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Abstract

This paper presents a method for robotic cloth
layer classification using a custom two-finger grip-
per equipped with DenseTact 2.0 sensors. The
gripper performs a rubbing motion to collect op-
tical flow and net wrench data, processed by a
transformer-based neural network. A comprehen-
sive dataset of 300 trials was also collected and
made open-source available along with this paper.

Our experiments evaluated different model ar-
chitectures, showing that a transformer model with
optimizer state resets achieved the highest accu-
racy of 78.7%. Including net wrench data did
not significantly enhance performance, highlight-
ing the effectiveness of optical flow features in this
task. Code for this project is available in this
GitHub repository. The raw video and wrench data
as well as pre-processed data is available in this
Google Drive Folder.

1. Introduction

In recent years, the advancement of robotics has
extended beyond traditional industrial settings to
encompass tasks that require interaction with flexi-
ble and deformable materials, such as cloth manip-
ulation. The ability for robots to effectively inter-
act with fabrics holds significant promise in vari-
ous domains, including domestic chores like fold-
ing laundry and assistive tasks in elderly care [16].
Moreover, in manufacturing, robots capable of han-
dling cloths can revolutionize everyday processes.
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However, despite the progress in robotics, cloth
manipulation remains a challenging frontier. Fab-
rics exhibit complex dynamics, high degrees of
freedom, and severe self-occlusions when folded
or crumpled, posing significant obstacles for tradi-
tional robotic manipulation methods. Conventional
approaches often rely on electrical signal process-
ing or mechanical system identification [8], which
may struggle to adapt to the nuanced and variable
nature of cloth interactions.

To address these challenges, this research
project focuses on leveraging cutting-edge technol-
ogy at the intersection of hardware and software.
Specifically, we aim to develop a neural network-
based solution to determine the number of layers of
cloth between two DenseTact sensors mounted on
the fingers of a custom robot gripper. DenseTact
sensors, pioneered in Prof. Monroe Kennedy’s lab,
have the unique ability to capture the subtleties of
cloth interactions by utilizing optical tactile sens-
ing to detect shear forces and optical flows based
on visual gel deformations.

In summary, this research endeavor aims to push
the boundaries of robotic manipulation capabilities
by tackling the intricate task of cloth manipulation
using advanced sensing technology and deep learn-
ing methodologies. Through this interdisciplinary
effort, we aspire to not only advance the field of
robotics but also contribute to real-world applica-
tions such as elderly care and manufacturing.



1.1. Problem Statement

This paper addresses the integrated task of iden-
tifying the number of layers of cloth between two
robotic fingertips by using optical tactile sensor in-
put. The components of the problem statement for
this task are as follows:

¢ Design of a Robotic Gripper: The soft, de-
formable cloth must be grasped by a robotic
gripper to allow for classification. We assume
that the gripper interacts with the cloth in a
constrained environment, where the cloth sits
on a flat table, and the gripper can approach
the cloth from any angle. To accomplish this,
a novel two-finger gripper using small motors
and DenseTact sensors was designed, as ex-
plained in 3.1. This gripper is capable of 2-
axis motion and can perform a rubbing mo-
tion between its fingers to allow for cloth layer
classification.

¢ Data Collection: For this task, the data must
be manually collected using the new gripper
design. For this study, labeled classes for O
layers (no cloth between the fingers), 1 layer,
and 2 layers of cloth between the class were
collected. This is further explained in 4.3

* Layer Classification: The cameras in the
DenseTact fingers will record the deformation
in gel surface of the sensors over the time pe-
riod of the rubbing motion. To classify the
layers of cloth between the fingers, the optical
flow data and the force data from the rubbing
motion will be inputted into a neural network
(coded in PyTorch [12]), which will output a
label corresponding to the number of layers of
cloth.

2. Related Work

Building upon the principles outlined in seminal
papers such as "DenseTact: Optical Tactile Sensor
for Dense Shape Reconstruction” and “DenseTact
2.0: Optical Tactile Sensor for Shape and Force Re-
construction,” we propose to utilize RGB videos of
visual gel deformations from DenseTact sensors as
training data for our neural network model [4, 6].

In the realm of image classification, ResNet has
consistently demonstrated high accuracy by lever-
aging residual connections to address the vanish-
ing gradient problem, enabling the training of very
deep networks [9, 11]. Despite this, recent ad-
vancements have shown that transformers, which
utilize self-attention mechanisms, can surpass tra-
ditional CNNs in various computer vision tasks
[15, 10]. An innovative technique that further en-
hances the performance of transformers is the pe-
riodic resetting of the optimizer during training,
which helps in maintaining training stability and
improving convergence [1, 2].

While existing research, such as the work cited
in “Learning to Singulate Layers of Cloth using
Tactile Feedback,” has explored cloth manipulation
using alternative sensor modalities like magnetic
ReSkin sensors [14], our approach distinguishes it-
self by focusing on optical tactile sensing. Ad-
ditionally, unlike previous attempts that may have
struggled with cloth layers beyond a single layer,
we aim to develop a robust solution capable of han-
dling multiple layers of cloth, thus broadening the
applicability of robotic cloth manipulation.

3. Hardware Setup

The hardware developed for this research
project is a two-finger robotic gripper. The com-
ponents of the gripper communicate via ROS2 to
perform robotic cloth layer classification.

3.1. Two-Finger Gripper Design

To enable the robotic manipulation of cloths, a
custom two-finger gripper was designed (as shown
in Figure 1. For each finger, two lightweight and
compact Dynamixel XL.330-M288-T motors are
used to actuate the joints of the fingers. To emu-
late a finger pad, a DenseTact 2.0 sensor is attached
on each opposing finger. An OpenRB-150 Arduino
compatible embedded controller is used to control
and actuate the motors in a rubbing motion. Cus-
tom 3D printed mounts were designed to integrate
the motors and DenseTact sensors together. A sin-
gle computer ran the central code for controlling
the robotic system that also provided power to the



motor control board as well as the DenseTact cam-
eras and LEDs.
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Figure 1. Custom Two-Finger Gripper: A custom grip-
per integrating the DenseTact sensors with Dynamixel
motors and 3D printed parts was designed to perform a
rubbing motion between two DenseTact sensors together
to gather optical flow from a video sequence.

3.2. Densetact 2.0

The DenseTact 2.0 is attached atop the fingers
of the gripper, which provide a soft, deformable
gel medium and integrated camera and RBG LEDs
for optical flow and force sensing. The Dense-
Tact 2.0 was chosen over other designs such as the
DenseTact 1.0 [4] and the DenseTact Mini [5] be-
cause of its compact design, yet high resolution and
hemispherical shape. The DenseTacts can be seen
mounted in Figure 1.

The DenseTact 2.0 sensors used for this task in-
clude a randomized pattern. This pattern that was
stamped on the sensors during fabrication and al-
lows for trackable features during the cloth manip-
ulation. Since many cloths are themselves very
smooth with few distinguishable features, having
the pattern allows for collecting feature-rich video
data where the optical flow (expanded on in 4.1 be-
tween frames is particularly informative due to the
pattern’s movement. Figure 2 shows an image of
the camera stream of a the DenseTact 2.0 that de-
picts the pattern on the gel surface.

In addition to the pattern that helps with detect-
ing the gel deformations, calibrating the sensors
following the method outlined in [6] allow for force
sensing based on depth image-based point cloud

Figure 2. Patterned DenseTact 2.0: The DenseTact is
patterned to provide rich trackable features for when
cloths are rubbed against each other. When the Dense-
Tact’s soft gel is pressed, these features move and can be
visually and programatically tracked.

generation. Combining the data from both the opti-
cal flow and forces during a recorded rubbing mo-
tion with either 0, 1, or 2 layers of cloth between the
fingers allow for classifying the number of layers
of cloth. This calibration allows for the net 6-axis
wrench estimation, as explained in 4.2.

4. Methods

For this research, two outputs from the Dense-
Tact were collected to be used as inputs to the net-
work for training: optical flow, and 6-axis wrench.

4.1. Optical Flow

As shown in Figure 2, using a randomized pat-
tern allows for a feature rich image even when
the objects that are being manipulated are rather
smooth. This enables optical flow to be an effec-
tive method of classifying the number of layers of
cloth between the two fingers. For this method, the
Farnebéck dense optical flow method [7] was used
to estimate the motion between two frames. Using
this method outputs a matrix, where each element
(x, y) is a 2D motion vector (u, v) that indicates the
displacement of the points between the consecutive
frames. Each vector (u, v) at the every position in
the matrix describes how much the pixel at (X, y)
has moved in the x-direction (u) and the y-direction
(v). To visualize this, we can plot the optical flow in



a quiver plot, where the magnitude and direction of
the arrows at each pixel indicate the displacement.

Figure 3. Dense Optical Flow Quiver Plot: The above
images are subsampled by 32 to provide visual clarity in
the plots. The image shows the quivers when the fingers
are rubbed against each other. There are high magnitude
vectors at the edges of the press, while there are 0 vectors
at the center and edges. The angle of the vectors indicates
the direction of the rub.

4.2. 6-Axis Wrench

In addition to optical flow data, net force and
torque data is potentially informative of the in-
teractions between the DenseTact sensors and the
cloth. Calibrating DenseTact sensors following the
method in [6] allows for real-time 6-axis wrench
estimation (I, Fy, I, 7., 7y, T;) for a given RGB
image frame. Once calibrated, feeding an RGB im-
age from the DenseTact in a forward pass through
the calibrated network returns the wrench estima-
tion. This data was collected per image frame and
recorded for every trial in the dataset.

4.3. Dataset Collection

For conducting this task, a custom dataset was
collected to provide data to train the classifier on.
The dataset for this research comprises RGB videos
of visual gel deformations captured by the Dense-
Tact sensors, as well as 6-axis wrench data con-
sisting of force and torque data. This data was
recorded using a rubbing motion between the two
fingers of the gripper. Real-time video streams of
the DenseTact were collected along with the 6-axis

wrench data. This provides a comprehensive rep-
resentation of the tactile interactions between the
sensors and various cloth configurations. Ground
truth labels indicating the number of cloth layers
in each video were noted during data collection to
facilitate model training and evaluation. Overall,
a total of 100 labeled trials for each cloth layer
class were collected, giving a total of 300 exam-
ples across the entire dataset. Each video trial was
recorded at 10Hz, and sent for pre-processing be-
fore training. This data is made available in this
Google Drive Folder for open-source use.

4.4. Data Pre-Processing

In order to provide meaningful data to the net-
work, the optical flow data was sub-sampled in fre-
quency so that the magnitudes and directions of the
flow vectors were sufficiently large. This is neces-
sary because optical flow data is recorded per con-
sequent frames, and the camera runs at 10 FPS,
meaning that between two frames at that high of
a frequency, there will not be enough of an image
difference for the optical flow calculation to pro-
vide a meaningful result. After some experimenta-
tion with the frequency and visual inspection of the
vectors, optical flow calculations were performed
at 2Hz since that provided a high enough frequency
where the flows accurately represented the rubbing
motion, but also was a low enough frequency where
the magnitudes of the flow were large enough to be
useful in a network. To the same effect, the opti-
cal flow measurements were average pooled by 6
(a window of 36 pixels). After pooling, the dimen-
sion of the optical flow inputs was 128 by 170 by
2, indicating the image height, image width, and
the number of channels (magnitude and direction).
To ensure consistency between the inputs, the net
6-axis wrench data was also collected at 2Hz.

4.5. Network Architecture

The network architecture proposed in Figure 4
is designed to classify layers of cloth using a com-
bination of optical flow and force data. At a high
level, the proposed architecture uses feature extrac-
tors for the optical flow data and the wrench data,
and the following transformer takes in these fea-
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Figure 4. Network Architecture for Cloth Layer Classification: The process begins with an input RGB image, from
which optical flow data and 6-axis wrench data are simultaneously extracted. The extracted features are then combined
and fed into a transformer encoder, which integrates the spatiotemporal and tactile information. The final classification
is performed using a fully-connected layer followed by a softmax layer, outputting the probabilities for 0, 1, or 2 layers

of cloth.

tures as well as their temporal representation to
classify the inputs as one of the three classes, noted
by the highest probability after the softmax func-
tion. For this work, cross entropy loss and an Adam
optimizer were used since they have shown to be
effective in similar tasks [13]. The pre-processing
steps to generate the optical flow and wrench data
are described in detail in Section 4.4

4.5.1 Optical Flow Feature Extraction

The optical flow data, derived from the input RGB
images, undergoes feature extraction to capture es-
sential motion patterns that signify cloth layers.
This step is crucial because the optical flow pro-
vides rich spatiotemporal information about the
surface interactions over time. The optical flow
feature extractor was designed using either a CNN
or a ResNet backbone. Using a CNN backbone
over a ResNet backbone provided computational
efficiency since the model is smaller, but a ResNet
backbone may help to mitigate vanishing or ex-
ploding gradients, allowing for a deeper network
to be trained [11]. The affect of this design choice
is described in detail in 5.2.

4.5.2 Force Feature Extraction

At the same time as optical flow data collection,
features of the 6-axis wrench data, which measure
net forces and torques in three dimensions, are also
extracted. This tactile information helps in under-
standing the physical properties of the cloth, such
as its stiffness or thickness, which are not easily
discernible from visual data alone. Adding this fea-
ture can help to distinguish between classes that
look more visually similar. The force feature ex-
tractor designed here was simply designed with
fully connected layers since the input space per
frame was small (only 6 values per frame) com-
pared to the optical flow data, and hence further en-
coding was not deemed necessary.

4.5.3 Transformer Encoder

The extracted features from both optical flow and
force data are then fed into a transformer encoder.
The transformer is well-suited for this task because
it can effectively capture long-range dependencies
and contextual information between different parts
of the input data. By doing so, it integrates the
spatiotemporal and tactile features into a coherent
representation, allowing the network to understand



the image feature time-dependence when a rubbing
motion is conducted. The transformer used here
was designed with a 64 dimensional input/output
embedding to balance feature representation and
efficiency, 8 attention heads for the multi-headed
attention mechanism to allow the model to attend
to many different parts of the input sequence si-
multaneously, 3 encoder layers to provide enough
depth to capture complex patterns, and a 2048 di-
mensional feedforward network to ensure that the
model has enough capacity to learn complex trans-
formations [2].

4.5.4 Classification

The integrated features from the transformer are
passed through a fully-connected layer, which con-
denses the information into a form suitable for clas-
sification. Finally, a softmax layer outputs the
probabilities of the input belonging to each class (0,
1, or 2 layers of cloth). The highest value among
the softmax outputs (corresponding to the highest
probability class) was chosen as the predicted class
during evaluation.

4.5.5 Architecture Considerations

This architecture is particularly effective for the
cloth layer classification problem due to its abil-
ity to integrate multiple modalities of data (opti-
cal flow and wrench) and leverage the strengths
of transformer models in capturing complex rela-
tionships within the data. Optical flow provides
detailed motion information, which is crucial for
understanding the dynamics of cloth interaction.
Meanwhile, wrench data offers complementary tac-
tile insights that enhance the model’s ability to dif-
ferentiate between subtle variations in cloth layers.

Using a transformer encoder is advantageous be-
cause it excels in handling sequences and learning
contextual dependencies, which are critical when
working with time-series data like optical flow.
This approach is more effective than alternatives
that might only use CNNs or single-modal data, as
it combines the strengths of visual and tactile sens-
ing to improve classification accuracy.

5. Experiments
5.1. Encoder Validation

Before designing the full transformer network
classifier, an encoder-decoder reconstruction study
was completed to determine if the optical flow fea-
ture extractor encoder captures the important la-
tent features in each image. Iterating through a
number of different architectures, an architecture of
four consecutive convolutional layers followed by
ReLU activations was able to achieve near-perfect
reconstruction, as shown in Figure 5. This study
validates that this encoder choice is effectively rep-
resents the latent features of the input images, and
hence this architecture was used for building the
transformer [10].

Input

|

Output

Figure 5. Encoder-Decoder Reconstruction: A feature-
rich image heatmap is nearly perfectly reconstructed af-
ter passing through an encoder-decoder architecture. The
input image is passed through the encoder-decoder archi-
tecture and is reconstructed in the output image.

To further validate that the encoder was work-
ing well, a sanity check study on just differentiating
two classes was conducted. For this, all the trials
corresponding to the 1 layer class were removed
from the dataset. Then, the encoder was given a
75-25 split was done to divide the dataset into train
and test, and the encoder’s parameters were trained
on the training set. When evaluated on the test set,
the encoder achieves 100% accuracy when classi-
fying between just two classes. The T-SNE plot [3]
in Figure 6 shows that there are two distinct sets
between the two classes, meaning that it should be
very easy to draw a decision boundary between the
classes. From this study, we validate that the en-
coder design is effective and can possibly extend to



Optimizer State Reset

Classifier Inputs Architecture Backbone (Every 50 Epochs) Epochs Trained Test Accuracy (%)
Naive CNN Optical Flow CNN No 500 61.3
Transformer Optical Flow CNN No 250 42.7
Transformer Optical Flow CNN Yes 250 752
Transformer Optical Flow CNN Yes 500 78.7
Transformer Optical Flow ResNet Yes 250 733
Transformer Optical Flow + Net CNN Yes 500 78.7

Wrench

Table 1. Comparison of Classifiers with Various Inputs and Architectures

work on the desired three class problem.

t-SNE of Encoder Feature Space
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Figure 6. Encoder Validation T-SNE Plot - 2 Classes:
This T-SNE Plot of the latent vector output from the opti-
cal flow feature extractor shows distinct sets between the
two classes.

5.2. Ablation Study

To build on top of the encoder design from 5.1,
an ablation study was conducted to evaluate vari-
ous approaches to the classification problem. Our
approaches focus on exploring a wide set of design
choices while balancing model complexity. The re-
sults of this study are displayed compactly in 1, and
are further elaborated on here.

5.2.1 Naive CNN Model

The naive CNN model was used to test how the raw
optical flow feature extractor performed on the 3
class classification problem. As explained above
in 5.1, this CNN model was designed with four
consecutive convolutional layers with ReLU acti-
vations. With a 75-25 train test split, this model
achieved an accuracy of 61.3% on the test set.

5.2.2 Transformer Model

Using the full architecture proposed in Figure 4
without the wrench data input resulted in unstable
training, noted by Figure 7. When evaluated on the
test set, this model achieved an underperforming
42.7% accuracy because of the instability during
training.

Training Loss over Epochs

—— Training Loss

0 50 100 150 200 250
Epochs

Figure 7. Transformer Loss without Optimizer Re-
set: Initial results from the transformer encoder architure
show unstable training from the loss function.

To improve training stability, optimizer state re-
setting every 50 epochs was used to reset the state
of the Adam optimizer [1]. This resulted in more
stable training, as shown in Figure 8. This model
achieved 75.2% when trained for 250 epochs, and
when trained for 500 epochs, the accuracy im-
proved to 78.7%. Figure 9 shows the 3 class T-
SNE plot for this model, where it is evident that the
latent vector spaces between the 2 layer class and
the other classes is easily distinguishable. How-
ever, distinguishing between the 0 layer class and
the 1 layer class is not possible, making it very dif-
ficult to draw a decision boundary between all the
classes.



Training Loss over Epochs

—— Training Loss

o 50 100 150 200 250
Epochs

Figure 8. Transformer with Optimizer Reset: Using
optimizer reset improves the smoothness of the loss.
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Figure 9. Transformer T-SNE - 3 Classes: Feature
spaces shows that the 0 and 1 classes are difficult to dis-
tinguish, while the 2 layer class is easily distinguishable.

5.2.3 ResNet Optical Flow Feature Extractor

The optical flow feature extractor backbone was
also tested with ResNets instead of CNNs. Using
the ResNet backbone increased training time be-
cause of the model complexity, limiting training to
250 epochs. This resulted in 73.3% accuracy on the
test set, indicating that the ResNet backbone did not
have a benefit over the CNN backbone even though
the model is more complex, highlights the trade-off
between model complexity and training feasibility.

5.2.4 Multi-Input Model

After completing comprehensive studies on opti-
cal flow, we tested adding net wrench data to the
model. The full architecture in Figure 4 was used,
incorporating both optical flow and net wrench in-
puts. T-SNE plots (Figure 9) showed nearly in-

distinguishable features between the 0 and 1 layer
classes. Despite this, the model’s accuracy re-
mained at 78.7%, indicating that the additional
wrench data did not improve performance com-
pared to using only optical flow data.

6. Conclusions and Future Extensions

From the experimental results presented in the
previous sections, several key results and conclu-
sions can be drawn. First, optimizer state resets
help to stabilize training and increase the perfor-
mance of transformer models for this classification
task. Second, transformer models, when properly
tuned, outperform naive CNN models, demonstrat-
ing their potential for complex classification tasks
involving optical flow data and time dependence.
Third, the inclusion of additional data modalities
(Net Wrench) does not always guarantee improved
performance, emphasizing the need for careful fea-
ture selection. Finally, the models designed in this
study are capable of distinguishing the O layer class
from the 2 layer class, but are not capable of distin-
guishing the 0 layer class from the 1 layer class.

While a classification accuracy of nearly 80% is
promising, there are a few potential extension ar-
eas possible for improving this result. First, exper-
imenting with different types of rubbing motions
may help to improve feature differences. As de-
picted in the T-SNE plots, the feature spaces for
the O layer class and the 1 layer class are very sim-
ilar, where a different rubbing motion may help
to improve differentiating the feature spaces. One
such method would be to incorporate a circular rub-
bing motion rather than the linear rubbing motion,
as that could provide more feature rich data when
comparing the 0 layer class to the 1 layer class.

In addition, exploring how these models extend
to a larger output space, such as for classifying 3
and 4 layers of cloth is also potentially interesting
and useful. To the same effect, using multiple dif-
ferent types of cloths to test the model’s generaliz-
ability to other cloth types is also an important next
step.
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