
MatchPoint: Your Computer Vision Tennis Coach

Evan Cheng, Rishi Dange, Isaac Gorelik
Stanford University

450 Jane Stanford Way, Stanford, CA 94305
evcheng@ rdange@ gorelik@stanford.edu

Abstract

MatchPoint is a system that helps amateur tennis play-
ers identify the professional tennis player whose forehand
tennis stroke most closely matches their own. This helps
amateurs discover meaningful counterparts to model their
game off of rather than an arbitrary popular player they
may know. For each clip comprising of a single forehand
shot, we extract four frames which represent the key parts
of a tennis stroke. The data then undergoes processing via
pose estimation to isolate the important mechnical aspects
of each tennis stroke. Beyond the baesline of k-Nearest
Neighbors implemented with L2 distance to match inputs
to counterpart players, we explored a variety of approaches
including Forest Random Forest, Simple Neural Network,
Deep Network, and Convolutional Neural Network archi-
tectures. We found that given a new clip of a professional
player that is in our training set, we are able to match that
player to themself with 66.66 percent accuracy using the
Deep Network approach. This result is significant given the
inherent basic similarities between tennis strokes and the
fact that the singular correct player can be identified out
of the nineteen players we have in our MatchPoint system
approximately two-thirds of the time.

1. Introduction

1.1. Background, Motivation, and Problem State-
ment

In a highly technical and physical sport that involves
individualized nuances in stroke technique, tennis players
benefit heavily from video analysis of their own strokes
combined with comparisons and analyses with successful
professional counterparts. Therefore, we aim to create a
pipeline that takes short video clips of a user’s forehand
and determines the professional tennis player whose fore-
hand most closely resembles it. In doing so, we will en-
able a richer improvement experience for tennis players to
focus on finding their professional-level technical counter-

parts rather than more famous, trendy, or flashy players
whose strokes might not be the right match for a player to
try to imitate. This approach may be extended to any other
tennis stroke (serve, backhand, volley, slice, etc.), given
appropriate data from professional players. Furthermore,
this pipeline may be applicable to many other sports and
movement-specific applications as well.

The input to the MatchPoint pipeline is an ordered set
of four images taken at the four key frames of a forehand
stroke, which should be extracted from a video of a fore-
hand swing taken from the front, facing the player. For op-
timal results, the images should match the specifications in
Figure 1:

Image 1 Highest wrist position during backswing
Image 2 Lowest wrist position during wrist drop
Image 3 Contact point
Image 4 Conclusion of follow through

Figure 1. Specifications of input images for the MatchPoint
pipeline, with an example of four key frames from a clip of Isaac’s
forehand in 2015

Given four input images of this form, MatchPoint will
identify the professional player (out of the 19 candidate
players in our dataset) whose forehand most closely resem-
bles the input clip. MatchPoint performs this search first
over the per-frame level, identifying the individual profes-
sional frames that most closely matches each of the four
frames provided in the input, and then aggregates these re-
sults to provide a final suggestion on which player to mimic.

1.2. Further Tennis Context

A player’s preferred forehand hitting style can be bro-
ken down into many components, such as their grip on the

1



racket, how wide their base is, how deep the knee bend is,
hip rotation at preparation and contact, non-dominant arm
movement, and most notably, the depth of their elbow bend
at contact. Whether a player hits their forehand with a bent
elbow (called a “double-bend” forehand – notable example
being current world no. 1 Novak Djokovic) or a straight
elbow (called a “straight-arm” forehand – notable example
being former world no. 1 Roger Federer) is a key point of
discussion for tennis players and coaches alike. Interest-
ingly, many amateur players are oblivious to their preferred
elbow bend style, and will simply arbitrarily copy one of the
game’s many greats, which may inadvertently lead their ten-
nis improvement astray. Our hope is that MatchPoint might
help mitigate this issue, and indeed, our results on amateur
video input seems promising. For example, Isaac, shown in
Figure 1, is matched to Holger Rune. Both players employ
a straight-arm forehand and a deep knee bend.

Figure 2. MatchPoint professional counterpart frames for the ama-
teur player, Isaac, shown in Figure 1. Left to right: Andrey Rublev,
Hubert Hurkacz, Holger Rune. With two strongly weighted votes,
the model’s coaching suggestion would be to mimic Holger Rune.
As an aside, note that each input frame is correctly matched to a
frame from the corresponding swing phase.

2. Related Works

There exists limited past work that performs stroke com-
parison between tennis players. Both Bloom et al. [8] in
their 2003 paper and Bacic et al. [5] in their 2022 paper
perform classification by four broad categories (forehand,
backhand, serve, no stroke), while a 2020 paper by Baily et
al. [6] presents a method to compare the joint movements
of different professional tennis players during their serves.
Each uses different methods to distill the essence of a ten-
nis stroke from visual data: Bloom et al. use a bounding
box and low-pass filtering to isolate the overall shape of
the player on the court, and Bacic et al. and Baily et al.
use more modern pose estimation systems of OpenPose and
Alpha Pose, respectively. The performance of the systems
in the two more recent far exceeds the performance of the
Bloom et al. method in large part because use of pose esti-
mation to isolate individual joints on the body is more resis-
tant to biases like player clothing or size that do not reflect
the action on the court.

A 2022 comparative analysis of pose estimation models
by Jo et al [11]. shows that MoveNet Lightning [10] is the

fastest pose estimation model while OpenPose is the most
accurate one, yet by far the slowest in part due to advanced
features like recognizing multiple people within a single
frame. Because these advanced features are not needed
for our dataset and because the accuracy between Open-
Pose and MoveNet Thunder is comparable, we chose to use
MoveNet Thunder which combines most of the accuracy of
OpenPose with most of the efficiency of MoveNet Light-
ning. (All references to MoveNet from hereforth refer to
MoveNet Thunder.) Another 2022 analysis by Washabaugh
et al. [13] showed that MoveNet Thunder was most accurate
for measuring hip kinematics, which is especially important
in the tennis setting because hip rotation is a major differ-
entiator in the strokes of different players.

In terms of classification of players based on image data,
there exist a wide range of methods used, from Baily et
al., which simply relies on Euclidean distance between key
points to perform classification, to Bacic who in a 2016 pa-
per [7] proposes use of an Echo State Network (ESN) for
action shot classification whereby a large, randomly initial-
ized reservoir remains unchanged. There also exist more
canonical neural network approaches like Ganser et al. [9]
and convolutional neural network (CNN) approaches like
those used in Anand et al. [4] and Skublewska-Paszkowska
et al. [12], which show promising results on analysis of ten-
nis action, albeit with much broader and easier-to-achieve
classification goals than ours: to designate tennis shots as
one of five shot types and to distinguish strokes from sim-
ilar racket sports. We adopt the use of Euclidean distance
and k-Nearest Neighbors (KNN) from Baily et al. as our
baseline approach. While the results from Anand et al.
and Skublewska-Paszkowska et al. indicate promise for the
CNN approach, our synthesizing of image data into joint
estimation key points makes the notion of spatial locality
as applied in CNNs more dubious. It is therefore possible
that a deep neural network approach without convolutional
layers would out-perform a CNN in our setting. Therefore,
we construct both simple neural network and CNN archi-
tectures to find the ideal architecture for MatchPoint.

3. Dataset
Among our contributions for this paper is our work col-

lecting data for the forehand dataset, which consists of a to-
tal of 452 forehand frames for 19 professional men’s tennis
players. This data was collected by hand from three large
front-facing forehand compilations on YouTube [1] [2] [3].
To collect the images, we selected a continuous forehand
clip in the video and captured the four key photo frames at
the essential moments of the stroke, as shown in Figure 3.

For training data, we used 5 distinct forehand clips per
player, for each of the 19 players, resulting in a total of 95
clips. Each clip is used to generate the four key forehand
frames, yielding a total of 380 images in the training set.

2



Figure 3. Four key frames of a Carlos Alcaraz forehand swing.
Left to right: 1) highest point of backswing, 2) lowest point of
wrist drop, 3) contact point, 4) conclusion of follow through.

When training our neural model, we used a validation set,
split during runtime, by randomly selecting one of the 5
continuous “clips” (i.e. ordered set of four images) for each
player, and using the remaining four clips per player to train
the model. Our heldout test set consisted of the remaining
18 clips unused by the training set (72 images). Lastly, for
amateur analysis, we used one clip each of our own fore-
hand strokes and an additional old video of Isaac (shown in
Figure 1), and captured the four key frames per shot.

4. Methods

4.1. Keypoint Extraction Using MoveNet

For the purposes of a technical analysis of one’s fore-
hand, an image frame may potentially carry excessive and
unnecessary information, such as the color of a player’s
clothing, the color of the tennis court and their immedi-
ate surroundings, the player’s facial structure, etc. These
unnecessary pixels are at best simply a waste of computa-
tional resources and image processing power, but at worst,
these pixels may become misleading noise which harms our
model’s performance on the task of technical tennis com-
parisons. Therefore, in order to avoid learning the superfi-
cial features unrelated to the technical analysis of a player’s
forehand, we preprocess the stroke image frames to extract
the positions of the 17 biomechanical keypoints (positions
of knees, hips, shoulders, etc) present in the image using
the MoveNet pose detection model [10]. This preprocessing
is done before performing any algorithmic comparisons or
learning techniques. By using keypoints rather than image
data, we extract the most essential information needed about
a player’s swing during that frame, while eliminating much
of the irrelevant information that may cause incorrect pat-
tern matching. Furthermore, this drastically reduces the di-
mension of our data, where images, initially represented as
tensors with thousands of real-valued points, are condensed
to a single 3x17 matrix, containg the x and y coordinates
of each keypoint and a “confidence score” assigned to the
keypoint by the MoveNet pose detection algorithm.

As part of preprocessing, we also flip the keypoint co-
ordinates along the x-axis for left-handed players to ensure
consistency with right-handed players. In the absence of
this step, MatchPoint would only produce matches between

Figure 4. MoveNet keypoints overlaid on images of Andy Murray
(left) and Cam Norrie (right) at the follow-through phase of their
forehand swings. Norrie’s left-handed keypoints are reflected to
make for meaningful comparisons with right-handed players.

players of the same handedness, since processing is per-
formed on the location of the extracted key points and the
distance between key points for a right-handed stroke and
a left-handed stroke is too large to produce matches other-
wise.

4.2. Keypoint Normalization

Proper normalization of the obtained MoveNet keypoint
positions proved to be essential for our model’s perfor-
mance, as the keypoint positions given by the MoveNet
algorithm are relative to the height and width of the pro-
vided image. Given that the ultimate goal of MatchPoint is
to provide guidance to tennis players providing their own
images, it was essential that our approach would be robust
to changes in image size, camera orientation, and relative
position of the player in the shot. Furthermore, our own
obtained images in the training data contained images of
various sizes.

Our first normalization approach was to use minmax nor-
malization across both x and y axes, scaling the positions of
the points so that they fit in and span the unit box. This
proved to be an improvement over unnormalized keypoint
positions, as the minmax normalization ensured that the
keypoints spanned the unit box, regardless of the size of
the original image or the player’s position in that image.

Our second normalization approach, which we called
torso normalization, was to shift the keypoints so that they
are centerered about the player’s left hip, and scale the key-
point distances so that the length of a player’s torso (dis-
tance between left hip – now the origin – to the left shoul-
der) equals one unit. The rationale behind this approach

3



was the observation that for the non-follow-through frames,
the right hand was typically the left-most point in the im-
age. Therefore, with minmax normalization, this point
would almost always have an x coordinate of zero. We sus-
pected that this point carried essential information about a
player’s technique, so we suspected that artificially restrict-
ing this point to have an x coordinate of zero would harm
our model’s generalizability.

Ultimately, both normalization approaches led to im-
proved performance in our baseline nearest-neighbors com-
parison task over the unnormalized points, and considerably
improved the capacity of nearest-neighbors to yield mean-
ingful results for our unseen amateur clips. Given its supe-
rior performance and its intential design to be better suited
for forehand analysis, we used torso normalization for all
downstream tasks.

4.3. Dataset Visualization

Having extracted and normalized the keypoints, we used
principal components analysis (PCA) and T-distributed
Stochastic Neighbor Embeddings (t-SNE) to reduce our
data to two dimensions and investigate the underlying struc-
ture of the space of our professional forehand keypoints.
The hope was that two levels of clusters would emerge: 1)
large, global clusters separating the four key frame points,
and 2) smaller, more granular clusters of distinct play styles.
The unnormalized keypoints are visualized in Figure 5

Figure 5. PCA (left) and t-SNE (right) visualizations of unnormal-
ized keypoints. Frames 1 and 4 form distinct clusters, but 2 and 3
are not easily distinguishable.

In both techniques, frames 1 and 4, at opposite ends of
the swing, were easily separated, but there was consider-
able overlap between frames 2 and 3. This overlap was still
present, though slightly mitigated, through torso normaliza-
tion, as shown in Figure 6

4.4. Baseline Method

Our baseline method is using the k-Nearest Neighbors
Classifier (KNN) on the normalized data to identify which
player in our dataset most closely matches the user based on
the four input images provided by the user. Since MoveNet
produces key points for each image as 17x2 coordinate ar-
rays, we use L2 distance to determine the distance between

Figure 6. PCA (left) and t-SNE (right) visualizations of torso-
normalized keypoints used in the MatchPoint approach, colored
by frame type (top) and player (bottom). Frames 1 and 4 remain
distinctly separated, and frames 2 and 3 seem slightly more dis-
tinct.

frames as a simple and natural distance metric. The KNN
method identifies the k closest training frames to the in-
put frame based on L2 distance, then has them vote on the
player and frame that most matches the input image is. For
example, for k=3 the KNN method may identify Alcaraz-
A3 (Alcaraz’s contact point in training sample A of Al-
caraz), Medvedev-B3 (Medvedev’s contact point in training
sample B of Medvedev), and Alcaraz-B3 (Alcaraz’s contact
point in training sample B of Alcaraz) as the three closest
neighbors; Alcaraz-3 (Alcaraz’s contact point) would then
be identified as the most similar player-frame combination
to the input image. To return a single most similar player for
a set of four input images, the baseline method then chooses
the player that appears most often as a k-closest neighbor
across the four images. Using KNN, we sweep over differ-
ent k values to determine the best possible performance of
our baseline method, as measured by the percentage of test
input images for which the KNN algorithm correctly iden-
tifies the player in question.

4.5. Player Classification: Advanced Strategy

As a much more advanced means of performing player
classification, we utilize more complex machine learning
techniques. We employ the same preprocessing techniques
as with our baseline model (namely, keypoint extraction us-
ing MoveNet and keypoint normalization) to begin with a
size-normalized 17x2 coordinate array for each frame of
a particular player’s stroke. For every player in our train-
ing/validation dataset, we have several groupings of four
images that correspond to the pre-defined and aforemen-
tioned four critical locations in the player’s stroke.

4



In order to ensure that every critical location has a vote in
determining the professional player that is the best match,
we build four separate classifiers (all of the same type, and
not to be confused with the four different classifier types
that we implement below to test which classifier type works
the best). Each classifier corresponds to one of the criti-
cal locations in the player’s stroke and, when performing
a prediction, outputs a probability distribution representing
the likelihood of the critical location image corresponding
to each player in the training dataset. Each classifier is only
trained on images from the training dataset that correspond
to the designated critical location in the player’s stroke.
When performing prediction on the validation and testing
datasets, we use each classifier to create a probability vec-
tor for its corresponding input critical location image, and
then we aggregate these probabilities using a simple aver-
age. We use a mean aggregator here to ensure that our final
aggregated prediction vector is itself a probability distribu-
tion over the professional players hosted within the training
dataset. Figure 4.5 illustrates the functionality behind our
model framework.

Figure 7. Aggregation of classifier output to create a final predic-
tion probability distribution for validation and test datasets.

We implement the following four different classifier
types and evaluate our findings from applying each of them
through experimentation.

4.5.1 Classifier 1: Random Forest

Here we use a RandomForestClassifier from
sklearn.ensemble. It uses 100 decision tree classi-
fiers followed by averaging to learn different aspects of
the classification task. We utilize this classifier because

of its ability to learn different aspects and different pat-
terns of the classification task at the same time. We use the
predict proba function in order to obtain not only the
predicted professional player for the critical location image
but also the probabilities the classifier has attributed to each
of the possible professional player outputs (as required by
our overall structure).

4.5.2 Classifier 2: Simple Neural Network

As our second type of classifier with which we want to ex-
periment, we implement a rather simple neural network. It
consists of two fully-connected layers with a ReLU (recti-
fied linear unit) nonlinearity in between, defined by

ReLU(x) = max(0, x).

. To arrive at a probability distribution, we use the Softmax
function, defined by

Softmax(xi) =
exp (xi)∑
j exp (xj)

.

When training the neural network, we use the Adam opti-
mizer and a basic cross entropy loss as our classification
loss. We iterate over 600 epochs and use a learning rate
of 0.01, both being hyperparameters that we have selected
empirically based on our training and validation results.

4.5.3 Classifier 3: Deep Neural Network

As our third type of classifier to explore, we implement a
deeper, more complex neural network than the previously
described one.

Figure 8. Architecture of the deep neural network used as a classi-
fier.

5



Figure 4.5.3 displays the architecture of this deep neu-
ral network classifier. The hidden layers enable it to learn
more complex patterns in the data that a simple fully-
connected layer cannot comprehend. We use a Scikit-Learn
StandardScaler to normalize the input data, and as be-
fore, we use the Adam optimizer along with cross-entropy
loss for our training process. As a noteworthy difference
to our simpler neural network, we implement learning rate
scheduling in the form of a 0.8 factor decrease every 20
epochs, and we run for 500 epochs but stop early if we do
not see improvement for 50 consecutive epochs (and save
the best model accordingly).

4.5.4 Classifier 4: Convolutional Neural Network

As a means of attempting to benefit from the spatial nature
of our 17x2 coordinate data, we implement as our fourth
classifier a convolutional neural network.

Figure 9. Architecture of the convolutional neural network used as
a classifier.

Figure 4.5.4 displays the architecture of this convolu-
tional neural network classifier. As before, we use the Adam
optimizer along with cross-entropy loss for our training pro-
cess. We implement learning rate scheduling in the form of
a 0.8 factor decrease every 25 epochs, and we run for all 500
epochs without early stopping (but we save the best model
along the way). Considering that we do not have thousands
of datapoints at this point in time (and that our 17x2 coor-
dinates are not a large number of evenly-spaced pixels), we
do not necessarily anticipate great performance from this
architecture. Nevertheless, we implement it and experiment
on it.

5. Experiments
5.1. Evaluation

For evaluation, we will first confirm that additional im-
ages of a player from the training set hitting the same shot
are matched to that player. This self-classification accu-
racy will be a key quantitative component in the analysis
of our model’s effectiveness and is feasible since the same
players show up in our training and test sets. As explained

previously, the validation set and training set differ in that
the validation set comes from the same practice session for
the player as the training data (noting critically that we did
separate out the validation images to ensure their integrity),
while the training set comes from videos taken a year later
(so would perhaps be more akin to unseen data). We will
also qualitatively evaluate the mismatches arising from our
experiments to determine the cause of error and from which
step of the MatchPoint process the problems may arise.

5.2. Baseline Results

Sweeping across different k values to run the baseline
KNN algorithm on the test set, we observed the following
baseline results. At k=5, at which point we see the best
results, 56 percent of test inputs result in the identification
of the correct corresponding player using KNN. We look to
improve upon these baseline results in our advanced meth-
ods.

5.3. Advanced Results

After completing the training, validation, and testing
procedures across all of our datasets, we generated accuracy
metrics to inform us of how well they performed. Specifi-
cally, for each type of classifier (random forest, simple neu-
ral network, deep neural network, and convolutional neural
network), we compute the fraction of instances (separately
for the validation set and the test set) in which our aggre-
gated 4-location scheme produced the correct name for the
professional player. We call this accuracy our Top1 Accu-
racy, as it determines whether or not the highest probability
prediction matches the ground truth. To further assess the
efficacy of our models, we use the Top3 Accuracy metric, in
which we see for what percent of validation (or test) data the
ground truth is contained within the set of the top 3 highest
probability predictions. Table 1 summarizes the results we
obtain.

In all cases, we vastly exceed the accuracy of 5.3 percent
that we would expect if we were to randomly select a player
from the training set as the best match.

5.3.1 Validation Set Performance

On the validation set, we see that the simple neural network
achieved the highest Top1 Accuracy at 94.74%, followed
very closely by the deep neural network (89.74%). We also
see that these two neural network models exhibited tremen-
dous Top3 Accuracy performance, with the simple neural
network achieving 100% perfection. The random forest
classifier did considerably worse in terms of Top1 Accuracy
but showed sizeable improvement when it came to Top3 Ac-
curacy, matching the Top3 Accuracy of the deep neural net-
work. The convolutional neural network approach was very
clearly outperformed by the other three classifier types.

6



Validation Set Test Set
Model Top1 Accuracy Top3 Accuracy Top1 Accuracy Top3 Accuracy

Random Forest 68.42% 94.74% 61.11% 66.67%
Simple NN 94.74% 100% 61.11% 61.11%
Deep NN 89.47% 94.74% 66.67% 72.22%

CNN 52.63% 78.95% 38.89% 55.56%
Table 1. Comparison of Top1 and Top3 Accuracy for different models on validation and test sets

5.3.2 Test Set Performance

On the test set, we see that the deep neural network archi-
tecture was the clear frontrunner, with a Top1 Accuracy of
66.67% and a Top3 accuracy of 72.22%. The simple neu-
ral network and random forest approaches both performed
decently well, with only the random forest approach show-
ing improvement from Top1 to Top3 Accuracy. As with the
validation set, we see that the aforementioned three clas-
sifier types outperformed the convolutional neural network
architecture.

5.3.3 Discussion and Qualitative Findings

In our results we see very strong performance from both
neural network candidates. The simple neural network was
outstanding with respect to the validation set, showing its
ability to generalize to new but similar images to what it
has seen in training. The deep neural network appears to
perform similarly (slightly worse) on validation data, but
clearly is more robust in that it shows considerable improve-
ment over the simple neural network model when it comes
to the testing data. Going forward, our deep neural network
approach would be the one we would use for demonstration
purposes as it clearly generalizes the best to unseen data.

The random forest approach seems to benefit the most
from the incorporation of the Top3 Accuracy metric. This
result is perhaps an indication of its ability to cluster players
decently well and determine which players might be close
in style to a particular player without pinpointing a single
player. As expected, the convolutional architecture under-
performed, likely due to the need for more data and better
hyperparameters.

Qualitatively, we notice that running shots cause the
most errors (see Figure 10). We noticed this when we man-
ually went through to view the cause of the mismatches we
experienced, especially those that arose from our most suc-
cessful (i.e. the neural network) approaches. This indicates
that refined data pre-processing may yield more benefits to
the accuracy of MatchPoint than improvements to the clas-
sification model itself; in almost any case, a player whose
data mostly consists of stationary shots is matched to them-
self when the corresopnding test data corresponding is also
a stationary shot. This is similar to the potential issue we
would have encountered had we not flipped the images for

left-handed players.

Figure 10. Example of a running forehand shot by Grigor Dimitrov
that was misclassified as Alex Zverev.

6. Conclusion
MatchPoint allows users to input a very limited amount

amount of images of their tennis forehand shot as input and
matches those users with high accuracy to the professional
player whose tennis stroke is most similar to theirs. Af-
ter evaluating many different approaches including Random
Forest, Simple NN, Deep NN, and CNN, we found that the
Deep NN performs best on the test data, with 66.67 per-
cent accuracy in identifying the one player most similar to
the test input. This is a significant result, since many ten-
nis strokes share major similarities and with a two-thirds
chance we are able to identify the one professional out of
19 candidate players whose forehand most closely matches
the input clip. The correct player is furthermore found in the
top three closest matches 72.22 percent of the time. These
numbers represent a meaningful improvement over the 56
percent accuracy of the baseline KNN results.

Further work would involve firstly expanding the train-
ing and data sets to further validate our results. We may
also look into exploring further granularity in categorizing
shots up-front (e.g. running shots versus stable shots), as
this noise in the position of players during different types of
forehand shots we believe has a large impact on how they

7



are classifiers. We also hope to explore using video recog-
nition to automatically capture the four key frames needed
to comprise a data point for MoveNet, which would in turn
help with the first point of acquiring more data as the data
acquisition process would no longer need to be done by
hand. Nonetheless, even with the current system and its re-
sults, MatchPoint stands to benefit amateur players by help-
ing them model their play off players with similar mechan-
ics to themselves rather than simply their favorite player
whose mechanics may not align with theirs.

References
[1] Forehand compilation — slow motion 2023.

https://youtu.be/_7xV_CE8y28?si=
GwZF9G9uHVTih80o, 2023.

[2] Forehand compilation — slow motion 2023 (part
2). https://youtu.be/PoF1iCUIGtc?si=
esUV82E4KnSLBtfj, 2023.

[3] Forehand compilation — slow motion 2024.
https://youtu.be/928wJjWeVyk?si=
XHUA92j1hY9qIdZR, 2024.

[4] A. Anand, M. Sharma, R. Srivastava, L. Kaligounder, and
D. Prakash. Wearable motion sensor based analysis of swing
sports. In 2017 16th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), pages 261–267,
2017.

[5] B. Baić and I. Bandara. Tennis strokes recognition from gen-
erated stick figure video overlays. In VISIGRAPP, 2022.

[6] L. Bailey, N. Truong, and P. Nguyen. Stroke comparison be-
tween professional tennis players and amateur players using
advanced computer vision. 2020.

[7] B. Bačić. Echo state network ensemble for human motion
data temporal phasing: A case study on tennis forehands. In
Neural Information Processing. ICONIP 2016, volume 9950
of Lecture Notes in Computer Science. Springer, 2016.

[8] T. Bloom and A. Bradley. Player tracking and stroke recog-
nition in tennis video. 1, 03 2003.

[9] A. Ganser, B. Hollaus, and S. Stabinger. Classification
of tennis shots with a neural network approach. Sensors,
21:5703, 08 2021.

[10] T. Hub. Movenet: Ultra fast and accurate pose detec-
tion model. https://www.tensorflow.org/hub/
tutorials/movenet, 2024. Accessed: 2024-05-17.

[11] B. Jo and S. Kim. Comparative analysis of openpose,
posenet, and movenet models for pose estimation in mobile
devices. Traitement du Signal, 39(1):119–124, 2022.

[12] M. Skublewska-Paszkowska, E. Lukasik, B. Szydlowski,
J. Smolka, and P. Powroznik. Recognition of tennis
shots using convolutional neural networks based on three-
dimensional data. In A. Gruca, T. Czachórski, S. Deorow-
icz, K. Hareżlak, and A. Piotrowska, editors, Man-Machine
Interactions 6. ICMMI 2019, volume 1061 of Advances in
Intelligent Systems and Computing, Cham, 2020. Springer.

[13] E. Washabaugh, T. Shanmugam, R. Ranganathan, and C. Kr-
ishnan. Comparing the accuracy of open-source pose estima-

tion methods for measuring gait kinematics. In Gait Posture,
volume 97, pages 188–195, 2022.

Appendix
Professional players represented in the MatchPoint

dataset, sorted alphabetically. Note that left-handed player’s
marked with (L) have their forehand images reflected so that
technical nuances can be captured, rather than the player’s
dominant handedness:

Carlos Alcaraz, Matteo Berrettini, Grigor Dimitrov,
Taylor Fritz, Hubert Hurkacz, Karen Khachanov, Daniil
Medvedev, Andy Murray, Cam Norrie (L), Andrey Rublev,
Holger Rune, Casper Ruud, Dennis Shapovalov (L), Jannik
Sinner, Dominic Thiem, Frances Tiafoe, Stefanos Tsitsipas,
Sasha Zverev, Alex de Minaur.

7. Contributions and Acknowledgements
All three group members contributed equally to the

project and report. Evan had a slight focus on data col-
lection and baseline results, Rishi had a slight focus on ex-
ploring neural network models, and Isaac had a slight focus
on data processing and random forest, but all members had
a hand in all aspects. We would like to thank the CS 231N
course staff, especially Abhijit, for their support with our
project.

8

https://youtu.be/_7xV_CE8y28?si=GwZF9G9uHVTih80o
https://youtu.be/_7xV_CE8y28?si=GwZF9G9uHVTih80o
https://youtu.be/PoF1iCUIGtc?si=esUV82E4KnSLBtfj
https://youtu.be/PoF1iCUIGtc?si=esUV82E4KnSLBtfj
https://youtu.be/928wJjWeVyk?si=XHUA92j1hY9qIdZR
https://youtu.be/928wJjWeVyk?si=XHUA92j1hY9qIdZR
https://www.tensorflow.org/hub/tutorials/movenet
https://www.tensorflow.org/hub/tutorials/movenet

