3.4. Training

3.4.1 Learning Rate Scheduler

Cosine Annealing: The learning rate is adjusted using
a cosine annealing schedule, which decreases the learning
rate following a cosine curve between initial learning rate
settings and zero. This creates better performance through
encouraging convergence by reducing the learning rate as
training progresses:

lr(t) = lrmax

(
1 + cos

(
π · t
T

))
/2

where t is the current epoch, and T is the total number of
epochs. All of our models feature a scheduler which peri-
odically updates our learning rates after each epoch.

3.4.2 Loss and Optimization

Cross-Entropy Loss: Most of our models use the cat-
egorical cross-entropy loss, which compares the predicted
probability distribution across classes with the actual distri-
bution (one-hot encoded):

Loss = −
C∑

c=1

tc log(pc)

where tc is the target probability for class c (1 for the true
class and 0 for others), and pc is the predicted probability
for class c.

Customized Cross-Entropy: We started with our
normal cross entropy loss function. But we soon discovered
that certain sign language classes are often confused with
each other. For example the letters of m and n are very
similar and gestures for sad and friendly are often confused.
On our final trained models, we implement the custom
cross-entropy loss function with defined cost matrix W of
size C × C where C is the total number of classes. Each
element Wij represents the penalty for classifying an actual
class i as class j. To penalize for misclassification between
c1 and c2, we can increase Wc1c2 and Wc2c1 to higher than
one.

Loss = −
C∑

c=1

Wtc · tc log(pc)

3.5. Post-Processing

For our ASL alphabet classifier models, there are several
crucial postprocessing steps to formulate coherent transla-
tion of the input videos. Suppose l1, l2, ...lC are the logits
produced by our model for C different classes. We want
to scale each logit by the frequency of which letters appear
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in English text. Thus, more common letters with have a
higher chance of being represented and vise versa. After
processing Ethan’s old essay on Hamlet by Shakespeare,
let f1, f2, ..., fC be the frequency count that each letter of
classes C appears. The following logit scaling is then per-
formed

for i ∈ C, l′i = li(̇1 +
log(fi)∑C

z=1 log(fz)
)

We pass the scaled logits through Softmax to calculate
our probability distribution for each letter.

3.6. Live Video Feed Processing

Live video feed processing with our classifiers requires
addressing several challenges. Because there is no large
dataset on ASL to English sentence translations, we cannot
train sequence to sequence models. Instead, we adapt our
classifiers to process video streams.

For our image classifiers on ASL letters, we create ma-
trix to implement a sliding window approach. The matrix W
is dimensions of T x C, where T is the duration of the win-
dow and C is the number of classes. We extract between 10
and 30 frames every second from our video feed. For every
processed frame, we first shift all rows up one in W, then
we load the weighted probabilities into the last row of index
T - 1. Then we compute the average probability across all
columns:

p̄j =
1

T

T−1∑
i=0

Wi,j

If the probability corresponding to class c exceeds our
threshold 0.8, we append it to our output sequence, other-
wise append a space.

Output =

{
class c if p̄c ≥ 0.8

space otherwise

The reason for this window approach is to avoid sudden
input shifts. For a character to be successfully rendered, it
must appear for some minimum duration. This enables the
model to distinguish spaces from transitions.

Our video classifiers follow a similar approach. After
extracting 30 frames every second, the last 64 filled frames
in our video stream are fed into our video classifiers. We
append label to output sequence if probability threshold of
0.6 is exceeded.

3.7. Fluent Translations

The previous subsection details how the classifiers are
fed information from video streams. However, the direct
outputs from these classifiers are not necessarily fluent. To

ensure proper translation of our model, we feed the out-
puts into a language model. We could have trained a simple
BERT model to turn our classifier outputs into their correct
translation, but decided the OpenAI API for GPT4o works
just as well. The following tables outlines the inputs and
output sequences we get with OpenAI’s API.

Table 1: Word model for alphabet

Input Output
iiiiii aaammmm gggr-
rrroooooattttt

i am groot

sssnmaaarrrrtttiiiieeesss
ddddeeemmtttt-
teeeeemmcccccttttt-
teeeeddddd

smarties detected

Table 2: Word model for words

Input Output
i hungry i am hungry
i go football i go to the football game

4. Dataset Selection
4.1. ASL Alphabet

To train our models to recognize the letters of the al-
phabet, we started with a dataset on Kaggle compiled by
Nagaraj [11] titled ”ASL Alphabet.” This dataset contained
over 87,000 images spanning 26 classes for the alphabet.
We further augmented the dataset by using our own hands.
Several videos were taken in different lighting for each
class. These videos were parsed by sampling two frames
every second and the frame image resized to fit out model.

4.2. Expanded Vocabulary

There are over 40,000 words in sign language. We
wanted to supplement our model with recognizing some
of the most common words. These gestures can only be
represented by video so we started with a dataset found on
Kaggle called the World Level American Sign Language
(WLASL), which consists of approximately 12, 000 short
videos of humans performing signs of common words
(2000 words total) that is already split into training,
validation, and test sets. While this dataset is very diverse
in the vocabulary it provides and convenient in the way it
is presented, it only leaves with about 5 to 6 examples per
word, which is very sparse. [8]

As predicted, using this dataset as given resulted in ex-
tremely high losses (> 7.5) that didn’t drop and extremely
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low validation accuracies (< 0.004%, which is roughly a 1
out of 2000 chance, equivalent to guessing) after 200 epochs
of training on models trained with different hyperparame-
ters and architectures (layers chosen from the following: 1D
Conv, ReLU, LSTM, Linear, and Dropout). We searched
for another dataset that contained fewer words/labels and
more density of examples, which we landed on by using
an open sourced data set from a Kaggle competition. The
dataset contains 94, 744 different examples with 350 differ-
ent labels.

5. Results and Discussion

The primary metric used to evaluate the quality of our
models is accuracy on test data. Simply, we look to max-
imize the ratio of images/videos the model correctly iden-
tifies out of the total images/videos. We also qualitatively
adjust our model by interacting with its live implementation
we engineered.

5.1. Character Recognition Models

Table 3: Models vs Baseline for Letter Identification

Model Test Accuracy

Bantupalli (baseline) 91%
Raval (baseline) 83%
Paul (baseline) 93.8%
Deepali (baseline) 95.31%
MediaPipe Linear NN 98.76%
MediaPipe CNN 98.57%
MediaPipe + Norm*1 88.9%
ViT 99.84%

*Model was coded but was not included in methods due to model architec-
ture insignificance.

From the table seen above, we can comparatively evalu-
ate our models against each other and our baselines. The ac-
curacy measures what percent of ASL letters in images the
model was able to successfully guess. Most of our models
handily beat the baseline models with our best version of the
ViT model achieving a test accuracy of 99.84%. This sug-
gests our modifications to parameters, loss, and data were
successful

Figures 4 and 5 depict the loss and training values for our
ViT models over time. The steep dropoff for loss in training
suggests very health behavior.

The parameters for our ViT and ViViT models were
trained through trial and error as well.

Figure 3: Class Visualization of MediaPipe Isolated Char-
acter Best Model

Table 4: Hyperparameters for Linear NN and CNN Grid
Search

Hyperparameter Values
Learning Rate (lr) 0.001, 0.0005, 0.0001

Batch Size 16, 32, 64
Hidden Size (linear) 128, 256, 512

Dropout Rate 0.3, 0.5, 0.7
Optimizer Adam, SGD, RMSprop, Adagrad

Number of Epochs 5, 8, 11

Figure 4: Accuracy of the
ViT model

Figure 5: Loss of the ViT
model

Table 5: Hyperparameters for ViT and ViViT Models

Hyperparameter Values

Learning Rate (ViT) 0.01, 0.001
Learning Rate (ViViT) 0.001, 0.0001
Batch Size (ViT) 16
Batch Size (ViViT) 2
Number of Epochs 10
Optimizer Adam

5.2. Gesture Recognition Models

The accuracy measures what percent of gesture videos
the model was able to successfully guess. The comparisons
in the above table are not entirely fair. Having more classes
will make training a high accuracy model naturally a lot
more difficult. The numbers in brackets next to the model
name indicate number of classes for the classifier. The
baseline models, with exception to Hoyso, had significantly
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Table 6: Models vs Baseline for Video Identification

Model Test Accuracy

Paul [3] (baseline) 94.3%
Luna [13] (baseline) 62.79%
Hoyso [250] (baseline) 80%
ViViT [400] 28.9%
LSTM: flattened videos* [400] 1.4%
Transformers: flattened videos* [400] 1.2%
MediaPipe: Custom Encoder [250] 61.83%
MediaPipe: Only Vel/Acc [250] 0.4%
MP: Custom Encoder + Vel/Acc [250] 73.56%
*Model was coded but was not included in methods due to model architec-
ture insignificance.

less class labels than our models. Our ViViT model was
trained to identify 400 words in the sign language vocabu-
lary, which is exceedingly difficult. Overall, our MediPipe
model with our custom encoder and augmented data for ve-
locity and acceleration performed the best among our mod-
els, achieving an accuracy of 73.56%. However, we fail to
beat our baseline model of Hoyso, which achieved an accu-
racy of over 80% despite having the same amount of classes
[7].

5.3. Analyzing Losses and Accuracies

After we finalized both the MediaPipe linear NN and
CNN models with the optimal hyperparameters according
to the grid search while employing 5-fold cross validation,
we yielded the loss and accuracy over time seen in figure
6. All of the losses and accuracies begin to converge early,
avoiding issues with exploding or vanishing gradients.

Figure 6: Training loss, validation loss, and validation ac-
curacy over time for the linear NN

With peak model accuracy at 98.76% and 98.57% for
the linear and CNN models respectively, we were ready to
commence with live camera testing.

We were able to complete training and validation on
both the MediaPipe transformer model and the ViViT model

as seen in figures 7 and 8 after very significant failures
with other attempted models (which could barely peak past
0.04% accuracy—essentially guessing).

Figure 7: Validation accuracy over time for ViViT

Figure 8: Training loss, validation loss, and validation ac-
curacy over time for FFIMpGIM

The training process of FFIMpGIM is rather interesting
considering that validation accuracy converges very quickly
and validation loss actually increases while training loss is
still decreasing beginning at around Epoch 20. This indi-
cates that starting after Epoch 20, the model has stopped
learning and started to overfit the data. This can be a result
of multiple factors, be it due to the weight-decay mecha-
nism and learning rate scheduler. The model becomes too
specialized on the training data which severly harms future
performance. Steps to consider would be stopping training
earlier (around Epoch 20), using a new more specific loss
function, and further tuning hyperparameters.
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Figure 9: Live sign language recognition of the character
”I”

Figure 10: Live sign language recognition of the character
”A”

5.4. Live Testing

When beginning live testing, as demonstrated in figures
9 and 10, we noticed quickly that although our frame land-
mark processing and translation logic worked quickly and
correctly for the most part, as seen in figure the signs for
A, M , N , and S look overwhelmingly similar. Our models
could not distinguish between these four letters when signed
traditionally according to the left column of Figure 11 what-
soever, always predicting A with near 100% accuracy. We
quickly realized we had trained the model on less conven-
tional finger spelling signs which are on the right column of
Figure 11, which can be made out by the MediaPipe land-
mark diagrams.

Thus, to find a solution, we created our own dataset from
scratch that had traditional signs in order to distinguish
between more conventional signs for A, M , N , and S. This
dataset, however, had far too little images (since we were
faced with a time crunch) to train a proper model on, with
only 10 per class.

In order to deal with this all, we decided that instead
of retraining our original models, we could generate a
specific AMNS character classifier that would only be
invoked when the original MediaPipe model predicted
A. Considering that the MediaPipe models are extremely
efficient and quick, this does not cost us any extra time
in live interpretation. To generate more training data for
this classifier, we wrote an augmentation algorithm that

Figure 11: Traditional signing versus finger spelling

performed a 32-fold augmentation: all possible combi-
nations (presence/absence of) of a rotation by a random
angle from 21 degrees to 79 degrees either clockwise or
counterclockwise, a random scaling by a factor of 0.85 to
1.15, a random translation by −0.1 to 0.1 in both the x and
y directions (as a reminder, MediaPipe operates with values
from 0 to 1 that are normalized to the size of the image
with (0, 0) being the top left corner and (1, 1) being the top
right), and a left-right flip.

When trained without augmented data, the classifier was
able to identify between A, M , N , and S with 53.12%
accuracy. When trained with augmented data, it performed
at a 72.26% accuracy (both training sessions were done
with the same grid search and 5-fold cross validation to
yield, surprisingly, the same hyperparameters. Lastly,
we trained a pure image-based classifier to deal with the
AMNS problem, which yielded a staggering 98.01% for
this minitask.

6. Conclusions

Throughout the course of this project, we arrived at a
number of interesting conclusions regarding computer vi-
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sion for sign language interpretation.

• Models with raw video inputs instead of hand coordi-
nates perform too slow for real time video applications

• Avoiding MediaPipe preprocessing may create higher
classification accuracy, but tensors storing videos take
up enormous space, which makes training difficult

• MediaPipe creates the best results when analyzing
longer sequences of videos

• Classifiers can capture hands more accurately in differ-
ent lighting and settings with data augmentation that
performs random scaling, rotation, and manipulation
to training data

• Custom loss functions can provide extra punishment to
correct for commonly mistaken or confused classes

• Classifiers on images or short videos can be applied
to longer video streams with sliding windows over
frames

• Thresholds on logits and predicted probabilities can
weed out inputs that don’t fall into any of the classes

• Computer vision models can be readily appended with
word models for fluent translations

Despite our MediaPipe preprocessed model performing
slightly worse on classifying ASL letters, the video analog
performed much better on classifying ASL vocabulary.
This is likely because our non MediaPipe models (which
don’t have sets of coordinates as inputs) are observing too
much background noise. The backgrounds for the hands in
these videos likely add variance which is compounded over
multiple frames, which explains the lower performance.

Our Vision Transformers ViT model outperformed
all baselines for classifying images. ViT was our best
performing model for identifying ASL letters in images.
This is likely attributable to the heavy data augmentation
on our dataset and more subdivision of the image for a
longer sequence into our transformers model.

Our FFIMpGIM model also outperformed baseline mod-
els on video gesture classifications. FFIMpGIM was our
best performing model for classifying our extended 250-
word video vocabulary in ASL. Our model improves upon
the baseline models by expanding the embedding layer to
capture both static and dynamic aspects of the hands in our
training videos.

6.1. Looking Forward

There are several areas for improvements building off
our base model for sign language interpretation. Firstly,
a custom trained word model able to parse the outputs of
our classifiers can offer a drastic improvement with live
processing speed. An unsupervised technique can be im-
plemented where a model learns to reconstruct an original
sentence from a corrupted version according to our model’s
outputs. Secondly, further model architectures can be ex-
plored for raw video inputs. For example, what if we swap
the order of our two attention mechanisms from our ViViT
models and our temporal self-attention block fed into our
spatial self-attention block? Another idea to explore is syn-
thesizing models. Some of our models struggle between
a certain select classes. What if a separate more complex
model was trained specifically only on these often confused
classes. The resulting predictions from these two mod-
els would be synthesized for an even greater classification
accuracy. Ultimately, there is ample room without heavy
hands for creative explorations on further augmentation to
these computer vision models. Applications for this realm
of computer vision lends a hand to those who rely on ASL
communication and will hands-down leave a significant and
hands-on impact on society.
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