Low-Data Deep Learning for License Plate Blurring

Parth Sarin

Patricia Wei

Stanford University
Palo Alto, California

{psarin, patwei}@stanford.edu

Abstract

In this paper we develop an image segmentation sys-
tem for license plates that performs nearly as well as the
state-of-the-art YOLO model, but is trained from scratch
on less than 1% of the data used to train YOLO. We be-
gin by analyzing the role of surveillance in supporting the
project of computer vision, to sit with the problematic na-
ture of the task at the center of this work. For example,
none of the license plate datasets we found reported the
provenance of their images or whether people consented to
or were compensated for having their car’s picture taken.
Somewhat ironically, we next describe how we trained our
model, drawing on prior work about license plate recog-
nition and segmentation. Although prior studies address-
ing the same task have transferred weights from large pre-
trained models, this study focuses on low-data situations.
Consequently, we describe a carefully chosen model archi-
tecture, loss function, and training routine, including data
augmentation and hyperparameter tuning, that led to good
results when training from scratch. We report the perfor-
mance of that model, along with a number of ablations, and
discuss implications for deep learning on small datasets, li-
cense plate blurring, and systems of surveillance. !

1. Introduction

The surveillance camera is a widely proliferated piece of
technology: In California, just a few years after the Septem-
ber 11th attacks, 37 cities had already adopted systematic,
city-wide surveillance programs and the number has grown
rapidly since then [16]. At the same time, private compa-
nies like Amazon have enabled and promoted widespread
surveillance conducted by individuals, in the name of their
own safety, through devices like the Ring doorbell [17]. Un-
der United States law, police can generally obtain access to
these recordings during criminal proceedings, so police in

IThe code for this project can be found at this URL: https://
github.com/parthsarin/cs231ln-final-project

California—and, indeed, governments everywhere—have
access to more data about their citizens than ever before,
leading to a regime that academic Roger Clarke has called
“dataveillance” [17, 3].

As many critical technology scholars have pointed out,
these regimes are highly opinionated about which bodies
ought to be monitored and controlled—namely, systems of
surveillance tend to reinforce normative social hierarchies
including various systems of caste [1, 7, 12, 13]. As a field,
computer vision has largely profited off these systems of
control in the form of datasets that can be used for training.
One review of 114 datasets commonly used in computer
vision concluded they value “efficiency at the expense of
care; universality at the expense of contextuality; [and] im-
partiality at the expense of positionality” [15]. Given that
so much of decolonial theory is about provincializing and
problematizing efficiency, universality, and impartiality, an
inescapable conclusion is that computer vision is complicit
in Western hegemonic and imperial projects [4, 10, 5, 9].

Even in our attempts to “fix” systems, the computer vi-
sion community has carelessly disregarded the social con-
texts of algorithms in favor of quantifiable conceptions of
equity. When Joy Buolamwini and Timnit Gebru pub-
lished Gender Shades, showing that facial recognition sys-
tems don’t work as well for black people or women, they
called for more dataset diversity to address the problem
[2]. People listened, and updated facial recognition algo-
rithms. But the result, as Ruha Benjamin has pointed out,
was that surveillance cameras became much more useful
for police—rather than “fix” algorithms with more repre-
sentative data, she has called on the community to consider
whether it is even possible to “create fair and just algorithms
in an unfair and unjust society” [14].

We don’t pretend that our project is free of those con-
cerns: we are working to train a model to identify sensitive
information in pictures so that information can be blurred
out. We built a model that can segment images into two
categories: the background and a license plate. Of course,
these kinds of systems can be transferred to identify license
plates rather than blur them out, yet another computer vi-


https://github.com/parthsarin/cs231n-final-project
https://github.com/parthsarin/cs231n-final-project

sion tool that would aid police [23, 1 1]. Our dataset comes
from photos and videos taken of cars, but we don’t know if
the owners gave consent for this or where, when, or how the
data were collected. More broadly, by engaging in this work
with our GPUs and convolutional neural networks, our pa-
per sits within a long line of work that lends credence to
the very systems we seek to problematize. But, since this
type of work is a requirement of CS 231N, we don’t feel
like we can avoid that. Instead, our goal, in engaging with
critical theory, is to surface, unhide, and unblur the systems
of power that surround computer vision.

2. Technical Literature Review
2.1. The Field of ALPR

Our project falls in the realm of Automated License Plate
Recognition (ALPR), which has many applications in soci-
ety including automatic toll collection, traffic law enforce-
ment, parking lot access control, road traffic monitoring
[6], as well as fraud prevention and security [18]. ALPR
systems can be generalized as having four stages: 1) Im-
age acquisition 2) License Plate Extraction 3) License Plate
Segmentation and 4) Character Recognition [6, 18]. Our
project focuses on stage (3), license plate extraction — but
instead of extracting identifying license plate information
from an image, we seek to cover it. Different techniques
to extract a license plate from an image include: bound-
ary/edge detection (since a license plate is normally rectan-
gular), connected component analysis (detecting connected-
ness of pixels that have the same geometrical features of a li-
cense plate), texture features (changes in background color),
color features (identifying noticeable colors in a region’s li-
cense plate), and character features (looking for characters
in an image).

2.2. CNN and YOLO Approaches for ALPR

CNN and YOLO are common approaches for ALPR sys-
tems [21, 19, 22], as they are used for object detection. Vig
et al. write that the CNN-RNN model handles the various
patterns (characters, sizes, fonts, colors, distortions, etc) in
a two-stage method involving unconstrained localization of
the license plate and utilizing deep learning’s strengths in
high-level semantic feature representations. LSTM (Long
Short Term Memory) can also be added for optimal results.
YOLO is a customized version of GoogLeNet, a CNN with
22 layers where loss = lpop + leis + lop;. YOLO uses a
single bounding box regression and IOU (Intersection Over
Union) to predict the best bounding box, and has advantages
of high accuracy and speed and is able to detect small-sized
objects, which is important because license plates are often
small in comparison to its background.

Concerned about privacy issues arising from ALPR sys-
tems, Shringarepure created a system to blur plates [19]. He

Figure 1: Examples of images in our data. Note how the
license plate is a small but important part of the image

uses a pre-trained YOLOvVS model, one of the fastest object
detection algorithms, to detect the license plate. The images
pass through 3 architectural blocks: CSPDarknet as a back-
bone layer for feature extraction, Panet as the neck to take
input from the head and perform aggregation on the features
to pass to the next stage for making predictions, and a Head
layer to make predictions by generating a box. Finally,
Gaussian blurring is used to blur the license plate. He cites
the use of ALPR systems in Ireland’s highways to scan cars
going across the highway to collect tolls. The license plate
information is then stored for two years or more. He writes
that this is a privacy concern because storing such sensitive
data could be used for malicious activity, which is why he
developed a system that blurs license plates, which aligns
with our goals as well. Inspired by his work, we chose to
use Gaussian blurring for data augmentation and also com-
pare our model to a state-of-the-art YOLOv5 model.

Additionally, low-data approaches have also been of in-
terest because to make ALPR systems accurate in general-
izable settings around the world: day/night, foggy weather,
low quality cameras, different colors/shapes/languages on
license plates. Lee et al propose using a shared encoder,
detecting license plates and the surround

3. Dataset & Features

We are using Hugging Faces’ Vehicle Registration Plates
Dataset published by Roboflow [20]. It includes 8823 im-
ages: 6176 for training, 1765 for validation, and 882 for
testing. Each image has a bounding box for the license
plate, in COCO format. From the box, we created a mask
where every pixel in the license plate bounding box is
marked with a 1 and pixels not part of the license plate are
marked with a 0. We experimented with the following data
augmentation techniques: random photometric distortion,
random horizontal flip, and Gaussian blur, which we dis-



3@640x640

=

128@2x2

Figure 2: The baseline model uses a sequence of
conv-relu-pool layers to generate a 512-dimensional
embedding of an image, then adds a linear layer followed
by softmax to predict probabilities for each pixel

cuss more in Section 4.2. Examples from our dataset can be
found in 1.

4. Methods

We trained a model that was a sequence of three
conv-relu-pool layers. Each convolution layer had a
5 x b filter and a stride length of 3. The pooling layers were
all max-pool with a 2 x 2 kernel and a stride length of 2.
A simplified version of the model is displayed in Figure 2.
Then, the tensor was flattened into a 512-dimensional vec-
tor, passed through a linear layer, and then reshaped into a
2 x 320 x 320 dimensional tensor. Finally, we applied soft-
max to the first dimension. We initialized the model using
random weights sampled from an Xavier uniform distribu-
tion.

A version of this architecture is what we call the “Base-
line” model. Later, we deepened the model, keeping
the same general architecture, and added more channels
to the convolution layers. We experimented with shal-
lower and deeper fully-connected prediction layers after the
conv-relu-pool sequence, but did not find much im-
provement on a validation set, and we report only on the
models which were followed by a single linear and softmax
layer.

We also trained a “FullConv” model which adds an addi-
tional conv-relu-pool sequence until the image is 1 x 1
with 512 channels. Then, it’s flattened, passed through a
linear layer, and reshaped, just like before.

We compare our results to a state-of-the-art pre-trained
YOLOvVS model.

4.1. Loss function

First we used cross-entropy loss, averaged over all the
pixels. But the resulting model predicted that every pixel
was part of the background with probability 1. We suspect
this is because the license plate generally makes up a small
part of the image. A few samples from our data are shown in
Figure 1 to illustrate this point. This means that the model
trained using cross-entropy loss still achieved high accuracy

because the license plate is so small compared to the rest of
the image.

To fix this issue, we came up with a custom loss func-
tion that applied cross-entropy loss to the background and
an exaggerated loss to the license plate. Fix an image x and
let y; ; be the two-dimensional, one-hot vector that repre-
sents the correct class for pixel (4, j). Represent the model
as f, so the model’s predictions for the same pixel are the
two-dimensional vector f(x); ;, whose entries sum to one.
We also write ¥; ;o to refer to the zeroth entry and ¥; ;1 to
refer to the first (and similarly for the predictions). The loss
function we used was:

L(z,y)=A Z log® f(x)ij1 — Z log f ()i j.0-

Yi,j,1=1 Yi,5,0=1

We tested a few different values of the hyperparameter A
on a validation set and ultimately took A = 5. With this
configuration, we found that early checkpoints of the model
generally predicted that most pixels are part of the license
plate (the opposite problem from earlier) but, as training
progressed, the model learned to differentiate better.

There was some instability with this training paradigm:
occasionally, a gradient would propagate that greatly in-
creased the loss. To address this, we implemented gradi-
ent clipping and, to encourage convergence, we used a co-
sine annealed learning rate schedule. We validated all of the
hyperparameters for these approaches, especially the maxi-
mum absolute value for the gradient in each parameter, and
settled on 0.1 for that value. We trained all models for 100
epochs, finding that the training loss seemed to converge
around 80 to 90 epochs, depending on the model size.

We also tried a loss function which increased the gra-
dient corresponding to mistakes on the license plate even
more by replacing log” f(x); j.1 with —log® f(); ;1 in the
above equation, but we found this led to much slower train-
ing. Early checkpoints predicted that the entire image was
part of the license plate, no matter how low we made A
and, once it started distinguishing (around 30 epochs into
training) it was learning much more slowly. This loss func-
tion especially incurred a lot of instability perhaps because
the amount of the gradient that was clipped was larger than
with the log-squared loss, so the gradient that was propa-
gated differed more substantially from the actual gradient
than with log-squared loss.

4.2. Data augmentation

We tried a variety of data augmentation techniques dur-
ing training and validated them on a validation set. The
most basic was to crop and zoom from the original im-
age and adjust the box accordingly. We trained using this
paradigm up to the milestone report. After we had a model
that was performing reasonably well, we tried a variety of
additional augmentation techniques and conducted ablation



Table 1: Accuracy of Different Models

Model CRP Depth Channels Loss A Augmentation A Ay
YOLO (SOTA) - - - - - 0.98 0.99
CNN (baseline) 3 512 XELoss - - 0.94 0
CNN 3 512 log? 3 - 0.91 0.86
CNN 3 512 log? 5 - 0.89 0.93
CNN 3 512 log? 8 - 0.83 0.97
CNN 3 512 log® 5 - 0.71 0.95
CNN 3 1024 log? 5 - 0.91 0.93
CNN 3 1024 log? 5 Gaussian blur 0.91 0.96
FullConv 4 512 log? 10 - 0.05 1

tests for each of them. We tried the augmentations one by
one, training for 100 epochs, even if they hadn’t converged
at the end.

Random Photometric Distort. We applied this transfor-
mation, which jitters contrast, saturation, hue, brightness,
and also randomly permutes channels, with probability 0.3.
This augmentation reduced the accuracy of the model on
the validation dataset, so we did not include it in the final
model. We expect this happened because color is a valuable
and relevant piece of information for a model predicting the
location of a license plate—most of the license plates in the
dataset are white-ish. Based on this test, we expect that the
best performing model is using that information to identify
the license plate.

Random Horizontal Flip. We also tried randomly flip-
ping each image with probability 0.3 but this also reduced
the model’s accuracy on the test dataset. Applying similar
reasoning, we hypothesize that the model might be relying
on information about the text on the license plate that be-
comes harder to represent when we flip the license plate.
For example, all of the license plates use Arabic numerals,
so a model which has to identify the flipped numbers as well
must be able to legibly interpret twice as many characters,
and training it might take longer.

Gaussian Blur. We added a Gaussian blur witha 5 x 9
kernel and a standard deviation randomly chosen between
0.1 and 5. This augmentation improved the model’s per-
formance on the validation set, and we imagine it helped
the model learn more stable representations related to shape
and color rather than overfitting on the training set.

Because of these results, the final model we trained only
used Gaussian blurring on the training data, in addition to
the random crop, which resized the image to 320 x 320.

4.3. Hyperparameter tuning

Effective hyperparameter tuning was important for op-
timizing the performance of our training routine. Above,
we’ve referenced a few places where we used hyperparame-
ter tuning and, in this section, we explain in more detail how

we arrived at the best hyperparameters for our final model.
Specifically, we employed a combination of grid search and
random search strategies to identify the best set of hyper-
parameters. The key hyperparameters tuned included the
learning rate, weight decay, batch size, and the parameter A
used in our custom loss function.

The learning rate was tested over a logarithmic scale
from 107° to 102, weight decay values ranged from 106
to 1073, We also tried a variety of batch sizes, but generally
just used the highest value that our GPU configuraiton could
support. For the hyperparameter A in our loss function, we
tested values from 1 to 10. Each set of hyperparameters was
validated on a hold-out validation set, and the performance
was measured using accuracy and cross-entropy loss. We
chose, by hand, the hyperparameters corresponding to the
highest accuracy and cross-entropy loss, breaking ties to fa-
vor simplicity (e.g. lower values of \).

The final model was trained with a learning rate of 1073,
weight decay of 10~%, and a batch size of 512. We also
chose A\ = 5 to balance the background and the license plate
predictions.

4.4. Evaluation metrics

We used three metrics to evaluate the performance of
each model: the custom loss function described earlier and
the accuracy of pixel predictions, after rounding, restricted
to the license plate and the background. That is, we define
two accuracy metrics: the overall accuracy

1
3202 Z H{round(f(2)i,j,0) = ¥ij0}
(]

.A(x,y) =

and the on-plate accuracy,

Ar(ary) =

Zz’, 7 Yij,1
Here, 1 is the indicator function and, of course, “round”
rounds the probability to the nearest integer, breaking at 0.5.
We evaluated each of these metrics on the training and vali-
dation set at each epoch and on the test set every ten epochs.

> 1{round(f(z)i 1) = 1}.

Yi,j,1=1


http://pytorch.org/vision/master/generated/torchvision.transforms.v2.RandomPhotometricDistort.html
http://pytorch.org/vision/master/generated/torchvision.transforms.v2.RandomHorizontalFlip.html
http://pytorch.org/vision/master/generated/torchvision.transforms.v2.GaussianBlur.html

5. Results & Discussion

We report the accuracy of each of the models we trained
in Table 1. The acronym “CRP” in CRP Depth stands
for “Conv, ReLLU, Pool” and refers to the number of those
blocks that we had in the model. The “Channels” column
records the number of channels in the image after the fi-
nal CRP block. The three loss functions referenced are
XELoss which is the vanilla cross-entropy loss, log? which
corresponds to £(x,y), and log® which is £ with the log?
term replaced with — log3. Our best model had an on-
plate accuracy A; = 0.96, which is just slightly lower than
YOLOVS5’s on-plate accuracy .A; = 0.99, but ours is trained
from scratch on less than 1% of YOLOv5’s data. We do
not believe our model over-fitted to the training data, as our
training loss and test loss curves are quite similar, as shown
in Figure 5, which can be found in our paper’s appendix.

5.1. Saliency Maps

For qualitative analysis of our results, we analyze
saliency maps of success and failure examples to see which
pixels were most influential in our model’s output. In Fig-
ure 3, we depict 4 examples where our model successfully
covered the license plates. The license plate’s character fea-
tures were highly influential for our model when detecting
license plates, as the pixels outlining the structure of let-
ters and numbers on the license plate are the brightest in
our saliency map. For lower quality images where the li-
cense plate characters are not as clear such as the third row
of Figure 3, the model placed more emphasis on pixels sur-
rounding the license plate, such as the contract between a
bright license late and a dark car. For the fourth row image,
the pixels on the edge of the license plate (particularly the
left edge) were more salient than the characters.

Judging from most of our saliency maps, color was not a
salient feature for detecting a license plate. One reason for
this is many of our license plates are white, and many im-
ages from our dataset are also taken from a parking garage
exit, where there is a white access barrier arm that is very
close in color to the license plate in many of our images (as
shown in the first row of Figure 3). So, our model needed
to distinguish from features other than color.

5.2. Failure Case Examples

Figure 4 shows examples where our model failed to fully
detect and cover license plate information in an image. In
most error cases, the model either 1) only covered part of
the license plate or 2) did not cover the license plate at all.

From these failed examples, we experimented with the
threshold for generating our red mask to cover up license
plate information. Our model outputs a probability between
0 to 1 for each pixel, representing whether it believes the
pixel is part of the background or not. If the probabil-

ity is less than 0.1, the pixel is masked with red. Oth-
erwise, it is not masked. We used a threshold of 0.1 be-
cause in most cases it provided a good balance of covering
the license plate while not covering other parts of the vehi-
cle/background that were not part of the license plate.

However, as the examples in Figure 4 show, 0.1 was not
always a suitable threshold. Our first row shows a lower-
quality image, where only part of the license plate was cov-
ered. With a slightly higher threshold of 0.2, the entire
license plate was covered (as well as some of the back-
ground). For the examples on the second and third row,
the license plates were yellow and red respectively, which
contrast to the mostly white license plates in the dataset.
In these cases, we needed to adjust our threshold to 0.4 or
more to fully cover the license plate, and this introduced
noise where parts of the car that were not part of the license
plate were also covered.

6. Conclusion & Future Works

Even for a paper like this which is seemingly “less” prob-
lematic because it does not engage with questions of iden-
tity, the coloniality of computer vision is inescapable. As
evidenced by our inability to trace the provenance of our
dataset, we are reliant on the same systems of surveillance
and monitoring that the field has benefitted and profited
from.

One reason that working with small datasets and mod-
els is interesting is because it is the opposite paradigm of
much modern Al development that tends to prioritize large
datasets and big models with stacks of compute resources.
In the end, by carefully choosing hyperparameters, model
architectures, data augmentation, and a loss function, we
were able to train a model on a small dataset that performs
nearly as well as state of the art models trained on COCO.
We hope to make a case for the legitimacy of similar ap-
proaches.

At the same time, small is not necessarily better. Others
have used the phrases “well-defined” and “narrow” to char-
acterize tasks that the community should focus on [8], but
it’s quite challenging to define what counts as a “narrow”
task in Al development. In our example, the weights of the
model we trained could be transferred to a system that, cou-
pled with OCR, can be used to recognize license plates and
aid police.

We conclude, then, with more questions than answers:
Future work on this problem should seek to account for the
social contexts of algorithmic systems, moving beyond ac-
curacy and loss to ask questions about power and what kind
of just and fair societies we want to build. Rather than being
outside the realm of computer science, these questions are
central and existential.



Model Result

Original Image

Figure 3: Successfully Covered License Plate Examples: model result and saliency maps

7. Contributions & Acknowledgements

Parth and Patricia collaborated together on all parts of
the project, so there is a lot of overlap and it’s difficult to
separate out the components of the project into things they
did individually. Here is our best approximation: Parth de-
signed the model architecture, loss function, tuned the hy-
perparameters, and wrote Sections 1, 4, and 6, along with
small pieces of the others. Patricia conducted the literature
review, generated saliency maps for the results, so wrote
Sections 2, 3, and 5.

We are tremendously grateful to all the CS 231N course
staff for a lovely course with interesting lectures, guest
speakers, and assignments. We learned so much and are
proud to display some of those learnings here!

References
[1] S. Browne. Dark matters: On the surveillance of blackness.

Duke University Press, 2015. 1

[2] J. Buolamwini and T. Gebru. Gender shades: Intersectional
accuracy disparities in commercial gender classification. In

[3

[4

[5

[6

[7

[8

[9

]

]

]

]

—

—_—

—

Conference on fairness, accountability and transparency,
pages 77-91. PMLR, 2018. 1

R. Clarke. Information technology and dataveillance. Com-
munications of the ACM, 31(5):498-512, 1988. 1

N. De Lissovoy. Decoloniality as inversion: decentring the
west in emancipatory theory and pedagogy. Globalisation,
Societies and Education, 17(4):419-431, 2019. 1

L. M. T. M. de Souza and A. P. M. Duboc. De-universalizing
the decolonial: between parentheses and falling skies.
Gragoatd, 26(56):876-911, 2021. 1

S. Du, M. Ibrahim, M. Shehata, and W. Badawy. Automatic
license plate recognition (alpr): A state-of-the-art review.

IEEE Transactions on circuits and systems for video tech-
nology, 23(2):311-325, 2012. 2

V. Eubanks. Automating inequality: How high-tech tools
profile, police, and punish the poor. St. Martin’s Press, 2018.
1

T. Gebru and P. Torres. The TESCREAL bundle: Eugenics
and the promise of utopia through artificial general intelli-
gence. First Monday, 29(4), Apr. 2024. 5

R. Grosfoguel. A decolonial approach to political-economy:

Transmodernity, border thinking and global coloniality. Kult,
6(1):10-38, 2009. |



Model Result
threshold = 0.1

Model Result
threshold = 0.2

Model Result
threshold = 0.1

Model Result
threshold = 0.4

Original Image

Model Result
threshold = 0.1

Model Result
threshold = 0.3

Original Image

Saliency Map

Model Result

Saliency Map Overlay

Saliency Map Saliency Map Overlay

threshold = 0.5

Model Result

Saliency Map

Saliency Map Overlay

threshold = 0.4

Figure 4: Examples of Errors from our best model when threshold was set to the default value of 0.1, along with our results
when we changed the threshold

[10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

R. Grosfoguel. Decolonizing Western Universalisms: De-
colonial Pluri-versalism from Aime Cesaire to the Zapatistas
1. In Towards a Just Curriculum Theory, pages 147-164.
Routledge, 2017. 1

T. E. Hubbard. Automatic license plate recognition: an ex-
citing new law enforcement tool with potentially scary con-
sequences. Syracuse Sci. & Tech. L. Rep., page 1, 2008. 2
B. Jefferson. Digitize and punish: Racial criminalization in
the digital age. U of Minnesota Press, 2020. 1

D. Lyon. Identifying citizens: ID cards as surveillance.
Polity, 2009. 1

H. O’Brien. “The New Jim Code” — Ruha Benjamin on racial
discrimination by algorithm, Sept. 2019. 1

M. K. Scheuerman, A. Hanna, and E. Denton. Do Datasets
Have Politics? Disciplinary Values in Computer Vision
Dataset Development. Proc. ACM Hum.-Comput. Interact.,
5(CSCW2), oct 2021. 1

M. Schlosberg and N. A. Ozer. Under the watchful eye:
The proliferation of video surveillance systems in Califor-
nia. 2007. 1

E. Selinger and D. Durant. Amazon’s Ring: Surveillance as
a Slippery Slope Service. Science as culture, 31(1):92-106,
2022. 1

J. Shashirangana, H. Padmasiri, D. Meedeniya, and C. Per-
era. Automated license plate recognition: a survey on meth-
ods and techniques. IEEE Access, 9:11203-11225, 2020. 2

[19]

[20]

(21]

(22]

(23]

D. V. Shringarpure. Vehicle Number Plate Detection and
Blurring using Deep Learning. PhD thesis, Dublin, National
College of Ireland, 2023. 2

A. Startups. Vehicle registration
plates dataset. https://universe.
roboflow.com/augmented-startups/
vehicle-registration-plates-trudk,
2022. visited on 2024-05-14. 2

S. Vig, A. Arora, and G. Arya. Automated License Plate De-
tection and Recognition Using Deep Learning, pages 419—
431. 01 2023. 2

L. Xie, T. Ahmad, L. Jin, Y. Liu, and S. Zhang. A new cnn-
based method for multi-directional car license plate detec-
tion. IEEE Transactions on Intelligent Transportation Sys-
tems, 19(2):507-517, 2018. 2

Z. Zeng, P. Gao, and S. Sun. License plate recognition sys-
tem based on transfer learning. Lecture Notes in Electrical
Engineering, 2018. 2

Jun


 https://universe.roboflow.com/augmented-startups/vehicle-registration-plates-trudk 
 https://universe.roboflow.com/augmented-startups/vehicle-registration-plates-trudk 
 https://universe.roboflow.com/augmented-startups/vehicle-registration-plates-trudk 

Appendix

training loss

lambda =5 loss ambda=8loss = lambda =3 loss lambda =5 test_loss
lambda = 8 test_loss == lambda = 3 test_loss

0.8
0.6
0.4

0.2

0 20 40 60 80

Figure 5: Loss curves for training (solid lines) and test
(dashed lines) are very similar, sugesting no overfitting on
the training data



