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Abstract

Multi-object tracking (MOT) is an important task in com-
puter vision, with applications in number of fields from
surveillance to analyzing hospital interactions. MOT in-
volves simultaneous detection and tracking of objects in
video sequences. There are many challenges in MOT in-
cluding occlusion, varying movements and presence of ob-
jects, and inter-object interactions. From our research, sev-
eral models, like ByteTRACK, use YOLOX, a Faster R-CNN
architecture to do object detection and then apply their
tracking algorithm to associate the objects between frames.
For our project, we aim to understand the impact of apply-
ing transformers to MOT. We have three models: the base-
line ByteTrack model with the YOLOX detector, the Byte-
Track model with a DETR detector, and the Trackformer
with Deformable DETR that uses the transformer architec-
ture end to end, for both detection and tracking. We hoped
to see improvement in performance from the ByteTrack with
YOLOX to ByteTrack with DETR, but our results showed
that ByteTrack with YOLOX, with a MOTA score of 76.4%,
outperformed the other two models, with ByteTrack with
DETR achieving 68.2% and Trackformer with Deformable
DETR achieving 74.1%.

1. Introduction
Multi-Object Tracking (MOT) is a crucial task in com-

puter vision that involves tracking multiple objects as they
move through a series of frames in a video. This problem
is important because it has a wide range of applications,
including autonomous driving, surveillance, and sports ana-
lytics. Our motivation for pursuing this problem stems from
the growing demand for more robust and accurate MOT sys-
tems. In our approach, we explore three different models
for MOT. The first model is the ByteTrack baseline model,
known for its sophisticated association algorithm and han-
dling of low-confidence detections. The second model en-
hances the ByteTrack baseline by replacing its YOLOX de-
tector with the DETR (DEtection TRansformer) detector,
with hope of leveraging the benefits of transformer-based

detection for better performance. The third model is the
Trackformer model with Deformable DETR, which uses
transformers to performs detection and tracking. The input
to our algorithms consists of video sequences where each
frame contains multiple objects to be tracked. For the Byte-
Track baseline and ByteTrack with DETR models, the in-
put is processed using their respective detectors (YOLOX
or DETR) to identify and localize objects in each frame.
These detections are then fed into the ByteTrack algorithm
for tracking. For Trackformer, the input video is directly
processed by the transformer-based model which is then
fed to a transformer-based tracker. The output of our algo-
rithms is a set of trajectories for each tracked object across
the video frames.

2. Related Work

2.1. Object Detection

Object detection is the backbone to multi-object track-
ing. There are two-stage detectors such as Faster R-CNN
[8] that predict bounding boxes with respect to regional
proposals and single-stage detectors like YOLOX [6] and
CenterNet [12] that make predictions with respect to an-
chor boxes or possible object centers (anchor-free methods).
YOLO models are suitable for real-time applications, bal-
ancing speed and accuracy. YOLOX is different from the
earlier YOLO models as it detects in an anchor-free manner
and uses advanced detection techniques such as decoupled
heads and SimOTA for label assignment [6]. DETR, De-
tection Transformer, turns object detection into a direct set
prediction problem, by using self-attention mechanism in
transformer encoders and decoders to capture global depen-
dencies and eliminate the need for heuristics such as anchor-
boxes and Non-Maximum Supression (NMS) [3].

2.2. Tracking Algorithms

Tracking algorithms take in as input the detected bound-
ing boxes and associated information like class labels and
confidence scores from the detectors described above. A
track is initialized for each object when it is detected for
the first time. For each track, the tracking algorithm, tra-
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ditionally SORT or DeepSORT, predicts the object’s next
position in the next frame, typically using a Kalman fil-
ter [2, 10]. These predictions are then matched with the
new detections provided by the detectors, generally using
metrics like Intersection over Union (IOU). The Hungarian
algorithm is often used to ensure that the detection is as-
signed to the closest track prediction [11]. After data asso-
ciation, the tracks are updating, correcting predictions based
on new detections. Tracks that are not associated with de-
tection due to occlusion, for example, are kept for a few
frames for re-identification (to reduce identity switches) but
if they remain unassociated for several consecutive frames,
then those tracks are terminated, with the assumption that
the object has left the scene or is no longer detectable.
Compared to traditional tracking algorithms like SORT and
DeepSORT, ByteTrack utilizes hierarchical data association
to consider both high confidence and low confidence detec-
tions to improve the ability to track objects that are inter-
mittently detected with lower confidence [11].

2.3. Transformer Models in Computer Vision

Transformers, initially introduced in the field of natural
language processing, has revolutionized language model-
ing through self-attention mechanisms and positional en-
codings, capturing long-range dependencies with efficient
parallelization [9]. Inspired by this success, researchers
have extended transformers to computer vision tasks, giv-
ing rise to Vision Transformers (ViTs), which apply trans-
former architectures directly to image or video data for tasks
like image classification and object detection [5]. Models
like DETR [3] and Trackformer [7] use the transformer ar-
chitecture for object detection and tracking, demonstrating
their effectiveness in end-to-end approaches to multi-object
tracking tasks. DETR pioneered direct object detection by
predicting object queries and their corresponding bounding
boxes. Deformable DETR [13] further improved DETR by
only attending to a small set of sampling points around a
reference to mitigate issues such as slow convergence and
limited feature spatial resolution. Trackformer handles both
object detection and tracking within a single unified trans-
former framework.

2.4. Comparative Analysis

Previous work in MOT have focused on improving ob-
ject detection or tracking algorithms. There has been ex-
ploration of combining advanced detection models with ro-
bust tracking algorithms, the specific combination of using
DETR’s powerful detection capabilities with ByteTrack’s
tracking algorithm has not been explored. We use as base-
line the ByteTrack model with YOLOX. Compared to Byte-
Track with YOLOX, the detections will hopefully be more
accurate improving the input for tracking. The important
objective is, however, to see how varying level of incorpo-

ration of transformer architecture into MOT task affects the
accuracy. Therefore, we also run the Trackformer model
with Deformable DETR.

3. Data

3.1. MOT17

The MOT17 dataset is a popular benchmark in multi-
object tracking and comes from the Multiple Object Track-
ing Challenge, which is a benchmark for MOT algorithms.
The dataset is publicly available at the MOTChallenge web-
site [1]. The dataset consists of video sequences capturing
different real-world scenarios such as crowded streets and
occluded objects. Each video sequence contains hundreds
to thousands of frames and each is labeled with bounding
box annotations specifying the position, size and ID of each
object in each frame. There are 14 video sequences, 7 for
training and 7 for testing. For each set, there are 6 videos
that have resolution 1920x1080 and 1 that has resolution
640x480. We use this dataset to train and test all three mod-
els. We pre-processed the dataset by converting the data
into COCO format, as this is the format accepted by the de-
tection models we are using. Figure 1 displays the ground
truth annotations for a single frame of a training sample.

3.2. CrowdHuman

CrowdHuman is a benchmark dataset for evaluating de-
tectors in crowded scenarios and is publicly available at the
CrowdHuman website [4]. It contains 15000 training im-
ages, 4370 validation images and 5000 test images. There is
a total of 470K human instances and 23 persons per image,
accounting for various types of occlusions. Each instance
is annotated with head and full-body bounding-boxes. The
typical resolution of images is 1920x1080. This dataset is
used for the pretrained DETR and YOLOX detectors that
we use in our tracking models. The dataset is pre-processed
to be in the COCO format as well. Figure 2 displays the
ground truth annotations for an sample image.

Figure 1. Ground truth annotations for frame 103 of video se-
quence MOT17-13-FRCNN.



Figure 2. Ground truth annotations for an image from CrowdHu-
man dataset.

4. Methods
We will now describe the three models we will be run-

ning, with increasing incorporation of Transformer archi-
tecture.

4.1. ByteTrack with YOLOX detection

The main objective of ByteTrack is to secure the infor-
mation from bounding boxes with low confidence scores,
especially the bounding boxes of occluded objects. Af-
ter detection, ByteTrack sort bounding boxes to high-
confidence boxes, low-confidence boxes, and background
boxes. Background boxes are abandoned immediately,
but both high-confidence and low-confidence boxes will
be kept. Keeping low-confidence boxes improves tracking
consistence since occluded objects, although having lower
confidence scores, still contain information that could help
the association process between previous and next frames
[11].

BYTE, the detection association of ByteTrack takes a
video sequence with an object detector as input, and outputs
the tracks of the video and the bounding boxes and identity
of the detected objects.

With a detection score threshold, BYTE sorts the bound-
ing boxes to high or low confidence according to the scores
obtained through the detector. Then, they apply Kalman
filter to predict the new locations of each track. After-
wards, there are two association processes. The first sim-
ilarity is computed between high-confidence detection and
the predicted boxes of tracks. The second similarity is com-
puted between low-confidence boxes and the unmatched
tracks from the previous step. The unmatched tracks will
be preserved, and if they exit more than a certain number of
frames, they will be deleted. Lastly, they output the bound-
ing boxes and the identities of the tracks in current frames.

In the original ByteTrack paper, ByteTrack: Multi-
Object Tracking by Associating Every Detection Box, the
authors adopted YOLOX as there detector [6]. This version

of framework, evaluated on the MOT17 dataset, is the base-
line in our project.

YOLOX is an improved version of the YOLO detector.
As seen from Figure 3, it replaced coupled head with decou-
pled head, which improves the converging speed and helps
with the end-to-end architecture. They also simplifies the
training and decoding processes by removing anchors.

4.2. ByteTrack with DETR detection

DEtection TRansformer (DETR) is a detection frame-
work based on a conventional CNN and encoder-decoder
[3]. It simplifies its detection process by dropping compo-
nents that encode prior knowledge. It also detects objects
in sets and predicts all objects at once. Specifically, DETR
utilizes bipartite matching loss and transformer parallel de-
coding, which increase its efficiency. Figure 4 shows the
framework of DETR.

DETR calculates its loss through three steps. First,
it computes bipartite matching between the predicted and
ground truth objects, i.e., the optimal assignment. It does so
by searching for a permutation of N predictions. 1 is the op-
timal assignment, in which Lmatch is the pair-wise matching
cost between the ground truth yi and the prediction ŷσ(i).

σ̂ = argmin
σ∈N

N∑
i

Lmatch(yi, ŷσ(i))(1)

Then, the Hungarian loss is calculated for the pairs
matched in 1, which is a linear combination of the neg-
ative log-likelihood for class prediction and box loss. To
simplify the implementation, they make box predictions di-
rectly, while other researchers make predictions according
to initial guesses. The box loss is a linear combination of
the IoU loss and l1.

4.3. Tracking with Transformer with Deformable
DETR Detection

This method replaces both Detection task and Tracking
task with transformer architecture, implemented with modi-
fication upon TrackFormer [7]. This method follows the fol-
lowing structure: Frame-Level Feature Extraction: Using
Deformable DETR Resnet 50 to extract Feature per frame
in the video sequence. Frame Feature Encoding: Applying
self-attention in a Transformer encoder. Query Decoding:
Utilizing self- and encoder-decoder attention in a Trans-
former decoder. Mapping Queries: Converting queries to
box and class predictions. Objects are implicitly repre-
sented in the decoder queries, which act as embeddings that
the decoder uses to output bounding box coordinates and
class predictions. The decoder employs two types of atten-
tion mechanisms: Self-Attention: Applied over all queries,
this mechanism enables joint reasoning about the objects
within a scene; Encoder-Decoder Attention: This provides



Figure 3. Comparison between coupled and decoupled head frameworks for YOLO.

Figure 4. DETR framework. DETR uses CNN as backbone and uses the encoder-decoder method to predict parallely.

the queries with global access to the visual information en-
coded in the features.

Tracking with attention with queries
The set of output embeddings in this method is initialized

with two types of query encodings: Static Object Queries:
These queries allow the model to initialize tracks at any
frame of the video. Autoregressive Track Queries: These
queries are responsible for tracking objects across frames.

When new objects appear in the scene, they are detected
by a fixed number of Nobject output embeddings, each ini-
tialized with a static and learned object encoding, referred to
as object queries. Each object query is designed to predict
objects with specific spatial properties, such as bounding
box size and position. The decoder’s self-attention mecha-
nism utilizes these object encodings to avoid duplicate de-
tections and to understand the spatial and categorical rela-
tionships between objects.

Track queries follow objects through a video sequence,
retaining their identity information while adapting to their
changing positions in an autoregressive manner. Each new
object detection initializes a track query with the corre-
sponding output embedding from the previous frame. The
Transformer encoder-decoder performs attention on frame

features and decoder queries, continuously updating the
instance-specific representation of an object’s identity and
location within each track query embedding. Self-attention
over both query types allows for detecting new objects
while avoiding re-detection of already tracked ones. The
Process is as follows:

• Initialization: In frame t = 0, initial detections spawn
new track queries for corresponding objects, which
follow these objects to subsequent frames.

• Object Queries: Nobject object queries (white) are de-
coded to output embeddings for potential track initial-
ization. Each valid object detection {b00, b01, . . .} with
a classification score above σobject (not predicting the
background class) initializes a new track query embed-
ding.

• Track Queries: At any frame t > 0, track queries ini-
tialize additional output embeddings associated with
different identities (colored). The combined set of
Nobject + Ntrack output embeddings is initialized by
learned object queries and temporally adapted track
queries.



Figure 5. Transformer Tracking model adapted and modified from TrackFormer

Once again, non-maximum suppression (NMS) is used
to remove duplicate bounding boxes.

Tracker enables short-term re-identification of track
queries using an attention-based process. Removed track
queries are kept for up to Ttrack-reenter frames and can be re-
activated if their classification score exceeds σtrack-reenter.

For feature extraction per frame, Deformable DETR is
used for its flexibility and robustness which makes adapting
it to the tracker easier as well as improved accuracy on small
objects due to deformable attention, which allows the model
to focus on a small, adaptive set of sampling points around
a reference point. This is beneficial to large crowd public
detection tasks.

5. Experiments, Results, and Discussion

5.1. Experiments & Evaluation Metrics

We used pretrained models from YOLOX and DETR as
well as Deformable DETR for detection, since those rely
on large training which would be computationally exhaus-
tive to retrain. Deformable DETR methods are reimple-
mented with adjustments for tracking tasks described in
tracking transformer model. DETR detections are refor-
mulated and calculated with object confidence, class con-
fidence, and class prediction. Since all datasets are prepro-
cessed to align with COCO format, COCO class number of
92 is used with human label = 1. Similar to YOLOX post-
processing, DETR detections are converted from

[xcenter, ycenter, w, h]

to
[x0, y0, x1, y1]

. Different from YOLOX post-processing, which follows a
similar raw output format

[xcenter, ycenter, w, h]

but values are absolute pixel values as opposed to rela-
tive to image values for DETR. NMS is applied to both
YOLOX and DETR outputs with nms threshold =0.45 and
objects are filtered out with confidence threshold = 0.7. De-
formable DETR does not need NMS applied. Detection out-
puts are then fed into trackers.

Multi-object tracking (MOT) performance is evaluated
using a variety of metrics. Identification metrics like IDF1,
IDP (Identity Precision), and IDR (Identity Recall) assess
the accuracy of identity matching by combining precision
and recall. Detection and tracking metrics include Recall
(Rcll) and Precision (Prcn), which measure the ability to
detect all objects and the accuracy of these detections, re-
spectively. Ground truth and detection metrics such as
GT (Ground Truth), MT (Mostly Tracked), PT (Partially
Tracked), and ML (Mostly Lost) quantify the completeness
of tracking trajectories. Error metrics like FP (False Pos-
itives), FN (False Negatives), IDs (ID Switches), and FM
(Fragmentations) indicate various tracking errors. Overall
metrics like MOTA (Multiple Object Tracking Accuracy)
and MOTP (Multiple Object Tracking Precision) provide
comprehensive performance evaluations, with MOTA con-
sidering false positives, false negatives, and ID switches,
and MOTP measuring the precision of object positions.
Identity-based metrics such as IDt (ID Transfer), IDa (ID
Ambiguity), and IDm (ID Matching) further assess the con-
sistency and accuracy of object identity assignments. High
values in metrics like IDF1, IDP, IDR, Rcll, Prcn, MT, and
MOTA indicate better tracking performance, while low val-
ues in FP, FN, IDs, and FM are desirable.

MOTA = 1− FP + FN + IDs
GT

(2)

where FP is the number of False Positives, FN is the number
of False Negatives, IDs is the number of identity switches,
and GT is the number of ground truth objects.



5.2. Results

Please refer to Table 1 and Figure 6.

Table 1. Methods MOTA evaluated on MOT17 Test video se-
quences for public detection

ByteTrack
w/
YOLOX

ByteTrack
w/ Detr

Transformer
Tracking w/
Deformable
Detr

MOT17-13-
FRCNN

77.4% 45.7% 60.3%

MOT17-10-
FRCNN

70.0% 59.0% 67.0%

MOT17-02-
FRCNN

87.6% 62.8% 89.7%

MOT17-05-
FRCNN

76.7% 79.0% 71.3%

MOT17-11-
FRCNN

53.4% 63.3% 64.7%

MOT17-09-
FRCNN

69.8% 63.2% 75.5%

MOT17-04-
FRCNN

83.2% 83.0% 83.6%

OVERALL 76.4% 68.2% 74.1%

Figure 6. Methods MOTA Evaluation on Various MOT17 Test Sets

5.3. Discussion

In this work, we evaluated the performances of three
MOT models with the MOT17 dataset. Overall, the MOTA
score of ByteTrack with YOLOX outperforms those of
ByteTrack with DETR and Transformer Tracking with De-
formable DETR, while the later has a better performance.
The performances of ByteTrack with YOLOX went down
a bit compared to the original paper, which had a MOTA
score of 80.3 on the MOT17 leaderboard.

One key could be the issue of compatibility between
YOLOX and the ByteTrack tracker, which results in a high
overall performance. This suggests that YOLOX’s detec-
tion capabilities align well with ByteTrack’s tracking ap-
proach, leading to effective object tracking.

In contrast, replacing YOLOX with DETR in ByteTrack
leads to a notable decline in performance. This drop could
indicate potential compatibility issues between DETR’s de-
tection outputs and ByteTrack’s tracking algorithm, since
DETR still performs well on Recall and Precision metrics,
which indicates decent detection. Despite DETR’s robust
detection capabilities, its representation might not integrate
seamlessly with the ByteTrack tracker. With better fine-
tuning or combined training, it is possible that accuracy im-
proves.

Improvement is observed when both detection and track-
ing are handled by transformer-based methods in the Trans-
former Tracking configuration. This approach leverages the
strengths of Deformable DETR for detection and a trans-
former tracker, resulting in a more cohesive and effective
framework. The performance of this configuration suggests
that transformers offer a robust and compatible solution for
both detection and tracking, enhancing overall tracking ac-
curacy. The deformable nature of DETR likely contributes
to its robustness, handling various detection scenarios more
effectively. However, the baseline ByteTrack still leads in
terms of MOTA performance.

6. Conclusion and Future Work
In this report, we evaluated three different MOT mod-

els: the ByteTrack baseline model, the ByteTrack model
with the DETR detector, and Transformer Tracking. Our
goal was to enhance MOT performance by integrating ad-
vanced detection models and tracking algorithms, address-
ing the limitations of traditional methods in dealing with
occlusions and maintaining track consistency in crowded
scenes. Our experiments found that the ByteTrack model
with the YOLOX detector outperformed the other two mod-
els. This model’s success can be attributed to YOLOX’s
strong performance in object detection, combined with
ByteTrack’s robust tracking capabilities, resulted in better
accuracy and consistency in tracking multiple objects across
video frames. Surprisingly, the ByteTrack model with the
DETR detector did not perform as well as expected. De-
spite DETR’s promise in providing accurate and contextual
object detection through its transformer-based architecture,
the integration with ByteTrack did not yield the anticipated
improvements. This could be due to several factors, includ-
ing possible mismatches in detection and tracking strate-
gies, or the need for further tuning and optimization of
the combined system. Trackformer demonstrated compet-
itive performance but still fell short of the ByteTrack with
YOLOX model as it may require additional refinement and



optimization. For future work, given more time, team mem-
bers, and computational resources, we would like to inves-
tigate the integration of DETR with ByteTrack more thor-
oughly, focusing on optimizing the interaction between de-
tection and tracking stages, incorporate data augmentation
for challenges like occlusions and varying lighting condi-
tions, use different evaluation datasets for more rigorous
testing. In conclusion, our study highlights the potential of
combining advanced detection models with robust tracking
algorithms to improve MOT performance. While the Byte-
Track model with YOLOX emerged as the best performer,
further research and optimization could unlock additional
improvements, paving the way for more accurate and reli-
able MOT systems in various applications.

7. Contributions

Sureen: Formulated idea of integrating DETR with
ByteTrack and worked on all sections of the report, espe-
cially Abstract, Introduction, Related Work, Data, Evalua-
tion Metrics, Conclusion/Future Work and References.
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DETR, implemented Transformer Tracking with de-
formable DETR, conduct experiment and obtained results.
Worked on the following sections in the report: Methods
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