
Movement Hacks in Video Games using Visual Input Only

Yvette Lin
Stanford University
yvelin@stanford.edu

William Song Liu
Stanford University
wiliu@stanford.edu

Abstract

The popularity of video games worldwide means that in-
evitably, some players will turn to scripts/hacks to cheat. To
combat this, games implement a wide variety of anticheat
measures that prevent tampering with game files or reading
memory. However, a cheat which relies on visual only input
is difficult to detect or prevent, since it only information al-
ready available to the player. To this end, real-time object
detection models such as YOLO offer a promising approach.
However, finetuning these models is challenging, as it usu-
ally requires hand-annotating game objects visually unique
to each video game. To this end, we propose an approach to
building vision-only video game hacks by leveraging a seg-
mentation foundation model for dataset creation and fine-
tuning an object detection model, which can be used for the
downstream task of the video game cheat. This approach
avoids manually hand-annotating data and requires human
input on as little as a single frame of gameplay video. We
demonstrate our approach on the task of dodging enemy
projectiles in the popular video game League of Legends,
successfully creating a cheat that is able to perform correct
movement inputs to avoid enemy projectiles based on vi-
sual information only. Through quantitative and qualitative
evaluations, we demonstrate the feasibility of this approach,
hopefully providing directions for the improvement of mod-
ern anticheat systems.

1. Introduction
A problem that every online multiplayer video game

needs to face is the existance of cheaters. If not managed
well, rampant cheating can ruin the experience of legiti-
mate players, leading to poor reviews and overall frustra-
tion. To combat this, most video games implement some
form of anticheat. These measures can range from encrypt-
ing the code base to prevent reverse engineering, file hash-
ing to verify the integrity of files, obfuscating memory to
prevent the reading of game values during play, and even
detect and block other programs that may be trying to in-
terfere with the game process [12]. Even with all of these

measures in place, there is a type of cheat program that may
be much harder to detect than others—a program that does
not need to read or write from memory or the game files at
all, a visual-only cheat. In this paper, we aim to demon-
strate the ease and practicality of creating such a cheat on a
single-player game, in order to encourage the development
of more advanced anticheat methods.

We propose a machine-learning approach to automate a
common task found across many top-down video games—
dodging projectiles—using only visual information. A de-
piction of this task is shown in Figure 1; namely, the
player character (right) must input a movement command
to avoid a dangerous projectile cast by the enemy charac-
ter (left). Precisely, we propose to fine-tune the real-time
object detection foundation model You Only Look Once
(YOLO) [17] to detect elements in the game, including the
player, enemies, and projectiles.

Figure 1. Example task, projectile to dodge. The enemy charac-
ter (left) casts a dangerous projectile rightward toward the player
character (right). To avoid being hit, the player in this example
should move up or down to move out of the projectile’s path. This
example is taken from the popular video game League of Legends.

Object detection approaches that are similar to ours (us-
ing a finetuned foundation model such as YOLO) have
been previously demonstrated for aimbots for first-person
shooter (FPS) games [4, 5, 10, 18], but our work addresses
a distinct challenges compared to previous projects. The
objects of interest in FPS games tend to be humanoid, so a

1



pretrained human figure detector has the potential to work
out of the box. Additionally, when these methods require
further finetuning, they are finetuned on hand-labeled data,
which is a time-consuming process.

To summarize our problem, our input is frames of a
video game as would be displayed on screen for a human
player, possibly in a game state where a dangerous projec-
tile is being thrown at the player character, and our desired
output is the correct sequence of actions (movement input)
to avoid such a projectile if necessary, with the constraint
that we do not have access to hand-labelled training data
a priori, and want to limit the amount of additional human
supervision needed to train our model.

To these challenges, we propose to leverage the power
of a segmentation foundation model such as the Segment
Anything Model (SAM) [11]. We use SAM to automat-
ically segement out the objects of interest and propose a
data processing pipeline that generates training data requir-
ing human supervision on object classification on just one
frame of a short gameplay video. We use this training data
to finetune our object detector, which then provides the vi-
sual information needed to perform our end task of dodging
projectiles.

We demonstrate our method on the task of dodging
“skillshots” (projectiles thrown by enemy players) in the
popular MOBA game League of Legends. We evaluate the
objection detection and task performance capabilities of our
method, demonstrating the possibility of easily creating au-
tomated agents to cheat at this common task in video gam-
ing without the need for hand-labeled data. Through our
work, we hope to raise awareness about current cheat ca-
pabilities and provide directions in which anticheat systems
should improve.

2. Related Works

2.1. Deep Learning to Play Video Games

There have been many prior visual video game playing
projects, the most notable of which include DeepMind’s in-
vention of the Deep-Q Learning (DQN) architecture, which
used Convolutional Neural Networks (CNNs) to approxi-
mate the optimal policy Q∗ in the Atari 2600 games (also
known as Atari-57 as there are 57 games) [15]. Since then,
numerous improvements have been made to DQNs on the
Atari-57 suite of games [8, 2, 1]. While the performance of
these models are impressive, Atari games are visually very
simple compared to most other games, so it may be difficult
to apply the same techniques in modern video games.

A somewhat visually more complex game and series of
gameplay agents arose from the Visual Doom AI Competi-
tion (ViZDoom), a fast and lightweight implementation of
the classic 3D first person shooter game Doom [9]. In the
second edition of the competition, automatic object labeling

was implemented into the engine, allowing competitors to
reference the bounding box, position, rotation, and move-
ment of game objects during training [20]. One such bot,
YanShi, took advantage of this information to train a Region
Proposal Network (RPN) that identified the location of re-
sources and enemies at runtime, obtaining second place in
the competition with previously unseen environments [20].
YanShi proved the viability of two-module approaches to
video game playing tasks, with an object detection module
working in tandem with a reinforcement learning module.

2.2. Vision-based Cheats

We find that most of the vision-based cheats with meth-
ods available [4, 5, 10, 18] take a similar approach to ours
in that they tend to use a finetuned YOLO object detector.
However, unlike our work, the majority of the focus using
this approach has been on first-person shooter (FPS) games,
usually with the goal of creating aimbots. Additionally, our
task is potentially more challenging due to the lesser amount
of realism in our chosen game: many available pretrained
object detectors are capable of detecting humanoid figures,
as this is a popular task across multiple domains, compared
to the appearance of magical projectiles, which do not have
to resemble any type of common object, so are unlikely
to be detected out-of-the-box. Additionally, finetuning to
a specific game’s visuals is still often required, and in the
example projects we have knowledge of, this was done on
hand-annotated data, potentially making development slow
and tedious.

3. Methods
We present a pipeline to train an object detection model

to accomplish a novel downstream task in video games
(here, dodging enemy projectiles), without the need to te-
diously hand-annotate data, which would be normally be
required to finetune a model to recognize usually out-of-
original-distribution game objects. Our insight is that we
may leverage a segmentation foundation model such as
SAM [11] to perform most of the data annotation that would
normally be required, resulting in a dataset creation step
that in our approach requires minimal human supervision.
We now describe our proposed approach end-to-end, from
dataset creation (Section 3.1), to training the model (Sec-
tion 3.2), to the resulting movement input (Section 3.3) as a
result of the object detection. Figure 2 presents an overview
of our approach.

3.1. Dataset Creation from Segmentation

To obtain the data using to finetune our YOLO object de-
tector, we start with a short screen-recorded gameplay video
gathered by one of the authors. First, we crop the video to
remove some of the user interface elements that are irrel-
evant to our task. We use SAM to automatically generate

2



(a) Reference segment (b) Segment train image (c) Annotate train image (d) Train object detector

Figure 2. Dataset creation and finetuning object detection. (a) First, we segment each frame and choose a single (or small number of)
frame(s) where the projectile is visible. We use the corresponding object mask to compute heuristics H. (b) Now, to prepare the dataset,
we segment each of the train/val/test images and (c) computationally identify and annotate the objects of interest using similarity in the
heuristics H. (d) We now finetune the YOLO object detector to detect projectiles, informing the player of the correct movement input to
dodge.

segments
{
M

(1)
t , . . . ,M

(Kt)
t

}
for each frame X̃t. We ar-

bitrarily choose a single (or small number of) frame(s) X̃∗

where a projectile is visible and manually identify the seg-
ment M∗ corresponding to the projectile. Hence, for this
single frame X̃∗, we now obtain an annotation for our ob-
ject of interest, allowing it to be used as training data to
finetune the YOLO object detector. This step is depicted in
Figure 2(a).

We want to now extend this to the remaining frames of
the video: concretely, for each X̃t ∈ {X̃1, . . . , X̃T̃ } \ X̃∗,
if it exists in that frame X̃t, we wish to find M∗

t ∈{
M

(1)
t , . . . ,M

(Kt)
t

}
the segment that corresponds to the

same type of object (a projectile) as M∗. (Note that this
does not need to necessarily be the same game object as
M∗, as many such projectiles may be fired over the course
the video; instead, M∗ serves as a visual reference to iden-
tify M∗

t .) To do this, we identify the segment M∗
t ∈{

M
(1)
t , . . . ,M

(Kt)
t

}
that most resembles M∗ according to

a set of heuristics H, given that it is sufficiently close to
M∗ for each hj ∈ H; else, we assume that a projectile is
not present in X̃t. Concretely,

M∗
t = argmin

M
(i)
t ∈

{
M

(1)
t ,...,M

(Kt)
t

}
∑
hj∈H

dj(hj(M
∗), hj(M

(i)
t ))

(1)

where dj(·, ·) is a distance metric (we choose the L1 dis-
tance for all j), given that

dj(hj(M
∗), hj(M

∗
t )) < δj (2)

for all j for a minimum threshold δj . Otherwise,
M∗

t = ∅. We found the set of heuristics H =
{AREA, AVERAGECOLOR} to work well. These steps are
depicted in Figure 2(b,c).

Additionally, to avoid false positives when using this
heuristic approach, we prefer to set the thresholds δj lower
rather than higher. We then additionally perform a discard
step where we discard all the frames where a segment corre-
sponding to the projectile was not found, thus removing all
false negatives, and keep the remaining frames for use in our
dataset. This step has the potential to introduce greater mis-
match between the true distribution of data and our dataset,
but empirically we find that this increases the performance
of the object detector—i.e. incorrect annotations are more
harmful than lack of data.

Finally, after applying this data processing, we obtain
an annotated training data set that is used to finetune the
YOLO object detector, with human supervision only explic-
itly needed on one image.

3.2. Finetuning Object Detector

We finetune the pretrained YOLOv8n model [6] with the
training data from Section 3.1 to obtain an object detec-
tor capable of recognizing projectiles in gameplay images.
This step is depicted in Figure 2(d). YOLOv8n is pretrained
on the COCO dataset [14] and is chosen over the other avail-
able pretrained models from [6] for fastest inference time.
Additionally before training, we apply to our created dataset
(the output of Section 3.1) various data augmentation meth-
ods (random crop, scale, flip, color jitter) provided in the
training pipeline of [6].

3.3. Player Movement

Now, at inference time, consider a short video sequence
of recent frames output from the video game {X1, . . . , XT }
in which a projectile is consecutively visible for all frames.
For each frame Xt ∈ {X1, . . . , XT }, we obtain the location
pproj
t of the projectile via the finetuned object detector. We

assume that the player character is at a fixed known loca-

3



Figure 3. Metrics vs. number of train epochs. We show the bounding box loss, classification loss, and Distribution Focal Loss (DFL) for
the train and validation sets, as well as the precision, recall, and mean average precision at a threshold of 0.5 (mAP50) and across the range
of 0.5 to 0.95 (mAP50-95).

tion pcharthroughout all frames (this is easily be satisfied in
our case by placing the game in so-called “locked camera”
mode).

The velocity of the projectile vproj
T relative to our charac-

ter is estimated by

vproj
T =

1

T − 1

T−1∑
t=1

(pproj
t+1 − pproj

t ). (3)

Let v̂proj
T = vproj

T /∥vproj
T ∥. Then

t = (pchar − pproj
T ) · v̂proj

T (4)

is the projected length of pchar onto the line pproj
T + tv̂proj

T .
If t < 0, this indicates that the projectile is travelling away
from our character, so we are not in danger of collision.

However, in the case that t ≥ 0, we are still in danger of
collision. In this case, we compute the distance of pchar to
the line as

d = ∥(pchar − pproj
T )− ((pchar − pproj

T ) · v̂proj
T )v̂proj

T ∥ (5)

If the distance is within some threshold d < δ, where δ
is determined by the size of the projectile and character
models, the projectile is on course to hit the character, and
we must move the character to avoid collision. We choose
to simply move the character perpendicular to the direc-
tion v̂proj

T = (xproj
T , yproj

T ) of the projectile, in the direction
(−yproj

T , xproj
T ) (note that (yproj

T ,−xproj
T ) would also suffice).

4. Experimental Results
4.1. Implementation

To create our dataset according to the method described
in Section 3.1, we use ∼2000 frames of screen-recorded
gameplay footage created by one of the authors, with an
80%/10%/10% train/val/test split. To segment the images,
we used the default SAM hyperparameters, except we re-
duce the points-per-side from 32 to 16 to prevent the auto-
matic mask generator from creating too finely-grained seg-
ments. After discarding, we are left with a final dataset size
of around ∼300 images to finetune YOLO.

To finetune the YOLO object detector, we use the de-
fault hyperparameters in the [6] implementation and train
for 150 additional epochs. We train the object detector
on an NVIDIA GeForce RTX 3090 GPU (∼10 minutes);
however, once we finish training, we export the model to
ONNX [3] to perform inference on CPU.

4.2. Object Detection

We evaluate the performance of our finetuned object de-
tector. Since we don’t have ground-truth labels for locations
and bounding boxes in our self-collected dataset without la-
beling these by hand across a large number of frames, which
is somewhat tedious, we approach this evaluation question
in two different ways.

First, we evaluate the object detection capability of our

4



Figure 4. Curves for several metrics. Precision-recall (top left), precision-confidence (top right), recall-confidence (bottom left), and
F1-confidence (bottom right) curves.

finetuned detector assuming that the data that it sees (as a
result of Section 3.1) is the ground truth. Even if this as-
sumption is not necessarily true in all cases, these evalua-
tions show that our process of finetuning the YOLO object
detector indeed results in a model that is able to successfully
learn the relationships represented in the data. A reason-
able performance here is also an indicator that our dataset
creation process results in semantically meaningful labels,
rather than pure noise, as it indicates that there exists some
signal that the object detector is able to learn.

To this end, in Figure 3 we show the bounding box loss,
classification loss, and Distribution Focal Loss (DFL) [13]
(which is a loss associated with the distribution of bound-
ing box offsets, capturing uncertainty in box location) for
the train and validation sets over the training epochs. Ad-
ditionally, for these epochs, we show the precision, recall,
and two mean average precision (mAP)-based metrics. The

5



mAP is defined as

mAP =
1

n

n∑
k=1

APk (6)

where n is the number of classes and APk is the average
precision of class k. The mAP50 is the mAP calculated at an
intersection over union (IoU) threshold of 0.5. The map50-
95 is the average mAP calculated at IoU thresholds across
the 0.5 to 0.95 range. We chose to stop the training at 150
epochs to prevent overfitting as this is where the validation
losses and metrics begin to plateau.

In Figure 4, we show the precision-recall, precision-
confidence, recall-confidence, and F1-confidence curves. In
Table 1 we report our final mAP50 and mAP50-95 scores.
To our knowledge, there are no existing public or open
source baselines on the same task we are trying to accom-
plish, so just to provide a point of comparison, we make
a comparison to YOLOv8n and YOLOv8x (the most pow-
erful pretrained model provided by [6]), on the COCO
dataset. Again note this is not meant to be a fair compar-
ison, since the COCO task is much more difficult with 80
different classes, but just meant to provide a sense of scale
for this metric.

Method mAP50 (↑) mAP50-95 (↑)
Ours, on created dataset 99.5 86.4
YOLOv8n, on COCO – 37.3
YOLOv8x, on COCO – 53.9

Table 1. Mean average precision (mAP50 and mAP50-95) for our
model. Due to the lack of existing baselines, we provide met-
rics of the base model (YOLOv8n) and a more powerful version
(YOLOv8x) on their original task (COCO). Note that this is not
meant to be a fair comparison, but to just provide a sense of scale.

Additionally, we show the normalized confusion matrix
in Figure 5. All together, these metrics show strong perfor-
mance on the created dataset, validating that our finetuned
model is able to learn the relationships in the data, and that
there is a strong underlying signal present in our data.

Second, we report the binary accuracy of the detector in
terms of the proportion of frames in which the detector is
simply able to correctly report whether there exists a pro-
jectile in the frame, as it is much easier to engineer/label
a test set ground truth for this by hand. In practice, we do
this by picking equal-length video clips where a projectile is
visible and not visible for the entire duration, with an equal
number of frames where a projectile is/isn’t visible.

In Table 2 we show results for the object detection capa-
bility of our finetuned object detector using this binary ac-
curacy metric. We compare against the baseline of a YOLO
object detector with no finetuning. Since the pretrained
YOLO detector without finetuning has no understanding of

Figure 5. Normalized confusion matrix.

what the projectile is supposed to look like since it is out of
distribution of the original dataset using for pretraining, it
is unable to detect the projectile at all, so this result is ex-
pected. Our finetuned detector shows stronger performance.

Method Binary Accuracy (↑)
Ours (w/ finetuning) 95.8%
YOLOv8n (w/o finetuning) 0.0%

Table 2. Binary accuracy of object detection. This is the proportion
of frames where the binary presence (is/is not present in the frame)
of the projectile was detected correctly.

Qualitatively, we note that the failure cases tend to be
false negatives (projectile is in frame but not detected)
where the projectile is too close to the edge of the screen
or to the enemy character. Examples of these are shown in
Figure 6. In practice, we do not expect this to be a problem
for our movement strategy, since the projectile just needs
to be visible for a sufficient number of frames to trigger
the player character, which is located near the center of the
screen, to move.

We additionally perform an ablation test to validate the
discard step described in Section 3.1. Table 3 shows the
mAP50 and mAP50-95 for our object detector with and
without this step, showing that this step indeed improves
performance.

4.3. Movement

We wish to evaluate whether given the detected objects,
our method is able to successfully evade thrown projectiles.
Note that, to our knowledge, there do not exist any publicly
available open-source cheats or scripts to accomplish our

6



Success Failure: Too close Failure: Clipped by edge of screen

Figure 6. Example success and failure cases. Left: a successful detection. Middle: an example failure, caused by the projectile being too
close to the character that fired it. Right: an example failure, caused by the projectile being clipped by the edge of the screen.

Method mAP50 (↑) mAP50-95 (↑)
Ours 99.5 86.4
Ours w/o discard step 85.9 74.1

Table 3. Mean average precision (mAP50 and mAP50-95) w/ and
w/o discard step.

specific end task of dodging League of Legends skillshots,
so it is difficult to compare performance on our end task to
a previously published baseline.

To evaluate our method, we have a character controlled
by our movement cheat play vs. a human player. The two
players move around and vary their position around the map
across this experiment. For each trial the human player then
fires a projectile directly at the cheating player. We report
the proportion of times the cheating player is able to suc-
cessfully avoid being struck by the projectile in Table 4.
Note that we split the trials into two categories, long-range
and short-range. Long-range refers to trials in which the
two players were at a distance apart that is at or near the
maximum travel distance of the projectile ability, and short-
range refers to all other cases. We report our results this
way because we notice qualitatively that while our method
successfully detects the projectile most of the time in all
cases (both long-range and short-range), the cheat is a bit
too slow to move the character fully out of the way before
the projectile hits if the projectile travel distance is lower.
Addressing this limitation by improving the speed of either
model inference or game interfacing is a possible direction
for future work.

Additionally, we provide a video supplement showing
examples of our cheat at work.

Trial distance Proportion dodged
Long-range 90%
Short-range 0%

Table 4. Proportion of projectiles dodged. The trials fall into two
categories, long-range and short-range, describing the distance
between the human player and the cheating player

Undetectability? Certainly not definitive proof, but the
authors of this paper did not receive any bans or suspensions
on their League of Legends accounts throughout working
on this paper, despite the use of a kernel-level anticheat in
League of Legends, which perhaps points in the favor of the
undetectability of this method by current anticheat systems.

5. Conclusion
In this work, we propose an approach to creating

difficult-to-detect cheats for video games based on visual
information only, while minimizing the tedious process of
hand-annotating data to for objects unique to each video
game to finetune an object detection model. Our insight is
that a segmentation foundation model can be used to greatly
speed up and automate the annotation process. We demon-
strate the feasibility of this approach on the task of automat-
ically dodging projectiles in the popular video game League
of Legends. While there have been vision-based cheats for
FPS games, to our knowledge, we are the first (at least in an
academic setting) to tackle this task with this approach.

5.1. Limitations and Future Work

While we demonstrate our method on a specific video
game, our method should be extensible to a variety of tasks
across different games, which might be an exciting avenue
for future work. However, one limitation of our method is

7



that we are able to use fairly simple heuristics in the dataset
creation step due to the relative visual simplicity of League
of Legends being a top-down game. Extending this ap-
proach to very visually complex games will require more
complex heuristics; one possibility is using CLIP [16] sim-
ilarity. Another limitation is that our input movement com-
mands through mouse movements and actions remain quite
“inhuman” and thus could flag our account for suspicion by
a sophisticated enough anticheat system. One interesting di-
rection for future work would be to combine with machine
learning-based methods aimed at generating human-like be-
havior, such as in [7] and [19].

Contributions and Acknowledgements
Yvette designed and implemented the dataset creation

and YOLO finetuning pipeline. William implemented the
movement strategy and interfacing inputs/outputs to the
game.

References
[1] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann,

A. Vitvitskyi, Z. D. Guo, and C. Blundell. Agent57: Outper-
forming the atari human benchmark. In International con-
ference on machine learning, pages 507–517. PMLR, 2020.

[2] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot,
S. Kapturowski, O. Tieleman, M. Arjovsky, A. Pritzel,
A. Bolt, et al. Never give up: Learning directed exploration
strategies. arXiv preprint arXiv:2002.06038, 2020.

[3] J. Bai, F. Lu, K. Zhang, et al. Onnx: Open neural network
exchange. https://github.com/onnx/onnx, 2019.

[4] Y. Cheng. Character detection in first person shooter game
scenes using yolo-v5 and yolo-v7 networks. In 2023 2nd In-
ternational Conference on Data Analytics, Computing and
Artificial Intelligence (ICDACAI), pages 825–831. IEEE,
2023.

[5] Y. Cui, M. Si, and Q. Li. Game image detection and applica-
tion based on improved yolov5. In 2023 IEEE 2nd Interna-
tional Conference on Electrical Engineering, Big Data and
Algorithms (EEBDA), pages 1012–1017. IEEE, 2023.

[6] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics YOLO, Jan.
2023.

[7] A. Kanervisto, T. Kinnunen, and V. Hautamaki. Gan-
aimbots: Using machine learning for cheating in first person
shooters. IEEE Transactions on Games, PP:1–1, 01 2022.

[8] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and
W. Dabney. Recurrent experience replay in distributed rein-
forcement learning. In International conference on learning
representations, 2018.

[9] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaśkowski. Vizdoom: A doom-based ai research platform
for visual reinforcement learning. In 2016 IEEE conference
on computational intelligence and games (CIG), pages 1–8.
IEEE, 2016.

[10] O. Kermad. Neuralbot. https://github.com/
kermado/NeuralBot, 2020.

[11] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo,
P. Dollár, and R. Girshick. Segment anything, 2023.

[12] S. Lehtonen et al. Comparative study of anti-cheat methods
in video games. University of Helsinki, Faculty of Science,
2020.

[13] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and
J. Yang. Generalized focal loss: Learning qualified and dis-
tributed bounding boxes for dense object detection, 2020.

[14] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European Conference on Com-
puter Vision, 2014.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[16] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision, 2021.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection, 2016.

[18] RootKit-Org. Ai-aimbot. https://github.com/
RootKit-Org/AI-Aimbot, 2024.

[19] T. Witschel and C. Wressnegger. Aim low, shoot high: evad-
ing aimbot detectors by mimicking user behavior. In Pro-
ceedings of the 13th European workshop on Systems Secu-
rity, pages 19–24, 2020.

[20] M. Wydmuch, M. Kempka, and W. Jaśkowski. Vizdoom
competitions: Playing doom from pixels. IEEE Transactions
on Games, 11(3):248–259, 2018.

8

https://github.com/onnx/onnx
https://github.com/kermado/NeuralBot
https://github.com/kermado/NeuralBot
https://github.com/RootKit-Org/AI-Aimbot
https://github.com/RootKit-Org/AI-Aimbot

