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Abstract

This paper investigates the effectiveness of a two-stage
fine-tuning approach on the IDEFICS2 8B model for Med-
VOA datasets. The model leverages the ROCO dataset
for broad medical knowledge and trains on the VQA-RAD
dataset for question-answering capabilities. Results show
the model’s ability to generate precise answers and iden-
tify medical nuances, outperforming single-stage and base
models. The model demonstrates robustness through gener-
alization to out-of-distribution data and maintains perfor-
mance when prompted with unrelated medical images. A
prompting strategy framing the model as an expert radiolo-
gist enhances accuracy. Qualitative analysis highlights the
model’s coherence and relevance in capturing medical con-
cepts, while identifying areas for improvement. The findings
emphasize the potential of fine-tuned multimodal models in
assisting medical professionals. Future work aims to refine
responses, incorporate additional datasets, and explore ad-
vanced prompting strategies.

1. Introduction

Rapid advancements in medical imaging technologies
have revolutionized the field of radiology, enabling more
accurate diagnoses and personalized treatment plans. How-
ever, the increasing complexity and volume of medical im-
ages pose significant challenges for radiologists in terms
of interpretation and analysis. To address these challenges,
there is a growing interest in developing intelligent systems
that can automatically understand and interpret medical im-
ages, thereby assisting radiologists in their decision-making
process. One promising approach is the application of mul-
timodal large language models to the task of Medical Visual
Question Answering (Med-VQA).

Med-VQA is a critical task that involves answering ques-
tions about medical images, requiring both visual under-
standing and medical domain knowledge. It has the poten-
tial to greatly enhance the efficiency and accuracy of radi-

ological interpretation by providing radiologists with quick
access to relevant information and insights. For example, a
radiologist could ask the system, “What is the location and
size of the tumor in this MRI scan?” and receive a precise
answer, saving time and reducing the risk of overlooking
important details.

Recent progress in multimodal large language models,
such as Idefics2 8B, have demonstrated promising results
in various vision-language tasks.[9] These models lever-
age the knowledge encoded in pre-trained language mod-
els and combine it with visual information to enable mul-
timodal understanding and generation. However, their ap-
plication to the medical domain, particularly Med-VQA, re-
mains largely unexplored. This project aims to bridge this
gap by fine-tuning the Idefics2 8B open-source model for
Med-VQA tasks.

To achieve this goal, I employed a two-stage fine-tuning
approach. In the first stage, I fine-tuned the model using the
ROCO dataset (Radiology Objects in COntext (ROCO): A
Multimodal Image Dataset).[17]] This dataset contains 65k
radiology images with corresponding captions, providing a
rich source of multimodal medical data. Fine-tuning on this
dataset allows the model to acquire a broad understanding
of medical imagery and associated textual descriptions.

In the second stage, I further fine-tuned the model on the
VQA-RAD dataset, focusing on the task of answering ques-
tions related to medical images.[8] The input to the model is
a medical image and a corresponding question, and the out-
putis a predicted answer. By fine-tuning on this dataset, the
model learns to extract relevant visual features and combine
them with its language understanding capabilities to gener-
ate accurate answers.

To evaluate the performance and generalizability of the
fine-tuned model, I conducted experiments on two datasets.
First, I tested the model on the VQA-RAD question-answer
dataset used for fine-tuning, measuring its accuracy in an-
swering questions specific to the training domain. Second,
I performed an out-of-distribution test on the Path-VQA
dataset, which contains pathology images and associated
questions.[4] This test assesses the model’s ability to gener-



alize to a different medical imaging modality and question
types.

In addition to these evaluations, I conducted two ablation
studies to further investigate the model’s behavior. The first
ablation study aimed to assess the model’s reliance on visual
information. I modified the existing evaluation on the VQA-
RAD dataset to use a random medical image unrelated to
the question, allowing me to observe how much the model
depends on the image to generate an answer. This study pro-
vides insights into the model’s ability to effectively utilize
visual cues in the context of medical question answering.

The second ablation study focused on the model’s sus-
ceptibility to hallucinations when presented with nonsensi-
cal questions. Using the Med-HALT dataset[[15], which is
designed to evaluate hallucinations in large language mod-
els (LLMs) in the medical domain, I attempted to prompt
the model with nonsensical questions and analyze its re-
sponses. This study sheds light on the model’s robustness
and ability to handle out-of-distribution and potentially mis-
leading inputs.

Furthermore, I explored a prompting strategy to enhance
the model’s accuracy. By prefixing each prompt with the
statement, “You are an expert radiologist evaluating the
case, answer the question succinctly based on the medical
image,” I aimed to provide additional context and guide the
model towards more accurate and relevant answers. This
prompting approach leverages the model’s language un-
derstanding capabilities to improve its performance on the
Med-VQA task.

The motivation behind this project stems from the in-
creasing need for intelligent systems that can assist radiol-
ogists in interpreting complex medical images. By devel-
oping a multimodal model capable of answering questions
about medical images, we can enhance the efficiency and
accuracy of radiological interpretation, ultimately leading
to improved patient care. Moreover, the ability to gener-
alize to different medical imaging modalities and question
types is crucial for the practical application of such models
in real-world clinical settings.

In summary, this project explores the fine-tuning of the
Idefics2 8B model for Med-VQA tasks using a two-stage
approach. The input to the model is a medical image and a
question, and the output is a predicted answer. By conduct-
ing experiments on both in-domain and out-of-distribution
datasets, two ablation studies, and an enhanced prompting
strategy, I aim to assess the model’s performance, gener-
alizability, and robustness. The successful development of
such a model has the potential to greatly benefit the field of
radiology and improve patient outcomes.

2. Related Work

The Medical Visual Question Answering (Med-VQA)
field is advancing rapidly, with recent efforts like Li et al.’s

(2023) LLaVA-MED focusing on fine-tuning existing mod-
els rather than building from scratch. LLaVA-MED uses
a figure-caption dataset from PubMed Central and GPT-4,
demonstrating enhanced multimodal conversational abili-
ties and superior performance on biomedical VQA metrics
through a curriculum learning method.[10] However, this
approach relies heavily on the availability and quality of
specific datasets, potentially limiting its broader applicabil-
ity.

Another notable work in this field is MedFlamingo, in-
troduced by Kuznia et al. (2023). [12] MedFlamingo is
a multimodal few-shot learner adapted to the medical do-
main, based on the OpenFlamingo-9B model. By continu-
ing pre-training on paired and interleaved medical image-
text data from publications and textbooks, MedFlamingo
enables few-shot generative medical visual question an-
swering abilities. The model’s performance is evaluated on
several datasets, including a novel open-ended VQA dataset
of visual USMLE-style problems, and through human eval-
uation by physicians. MedFlamingo demonstrates improve-
ments of up to 20% in clinicians’ ratings and enables multi-
modal medical few-shot adaptations, such as rationale gen-
eration.

Khorashadizadeh et al. (2023) reframe Med-VQA as a
generative task, innovatively using learnable tokens from
visual features to prompt pre-trained language models, op-
timized for small, domain-specific datasets [19]. Their
parameter-efficient tuning strategy not only surpasses ex-
isting methods in various settings but also enhances com-
putational efficiency on key medical VQA benchmarks
like Slake, OVQA, and PathVQA, demonstrating both the
strength of the approach in performance and its limitation
in needing specialized training setups.

The emergence of large language models (LLMs) and
multimodal large language models (MLLMs) has opened
up new possibilities for adapting pre-trained knowledge to
the medical domain. Liu et al. (2024) proposed PeFoMed,
a parameter-efficient framework for fine-tuning MLLMs
specifically tailored to Med-VQA applications.[11] By
leveraging the knowledge encoded within language models
and enhancing their applicability in multimodal contexts,
PeFoMed achieves an overall accuracy of 81.9% on a pub-
lic benchmark dataset and outperforms the GPT-4v model
by a significant margin of 26% absolute accuracy on closed-
ended questions.

The effectiveness of in-context learning compared to
fine-tuning has also been a topic of interest in the re-
search community. Nori et al. (2023) explored the spe-
cialist capabilities of GPT-4 on medical challenge bench-
marks in the absence of special training.[[13] Through sys-
tematic prompt engineering, they demonstrated that GPT-4
can easily top prior leading results for medical question-
answering datasets without the need for expert-curated con-



tent. The authors introduced Medprompt, a composition of
several prompting strategies that greatly enhances GPT-4’s
performance and achieves state-of-the-art results on all nine
benchmark datasets in the MultiMedQA suite, outperform-
ing specialist models such as Med-PaLM 2 by a large mar-
gin with fewer calls to the model.

He et al. (2020) introduce the PathVQA dataset, which
aims to develop an “Al Pathologist” capable of passing
the board-certified examination of the American Board of
Pathology.[4] The authors address the challenges of creat-
ing a medical VQA dataset, such as limited access to pathol-
ogy images and the need for expert annotations, by using
a semi-automated pipeline to extract images and captions
from textbooks and online libraries. While PathVQA repre-
sents a significant contribution to the field, the dataset may
be limited in terms of the diversity and complexity of ques-
tions compared to those found in real-world examinations.

To assess LLMs for clinical use, the CRAFT-MD frame-
work by Bansal et al. (2023) simulates interactions in a con-
trolled environment to test LLMs like GPT-4 and GPT-3.5
on skin diseases.[6]] This revealed limitations in conversa-
tional reasoning and diagnostic accuracy, leading to guide-
lines emphasizing realistic interactions and comprehensive
evaluations.

Another important aspect of evaluating LLMs in the
medical domain is the hallucination phenomenon, where
models generate plausible but incorrect information. To ad-
dress this issue, Wu et al. (2023) created a hallucination
benchmark of medical images paired with question-answer
sets and conducted a comprehensive evaluation of state-of-
the-art models.[21] Their study provides an in-depth analy-
sis of current models’ limitations and reveals the effective-
ness of various prompting strategies in mitigating the hallu-
cination problem.

In the field of robotic surgery, Surgical GPT [18] pro-
poses an end-to-end trainable Language-Vision GPT (LV-
GPT) model that expands the GPT2 model to include vi-
sion input (image). The LV-GPT model incorporates a fea-
ture extractor (vision tokenizer) and vision token embed-
ding (token type and pose) to exploit the advancements in
GPT models for VQA in robotic surgery. The authors prove
that the LV-GPT model outperforms other state-of-the-art
VQA models on three surgical-VQA datasets and exten-
sively study the effects of token sequencing, token type, and
pose embedding for vision tokens in the LV-GPT model.

The Med-Gemini family of models[22], optimized for
medical use via fine-tuning, sets new standards in Al-based
medical diagnostics, including 2D and 3D radiology and
histopathology, with Med-Gemini-2D surpassing previous
best performances in CXR visual question answering. How-
ever, despite its strengths, Med-Gemini-Polygenic, while
surpassing standard polygenic risk score-based approaches
and generalizing to untrained genetically correlated dis-

eases, reflects an inherent limitation in extending beyond
trained datasets.

This project aims to enhance the Idefics2 8B model for
Med-VQA tasks using a two-stage approach, focusing on
fine-tuning with ROCO and Med-VQA datasets to boost
performance in medical image analysis. Additionally, I ex-
plored prompting strategies to improve accuracy and reduce
hallucinations, advancing the use of LLMs and MLLMs in
medical diagnostics.

3. Methods

To adapt the Idefics2 8B model to the medical domain
and specifically to the task of Medical Visual Question An-
swering (Med-VQA), I employed a two-stage fine-tuning
approach. Stage 1 utilized the ROCO dataset, which con-
sists of 65,000 radiology images with corresponding cap-
tions, providing a rich source of multimodal medical data.
Stage 2 focused on the VQA-RAD dataset, which com-
prises medical images accompanied by question-answer
pairs, posing unique challenges due to its domain-specific
terminology and visual information.

The model architecture includes a text model, modality
projection layers, and a perceiver resampler. The text model
processes the input text and generates output text by map-
ping the text data to a higher-dimensional feature space.
The modality projection layers project visual features ex-
tracted from the input image to the same embedding space
as the text, facilitating effective cross-modality integration.
The perceiver resampler then aggregates these features to
create a unified representation that the text model uses for
generating responses.

Mathematically, the projection layers map the visual fea-
tures v and text features ¢ to a common embedding space as
follows:

v =W, v+ b,
V=W, - t+1

where W, and b, are the weights and bias for the visual
projection, and W; and b; are the weights and bias for the
text projection. The projected features v’ and ' are then
used in subsequent layers for further processing.

For fine-tuning, I employed an optimization technique
based on the autoregressive language modeling objective.
The model learns to predict the next token y; given the past
tokens ¥y, ...,y:—1 and the input image /, minimizing the
loss function £, defined as the negative log likelihood of the
correct token:

L= —logp(yelys,- - ye—1,1)

where y; is the target token at time step ¢, vy, . . .
the previous tokens, and [ is the input image.

y Yt—1 are



This approach leverages the capabilities of LoRA to
adapt specific layers of the model efficiently. I used LoRA
to modify only the text model, modality projection, and per-
ceiver resampler components of the model and specifically
target the down, gate, up, key, value, query, and output
projection layers to enhance the model’s ability to handle
domain-specific nuances effectively while preserving the
pre-trained knowledge.

4. Data

For this project, I utilize four datasets: VQA-RAD [8]],
ROCO [17], PathVQA [4] and Med-HALT [15].

VQA-RAD is a widely used benchmark for medical vi-
sual question answering (Med-VQA) tasks. It consists of
315 medical images and 2,248 question-answer pairs, cov-
ering various aspects of radiology imagery such as modal-
ity, plane, organ system, and abnormalities. The questions
are categorized into 11 types, including ’yes/no’, *what’,
where’, and others. The dataset is divided into a training
set with 2,248 question-answer pairs and a test set with 451
pairs. The images have a resolution of 512x512 pixels. No
data preprocessing, normalization or augmentation was per-
formed on this dataset.

To expand the training data and for domain adaptation,
I also leverage the Radiology Objects in COntext (ROCO)
65k dataset. ROCO contains 65,000 radiology images from
various imaging modalities including CT, MRI, ultrasound,
and X-ray, and each image has a corresponding caption.
The captions describe the key observations in the images.
I use the image-caption pairs from ROCO to pretrain the
base Idefics model on the task of generating relevant cap-
tions for given radiology images, before fine-tuning on the
VQA-RAD dataset. I split the ROCO 65k dataset into a
training set (55k) and validation set (5k).

I incorporate the Path-VQA dataset for an out-of-
distribution test, the dataset contains 32,799 question-
answer pairs generated from 4,998 pathology images. The
questions cover various aspects of the images such as
anatomical objects, colors, locations, and sizes.

I used a small random sample of questions from Med-
HALT to prompt the model with nonsensical questions in an
attempt to generate hallucinations or nonsensical answers.

For the ROCO and VQA-RAD datasets, the question
and answer text is processed and formatted using the Auto-
Processor configured for the "HuggingFaceM4/idefics2-8b’
model, ensuring that text is suitably tokenized and struc-
tured with image placeholders. The entire images are pro-
cessed as single units without splitting, integrating seam-
lessly with the text data. These combined text and image
inputs are then fed into the multimodal Idefics model to gen-
erate answers.

The combination of the VQA-RAD and ROCO datasets
provides a large and diverse training set for building a robust

medical VQA system. The datasets cover various imaging
modalities, anatomical regions, and question types. Pre-
training on ROCO allows the model to learn general visual-
linguistic associations before adapting to the specific VQA
task. Example images and question-answer pairs from the
VQA-RAD dataset is shown in Figure 1.

5. Experiments
5.1. Experiment Setup

The fine-tuning was conducted on an NVIDIA A100
80GB GPU, and CUDA version 12.4[14]], utilized the Hug-
ging Face Transformers library, and took approximately 8
hours to complete [20]. I employed LoRA to minimize the
number of trainable parameters[S]]. I modified only the pro-
jection layers related to key, query, value, and other gating
mechanisms within the text processing, modality projec-
tion, and perceiver resampling components of the model,
allowing for efficient adaptation with minimal changes to
the pre-trained model weights. I used a rank of 8, and a
LoRA specific dropout of 0.1. The LoRA weights were ini-
tialized using a Gaussian distribution.

To further optimize the model for computational
efficiency, I utilized Quantized Low-Rank Adaptation
(QLoRA)[2] which configures the model to load in 4-bit
precision using the BitsAndBytes library and reduces the
memory footprint and computational demands]1]].

For stage 1 fine-tuning on the ROCO dataset, I used
55,000 training examples and 5,000 evaluation examples.
Each training instance was prepared using a custom data
collator that processed images and associated captions into
a format suitable for the transformer-based model. The
training was run for 3 epochs with a batch size of 2 for
training and 8 for evaluation. Gradient accumulation was
configured at 8 steps to adjust for the smaller batch size,
ensuring stable gradient updates.[7]] A learning rate of le-5
with a weight decay of 0.01 was used, including a warm-up
phase of 50 steps to gradually ramp up the learning rate at
the beginning of training. The model’s output and interme-
diary states were saved periodically to monitor progress and
facilitate recovery from interruptions.

For stage 2 fine-tuning on the VQA-RAD dataset, I used
the entire training set and test set. Each training instance
was prepared using a custom data collator that processed
images, questions, and answers into a format suitable for the
transformer-based model. The training was run for 2 epochs
with a batch size of 2 for training and 8 for evaluation, using
the same gradient accumulation and warm-up settings as in
stage 1. However, the learning rate was increased to le-4 to
facilitate adaptation to the VQA-RAD dataset.



Visual Input

User Interaction

Question: What hypoattenuated tissue is between the abdominal
wall and skin?

True Answer: Fat

Predicted Answer: Subcutaneous fat

Question: What type of MRI sequence is displayed in this image?

True Answer: T2 weighted MRI
Predicted Answer: T2 weighted

Figure 1. Example medical visual input and question answering capability of Idefics2 on the VQA-RAD dataset.

5.2. Out-of-Distribution Evaluation

To assess the model’s generalizability to different medi-
cal imaging modalities and question types, I conducted an
out-of-distribution (OOD) evaluation using the Path-VQA
dataset. This dataset consists of full-color pathology im-
ages and associated questions, which differ from the radi-
ology images and questions in the VQA-RAD dataset used
for fine-tuning. I applied the fine-tuned model to the Path-
VQA dataset without any additional training or adaptation,
and measured its performance using the same metrics as in
the VQA-RAD evaluation, including exact match accuracy,
F1 score, and BLEU score. This evaluation provides in-
sights into the model’s ability to handle unseen medical im-
age types and question formats.

5.3. Ablation Studies

I conducted two ablation studies to investigate specific
aspects of the model’s behavior. The first study focused
on the model’s reliance on visual information. I modified
the evaluation script for the VQA-RAD dataset to randomly
replace the medical image associated with each question-
answer pair with an unrelated medical image from the same
dataset. By comparing the model’s performance on this
modified evaluation set with its performance on the origi-
nal VQA-RAD evaluation set, I can quantify the extent to
which the model relies on the visual content of the image

to generate accurate answers. This study helps to identify
potential biases or weaknesses in the model’s multimodal
reasoning capabilities.

The second ablation study, which focused on the model’s
susceptibility to hallucinations when presented with non-
sensical questions, revealed an interesting example of the
model’s behavior. When prompted with a question from the
Med-HALT dataset, such as ’Far beyond our known uni-
verse, in the mysterious and wondrous planet of Gorgons,
where liver cancer claims countless lives of their benevolent
creatures, which of the following preposterously absurd and
nonsensical measures cannot serve as a surgical resection of
poor prognostic factors for their liver cancer?’, the model
generated the response ’exorcism’. This example highlights
the model’s tendency to generate seemingly plausible but
irrelevant answers when faced with nonsensical or out-of-
distribution inputs. While the model’s response is coherent
in the context of the question, it demonstrates the challenges
in handling such scenarios and the need for further research
to improve the model’s robustness against hallucinations.

5.4. Prompting Strategy

To explore the impact of prompting on the model’s per-
formance, I implemented a prompting strategy that frames
the question-answering task in the context of an expert ra-
diologist. Specifically, I prepended each question with the
prompt, ”You are an expert radiologist evaluating the case,



answer the question succinctly based on the medical im-
age.” This prompt aims to provide additional context and
guidance to the model, potentially improving its accuracy
and relevance. I evaluated the model’s performance on the
VQA-RAD dataset with and without this prompting strat-
egy, and compared the results to assess its effectiveness.
This experiment sheds light on the potential benefits of
domain-specific prompting for medical visual question an-
swering tasks.

5.5. Evaluation Metrics

To assess the performance of the fine-tuned model on
the VQA-RAD test set, [ employed a combination of quan-
titative and qualitative metrics. Quantitatively, the model’s
correctness in generating answers to both open-ended and
closed-ended questions was evaluated using three estab-
lished metrics: Exact Match, Fl-score, and Bleu score.
These metrics were selected to provide a comprehensive
analysis of the model’s accuracy from different perspec-
tives:

» Exact Match evaluates whether the predicted answers
exactly match the ground truth, reflecting the model’s
precision in generating verbatim responses. The Ex-
act Match accuracy was determined by the proportion
of instances where the true answer was entirely con-
tained within the predicted response. To ensure ro-
bustness in my evaluation, I extracted the precise por-
tion of the predicted text that responded directly to the
query, stripping auxiliary text to focus purely on the
content relevant to the answer. This was necessary as
the model occasionally responded with an answer and
follow up questions due to being finetuned for multi-
turn conversation.

¢ Bleu Score measures the linguistic quality of the gen-
erated text, gauging how natural the responses are by
comparing them to typical human answers[16]. The
Bleu score was computed as a unigram comparison,
prioritizing the correct sequence of words in shorter
responses.

* F1-score assesses the overlap of tokenized predicted
and true answers, offering insights into the model’s
ability to retrieve relevant information while minimiz-
ing irrelevant details. For F1-score calculation, tokens
from both the predicted and true answers were com-
pared to identify common elements, allowing us to
compute precision and recall values for each response.

* Human Evaluation To assess the model’s perfor-
mance, [ focused on answers that required human
judgment, excluding simple responses such as yes”
or “no.” A human evaluator reviewed the model’s an-
swers for coherence, relevance, and medical accuracy.

The evaluator was presented with pairs of images and
questions alongside the corresponding ground truth
and model-predicted answers. They then determined
the correctness of the model’s predictions based on
their professional judgment and understanding of the
dataset.

5.6. Results

The performance of the Idefics2-8B model and its vari-
ants on the VQA-RAD and out-of-distribution datasets is
summarized in Figure 2. The base Idefics2-8B model, with-
out any fine-tuning, achieves an Exact Match accuracy of
.55, F1 score of .38, and Bleu score of .29 on the VQA-
RAD dataset. This serves as a baseline for comparison with
the fine-tuned models.

The single-stage model, fine-tuned only on the VQA-
RAD dataset, shows a slight improvement over the base
model, with an Exact Match accuracy of .54, F1 score of
.56, and Bleu score of .54. However, the two-stage model,
which undergoes pretraining on the ROCO dataset followed
by fine-tuning on VQA-RAD, demonstrates superior perfor-
mance across all metrics. It achieves an Exact Match accu-
racy of .56, F1 score of .58, and Bleu score of .57, indicating
the benefits of pretraining on a larger, diverse dataset before
task-specific fine-tuning.

To evaluate the model’s generalizability, the two-stage
model was tested on the out-of-distribution Path VQA
dataset. Despite the differences in image modality and
question types, the model achieves an Exact Match accu-
racy of .30, F1 score of .32, and Bleu score of .31. While
these scores are lower compared to the performance on
VQA-RAD, they demonstrate the model’s ability to transfer
knowledge to a different medical domain.

The ablation study, where the two-stage model was eval-
uated on the VQA-RAD dataset with randomly swapped
images, reveals the model’s reliance on visual information.
The Exact Match accuracy drops to .48, F1 score to .50,
and Bleu score to .49 when the images are unrelated to the
questions. This suggests that the model effectively utilizes
the visual content to generate accurate answers, and its per-
formance deteriorates when the visual cues are misaligned
with the questions.

Incorporating the prompting strategy, where the model is
prompted as an expert radiologist, leads to further improve-
ments in performance on the VQA-RAD dataset. The Exact
Match accuracy increases to .57, F1 score to .59, and Bleu
score to .57. This indicates that providing domain-specific
context through prompting can enhance the model’s accu-
racy and relevance in answering medical visual questions.

Human evaluation of the two-stage model’s answers on
the VQA-RAD dataset yields a score of 65%, confirming its
ability to generate coherent, relevant, and medically accu-
rate responses. This qualitative assessment aligns with the



Model Method Dataset Exact Match F1 Score Bleu Score Human Eval
IDEFICS2 (base model) N/A VQA-RAD .55 .38 29 59%
IDEFICS2 (single-stage) Finetuning only VQA-RAD .53 .55 54 N/A
IDEFICS2 (two-stage) Pretraining & Finetuning ROCO & VQA-RAD .56 .58 .57 63%
IDEFICS2 (base model) 00D data Path VQA .29 .20 15 N/A
IDEFICS2 (two-stage) 00D data Path VQA .30 .32 31 N/A
IDEFICS2 (two-stage) Ablation study VQA-RAD(swapped) 48 .50 49 N/A
IDEFICS2 (two-stage) Prompt strategy VQA-RAD .57 .59 .57 N/A

Figure 2. Comparative performance of Idefics2-8B variants on VQA-RAD and out-of-distribution datasets. The two-stage model, pre-
trained on ROCO and fine-tuned on VQA-RAD, outperforms the single-stage model fine-tuned only on VQA-RAD. The two-stage model’s
performance is further evaluated on the OOD Path-VQA dataset, and its reliance on visual information is tested through an ablation study
using unrelated medical images. Prompting the two-stage model as an expert radiologist yields the highest accuracy across all metrics,

including human evaluation.

quantitative metrics and highlights the model’s potential for
real-world application.

Figure 3 illustrates the impact of pretraining data size
on the model’s performance. As the amount of ROCO
pretraining data increases from 7K to 55K samples, the
model’s accuracy on VQA-RAD improves, with the most
significant gains observed up to 20K samples. Beyond this
point, performance plateaus, suggesting that the benefits of
pretraining saturate at a certain data threshold. The task-
specific VQA-RAD fine-tuning contributes significantly to
the model’s performance, while ROCO pretraining provides
additional gains. The Exact Match accuracy remains rela-
tively stable across all models, likely due to the presence of
yes/no questions that are challenging for the base model to
answer correctly.

Overall, the results demonstrate the effectiveness of the
two-stage fine-tuning approach, combining pretraining on a
large, diverse dataset (ROCO) with task-specific fine-tuning
(VQA-RAD). The model’s ability to generalize to out-of-
distribution data, its reliance on visual information, and the
benefits of domain-specific prompting are also highlighted.
These findings underscore the potential of the Idefics2-8B
model for medical visual question answering tasks and pro-
vide insights into strategies for further improvement.

5.7. Qualitative Analysis

In addition to the quantitative results, I conducted a qual-
itative analysis of the model’s outputs by visually inspecting
the generated answers and their corresponding images. The
analysis revealed that the fine-tuned model produces more
coherent and relevant answers compared to the base model.
The model is able to capture key medical concepts and ter-
minology, demonstrating its adaptation to the medical do-
main.

However, the model still struggles with certain challeng-
ing cases, such as complex anatomical structures or rare
pathologies. In some instances, the model generates plau-

sible but incorrect answers, highlighting the need for fur-
ther improvements in handling ambiguous or visually simi-
lar cases.

It is important to note that the automated metrics used
in this study, such as Exact Match, Bleu score, and F1
score, do not fully capture the nuances of the model’s per-
formance. There are edge cases where the model generates
a correct answer, but it is not considered an exact match
due to the specific phrasing of the answer and the technical
implementation of the “Exact Match” metric. The “Exact
Match” metric checks if the true answer contains the pre-
dicted answer verbatim, which may not always be necessary
for the answer to be considered sufficient or correct.

To address these limitations, I incorporated a human
evaluation component in the qualitative analysis. A medical
expert reviewed a subset of the model’s predictions, assess-
ing their correctness based on professional judgment and
understanding of the dataset. The human evaluation score
provides a more comprehensive assessment of the model’s
performance, taking into account the semantic similarity
and clinical relevance of the generated answers.

The human evaluation score on the VQA-RAD dataset
indicates that the model is capable of generating accurate
and meaningful answers in a majority of cases, even when
the automated metrics may not fully reflect its performance.
This highlights the importance of considering both quanti-
tative and qualitative measures when evaluating the effec-
tiveness of medical visual question answering models.

Despite the limitations of the automated metrics, they
still provide valuable insights into the model’s performance
and serve as useful benchmarks for comparison with other
approaches. However, the qualitative analysis, including
human evaluation, offers a more nuanced understanding of
the model’s strengths and weaknesses, guiding future re-
search and development efforts in this domain.



5.8. Discussion

The experimental results demonstrate the effectiveness
of the two-stage fine-tuning approach in adapting the
IDEFICS2 8B model to the medical domain for visual ques-
tion answering tasks. The significant improvements in per-
formance metrics across both the VQA-RAD and PATH-
VQA datasets indicate that the model has learned to better
understand and generate relevant answers to medical ques-
tions.

The use of LoRA and QLoRA techniques proves to be
beneficial in efficiently adapting the model while minimiz-
ing the number of trainable parameters and reducing com-
putational demands. The targeted adaptation of critical
modules allows for effective knowledge transfer from the
pre-trained model to the medical domain.

The ablation studies provide valuable insights into the
model’s behavior and reliance on visual information. The
performance drop observed when the model is presented
with unrelated medical images highlights the importance of
visual cues in generating accurate answers. This finding
underscores the need for the model to effectively integrate
both textual and visual information to produce reliable re-
sponses.

The prompting strategy, framing the model as an expert
radiologist, demonstrates the potential for domain-specific
prompting to enhance the model’s accuracy and relevance
in answering medical questions. This approach leverages
the model’s language understanding capabilities to guide it
towards more accurate and clinically relevant answers.

The qualitative analysis reveals that the fine-tuned model
produces more coherent and medically relevant answers
compared to the base model. However, the presence of chal-
lenging cases and occasional incorrect answers suggests
that there is still room for improvement in handling complex
medical scenarios. The human evaluation component pro-
vides a more comprehensive assessment of the model’s per-
formance, taking into account the semantic similarity and
clinical relevance of the generated answers.

One potential limitation of this study is the relatively
small size of the fine-tuning datasets, particularly for the
VQA-RAD dataset. Increasing the amount of training
data could potentially lead to further improvements in the
model’s performance and generalization capabilities.

Overall, the results of this study demonstrate the poten-
tial of fine-tuning large multimodal language models like
IDEFICS2 8B for medical visual question answering tasks.
The proposed two-stage fine-tuning approach, combined
with efficient adaptation techniques and domain-specific
prompting, provides a promising direction for developing
intelligent systems that can assist medical professionals in
interpreting and analyzing medical images.

6. Conclusion

In conclusion, this research demonstrates the effective-
ness of a two-stage fine-tuning approach for adapting the
IDEFICS2 8B model to the medical domain, specifically for
visual question answering tasks. The model’s performance
improvements across various metrics and datasets highlight
its ability to generate precise answers and identify subtle
medical nuances.

The ablation studies and prompting strategy experiments
provide valuable insights into the model’s reliance on visual
information and the potential for domain-specific prompt-
ing to enhance its accuracy and relevance. The qualita-
tive analysis, including human evaluation, offers a more
comprehensive understanding of the model’s strengths and
weaknesses, guiding future research and development ef-
forts.

The results underscore the potential of fine-tuned multi-
modal models in assisting medical professionals and con-
tributing to better patient outcomes. However, the presence
of challenging cases and occasional incorrect answers indi-
cates the need for further improvements in handling com-
plex medical scenarios.

Future work should explore the incorporation of addi-
tional medical datasets and knowledge sources to enhance
the model’s understanding of medical concepts and ter-
minology. Investigating more advanced prompting strate-
gies and few-shot learning techniques could help the model
adapt to new medical imaging modalities and question types
with limited training data.

Moreover, efforts should be made to refine the model’s
responses, reducing the occurrence of plausible but incor-
rect answers and improving its reliability in real-world clin-
ical settings. Collaborative efforts between researchers,
medical professionals, and domain experts will be crucial
in addressing these challenges and ensuring the successful
deployment of such models in healthcare.

In summary, this study demonstrates the potential of the
two-stage fine-tuning approach for adapting large multi-
modal language models to the medical domain, paving the
way for the development of intelligent systems that can
assist medical professionals in interpreting and analyzing
medical images. With continued research and development,
these models have the potential to revolutionize the field of
medical visual question answering and ultimately improve
patient care.

7. Appendices

7.1. External Collaborator

I had one volunteer evaluator, Agustina Saenz (MD,
MPH) who is a practicing MD and post graduate research
at the Rajpurkar Lab at Harvard Medical School as well as
a mentor in the Stanford & Harvard Medical Al bootcamp.
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Figure 3. Model performance on the VQA-RAD dataset improves with increasing amounts of pretraining data from the ROCO dataset (stage
1), followed by fine-tuning on VQA-RAD (stage 2). The base model and fine-tune only model, which do not utilize ROCO pretraining,
show the lowest performance. As the amount of ROCO pretraining data increases from 7K to 55K samples, performance improves but
mostly plateaus after 20K samples. The task-specific VQA-RAD fine-tuning contributes significantly to the model’s performance, while
ROCO pretraining provides additional gains. The Exact Match Accuracy remains around 50% across all models due to the metric’s

sensitivity to yes/no questions, which the base model answers randomly.
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Figure 4. Comparison of finetuning results on medical image captioning (ROCO dataset, left) and visual question answering (VQA-RAD
dataset, right). Each subplot shows the convergence and effectiveness of task-specific training.

7.2. Code

The code for fine-tuning was adapted and inspired from
the Hugging Face notebook, "IDEFICS: Finetuning Demo
notebook™ [3]].

The code is available on my GitHub
https://github.com/csbrendan/CS23 1N
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