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Abstract

The latest advancements in large pre-trained models
offer a cost-efficient and high-performance approach to
developing models for downstream domains via transfer
learning. However, balancing target domain knowledge ac-
quisition with general knowledge preservation is challeng-
ing. In this work, we propose a multi-domain transfer learn-
ing method leveraging recent efficient knowledge fusion
techniques in deep neural network training. Specifically,
we formulate the task as a sequential fine-tuning paradigm
where the pre-trained foundation model serves as the ini-
tial starting point, and each fine-tuned model based on the
previous domain serves as the starting point for the next.
We apply tangent linearization for improved model editing
performance and PCGrad for conflicting gradient calibra-
tion. Experiments with the CLIP model on multiple image
classification tasks show that our proposed sequential train-
ing strategy significantly outperforms separate fine-tuning
and weight interpolation. Our results demonstrate that tan-
gent linearization and conflicting gradient calibration en-
hance the model’s ability to preserve knowledge across do-
mains, providing a flexible method for balancing target do-
main knowledge acquisition with general knowledge preser-
vation.

1. Introduction
Large pre-trained vision models, developed through data

and resource intensive training, embed vast prior informa-
tion that is essential for a wide range of domains. When
facing new tasks from different domains, a common and
cost-effective practice is to perform transfer learning with
these large pre-trained models, to leverage their valuable
prior knowledge. In scenarios where multiple downstream
tasks need to be addressed, one solution is to train a model
specialized in each task separately. An alternative solution
is to train a more versatile model that is capable of solving
a broad scope of tasks. The latter approach offers several
potential advantages, including better resource efficiency,
simpler deployment, higher maintainability and scalability,

potential positive transfer, and increased robustness to dis-
tribution shift. In this work, we focus on the latter approach.

A key challenge in combining information from differ-
ent domains, is to strategically leverage common knowl-
edge while minimizing conflicts in model weight updates.
Several research efforts have been made to address this
challenge by interpolating model weights [10][20][32] or
strategically calibrating weight updates to alleviate conflicts
[18][20][36].

In this work, we explore multi-domain transfer learning
on image classification tasks by leveraging large pre-trained
vision models, such as CLIP [23]. Our proposed idea is
to fine-tune a versatile model on multiple target tasks in
tangent space through linearization [20]. During the opti-
mization process, we perform conflicting weights calibra-
tion [36][18] to balance general knowledge and domain-
specific knowledge preservation. We sequentially fine-tune
each domain and iteratively transfer to a new domain by ini-
tializing the model with the weights fine-tuned on the pre-
vious domain.

We conduct experiments on 8 image classification tasks,
including EuroSAT [7], RESISC45 [1], Cars [14], DTD [2],
GTSRB [8], MNIST [3], SUN397 [34] [33], and SVHN
[19]. The first 4 tasks are selected as target tasks that are ex-
plicitly optimized during the fine-tuning process, and last 4
tasks are selected as reference tasks which are not involved
in the fine-tuning process and solely used as auxiliary tasks
to evaluate the model’s generalizability. Our goal is to train
a model that maximizes combined performance on target
tasks while minimizing performance degradation on refer-
ence tasks. The inputs to our model are 2D images, and
we use a fine-tuned CLIP ViT-B/32 model to output pre-
dicted classes. The experimental results show that our pro-
posed approach significantly improves image classification
accuracy on target domains (6% ∼ 14% higher average ac-
curacy), while reducing performance degradation in out-of-
domain reference tasks (10% ∼ 20% lower average accu-
racy degradation). We further conduct a thorough analysis
of various factors that impact the performance, and provide
insights into effective configuration strategies to better suit
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different application scenarios.

2. Related Work
Most related work can be classified into 6 categories:

weight interpolation, tangent linearization, gradients cali-
bration, curriculum learning, continual learning, and multi-
domain image classification. In this section, we summa-
rize each category and highlight their relations with our ap-
proach.

Weights Interpolation This approach fuses information
in weight space directly by interpolating the weights be-
fore and after fine-tuning. Existing researches on large pre-
trained models such as CLIP show that weights interpola-
tion [10] [32] can effectively preserve knowledge in pre-
trained model and improve robustness to distribution shift
for downstream domain-specific models. This approach
provides an intuitive and convenient way to fuse knowledge.
However, in a multi-domain setup, it could potentially cause
significant performance degradation to each target domain.

In our work, we apply weights interpolation among
models that are separately fine-tuned from a common pre-
trained checkpoint, using it as a baseline for our approach.

Tangent Linearization approach This approach calcu-
lates task vectors [9] by fine-tuning the models in their tan-
gent space [20]. The task vectors are obtained by taking
the difference between the fine-tuned model’s weights and
the initial model’s weights. The task vector represents spe-
cialized domain knowledge, which can be added together
and applied to pre-trained model weights to fuse informa-
tion in weight space. This draws a natural connection with
the weights interpolation approach. It generalizes equally
weighted interpolation among different domain expert mod-
els, while providing the flexibility to adjust the relative con-
tribution of the pre-trained model. Furthermore, linearized
fine-tuning has been shown to amplify weight disentangle-
ment and reduce interference across different tasks, facili-
tating the preservation of general knowledge embedded in
the pre-trained model and the distinct information from var-
ious domains. Based on these properties, tangent lineariza-
tion can be naturally applied in sequential fine-tuning setup
as a simple yet effective approach for multi-domain transfer
learning. Although it introduces increased computational
complexity by a constant factor [20], regular fine-tuning ef-
forts generally suffice to achieve efficient and stable train-
ing. The high expressivity and well-initialized weights of
the pre-trained model potentially contribute to its robust-
ness, and reduce the sensitivity to hyperparameter varia-
tions.

In our work, the starting pre-trained model in a transfer
learning process is not restricted to the original foundation
model, but can also include fine-tuned models from the up-
stream domain tasks.

Gradients Calibration These approaches adjust the scale
[18] or direction [36] of conflicting gradients during model
weights updates. They aim to preserve the gradients of con-
sistent directions, which indicate positive synergies among
different tasks, while calibrating inconsistent gradients by
reducing their magnitudes or adjusting their directions.
Gradient calibration can thus be applied in multi-domain
transfer learning to balance common knowledge and do-
main knowledge preservation.

In our work, we apply gradients calibration in a sequen-
tial training setup, rather than a simultaneous multi-task
training setup. We use the task vectors from other domains
as the reference to calibrate the gradients of the task cur-
rently being trained. Although this requires extra memory
to store these task vectors, it improves the model perfor-
mance significantly.

Curriculum Learning It aims to improve machine learn-
ing efficiency by gradually increasing the complexity of the
training experience, inspired by the natural pattern of the
human learning process [25]. This has been shown to help
the models achieve better optimization results effectively
[22]. However, it requires properly defining the complexity
of experience to enhance learning efficiency. Curriculum
learning provides valuable guidance for determining the se-
quential training order among multiple tasks.

Our work applies curriculum learning at the task level
instead of the data sample level. We use the magnitude of
achievable accuracy by the vanilla training setup as the ref-
erence of task difficulty and schedule the sequential training
order with gradually increasing complexity.

Continual Learning It involves sequentially training a
model based on a stream of tasks, enabling it to adapt
through experiences of changing distribution. However, a
key challenge is the stability-plasticity trade-off, where the
learning plasticity or memory stability of previous tasks
could potentially undermine each other [29]. One common
strategy is to interpolate experiences by strategically mix-
ing old and new data samples [24]. Another strategy is to
interpolate the knowledge between old and new models in
weight space [13].

In our work, we concentrate on avoiding conflicts among
different domains during the sequential training process,
by leveraging the effectiveness of tangent linearization for
weight dis-entanglement and gradients calibration tech-
niques for mitigating gradients conflicts.

Multi-domain Image Classification Image classification
[15] is a fundamental task in the field of computer vision,
for which deep neural network models have been surpassing
human performance [6] and becoming the standard method.
The advancement of large pre-trained vision models fur-
ther provides a resource-efficient and high-performance ap-
proach for cross-domain and multi-domain transfer learning
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(a) Sequential fine-tuning (b) Separate fine-tuning and interpolation

Figure 1: Comparison of fine-tuning diagrams. (a) our proposed method; (b) baseline method.

in image classification tasks. In this area, numerous pre-
vious research efforts have been made focusing on cross-
domain representation learning [4, 16, 35, 37].

Each of the aforementioned work contributes valuable
insights to specific setups. In our work, we leverage the ad-
vancement in recent large pre-trained vision models editing
and training techniques, to achieve a more efficient fine-
tuning process, by incorporating the performance of mul-
tiple target domains and reference domains. Due to dis-
crepancies in specifications, the experimental results of the
above works are not directly comparable with our results.
Instead, we measure the effectiveness of our method by
comparing it with the baseline approaches proposed in [20],
and report the results in Section 5.3.

3. Methods
In this section, we describe our proposed method. In

particular, we introduce 3 variations of the implementation
in Section 3.3, the approach to determine sequential training
order in Section 3.4, the loss function and evaluation metric
in 3.5, and code implementation in 3.6.

Considering the multi-domain knowledge fusion nature
of the given problem, we apply the transfer learning tech-
nique in the sequential training setup. This approach is a
simple yet efficient way to achieve multi-domain transfer
learning in image classification tasks. We leverage the valu-
able prior knowledge embedded in the large pre-trained vi-
sion models. We further incorporate the effectiveness of
tangent linearization and PGGrad in alleviating conflicts
of multi-domain knowledge, to achieve better performance
among multiple domains. We also adopt curriculum learn-
ing to achieve more efficient optimization during sequential
training.

Other than the sequential fine-tuning setup, we also ex-
periment with the separate fine-tuning and interpolation
setup as a baseline method. An illustration of these 2 train-
ing paradigms is shown in Figure 1a and 1b. The specifica-
tion details of this baseline method are shown in 5.2. The
performance advantage of our proposed method is demon-
strated in Section 5.3.

3.1. Tangent Linearization
Around the initialization weights θ0, the tangent lin-

earization method approximates the output of a neural net-

work using a first-order Taylor expansion: f(x;θ) ≈
f(x;θ0)+(θ−θ0)

T∇θf(x;θ0). Under fine-tuning setup,
the learning rate and number of epochs are usually set as
small enough to keep the weights close to the model initial-
ization weights, ensuring the effectiveness of this approxi-
mation. This approximation is equivalent to a neural tangent
kernel (NTK) [12] predictor, with kernel kNTK(x,x′) =
∇θf(x;θ0)

T∇θf(x
′;θ0), in which the relationship be-

tween weights and functions is linear [20, 31]. In the lin-
ear regime, this kernel remains constant with respect to
weights, enhancing the dis-entanglement between different
task data. In our fine-tuning setup, we directly optimize the
results based on tangent linear approximation [20].

3.2. PCGrad
PCGrad method [36] projects conflicting gradients to or-

thogonal space through below procedures. Denote the gra-
dient for task i as gi, and the gradient for task j is gj . PC-
Grad first determines whether gi conflicts with gj by check-
ing whether the cosine similarity between them is negative.
If the they conflict, it replaces gi by its projection onto the
normal plane of gj : gi = gi − gi·gj

∥gj∥2 gj , otherwise the orig-
inal gradient remains unchanged.

3.3. Method Specification
We have implemented 3 variations based on the sequen-

tial transfer learning setup. We use the model weights fine-
tuned from the previous domain as the initial weights for
the next transfer learning.

• Seq-TanLin (S-TL): We sequentially fine-tune the
models under tangent linearization setup.

• Seq-TanLin-pcg{c} (S-TL-p{c}): We sequentially
fine-tune the models under tangent linearization setup.
Inspired by the idea of PCGrad [36], when the direc-
tions of model gradients disagree with the weight up-
date directions from previous tasks, we apply Gram
Schmidt method [26] to calibrate the current gradient
towards the orthogonal direction with previous tasks.
However, when subtracting the orthogonal projection,
we scale the magnitude of orthogonal projection to be
subtracted by coefficient c: gi = gi − c

gi·gj

∥gj∥2 gj . The
first task is calibrated with the task vectors of other
tasks obtained through B-TL setup that is introduced
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Table 1: Dataset details for target image classification tasks.

Dataset Name EuroSAT RESISC45 Cars DTD

Domain Land use and land cover Remote sensing image scene Car image Textual image
Train:Val:Test Size 21600:2700:2700 17010:1890:6300 7330:814:8041 3384:376:1880
Num Classes 10 45 196 47
Input Resolution 64 × 64 256 × 256 360 × 240 300 × 300∼640 ×640

Table 2: Dataset details for reference image classification tasks.

Dataset Name GTSRB MNIST SUN397 SVHN

Domain Traffic sign Handwritten digits Scene understanding Street view house numbers
Train:Val:Test Size 23976:2664:12630 55000:5000:10000 17865:1985:19850 68257, 5000, 26032
Num Classes 43 10 397 10
Input Resolution 15 × 15∼250 ×250 28 × 28 At most 120,000 pixels 32 × 32

in Section 5.2. This pre-calibration ensures the start of
the sequential training is more aligned with the direc-
tion that is inherently less conflicting with downstream
domains, and it demonstrates better empirical perfor-
mance.

• Seq-TanLin-pcg{c}-multiround{n} (S-TL-p{c}-
{n}): This is a extension of S-TL-p{c}, by running
the sequential training multiple rounds. We define one
round of training as iterating all the target tasks once.
In this setup, we divide the number of training epochs
for each task per round by n, but run n rounds of
training in total. Each round starts with the checkpoint
obtained from the last task in the previous round. We
always use the latest available task vector for each
task as the reference to conduct conflicting gradients
calibration. This multi-round training regime keeps
the total number of training epochs for each task
the same as S-TL-p{c}. Higher n indicates higher
calibration frequencies within the same number of
training epochs.

3.4. Sequential Training Order

We sequentially fine-tune the models by the order of Eu-
roSAT, RESISC45, Cars, and DTD. This is the ascending
order of the task complexity, measured by the descending
magnitude of achievable accuracy with the vanilla single-
domain fine-tuning setup without tangent linearization.

3.5. Loss and evaluation metric
We use Cross Entropy loss as training objective, and use

the average accuracy to evaluate and compare the perfor-
mances of different approaches.

3.6. Code Implementation

We implement our methods based on the implementa-
tions of [20], [36] and [18]. Specifically, we take reference

to below Github repositories: [5], [27], [30] and [17]. We
structure our code based on [5], by reusing the fine-tuning
and evaluation script for the baseline methods. We develop
the gradients calibration scripts under sequential training
setup by referring to the implementation design of [30] and
algorithm logics of [27] and [17]. We design and build the
training and evaluation scripts of the proposed method from
scratch, including the sequential training setup, the gradient
calibration, as well as the flexible and automated pipeline
to conduct thorough hyperparameters analysis. Our code is
implemented in Python [28] and Pytorch [21].

4. Datasets
Data Description We incorporate 8 image classification
datasets in the current experimental setup. Specifically, we
select EuroSAT [7], RESISC45 [1], Cars [14], DTD [2] as
target datasets; and GTSRB [8], MNIST [3], SUN397 [34]
[33], SVHN [19] as the reference tasks. The target tasks are
explicitly optimized during the fine-tuning process, and the
reference tasks are solely used as auxiliary tasks to evalu-
ate the generalizability of the model. We aim to maximize
the performances on the target datasets, and minimize the
performance degradation on the reference tasks.

The details of target image classification datasets are
shown in Table 1, and the details of reference image classi-
fication datasets are shown in Table 2.

Data Downloading and Processing We download the
datasets by following the instructions of their respective ref-
erence papers. Each dataset is partitioned into train, valida-
tion, and test splits, following the specification of [9] [20].
For the target tasks, the validation split is used for hyperpa-
rameter search, and the test split is used for evaluation ac-
curacy score reporting. For the reference tasks, we only use
the test split to report the evaluation accuracy scores. The
input images are preprocessed through the standard CLIP
model preprocess function [11]. No extra preprocessing,
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feature extraction, or data augmentation is conducted other
than the above-listed procedures.

5. Experiments
In this section, we introduce the details of the experi-

ments, results, and analysis. Specifically, we describe the
training setups in 5.1, introduce the baseline methods in 5.2,
present the experimental results and analysis in 5.3, finally
we further study the factors that impact the performance in
5.4.

5.1. Training Setup

Calibration Strength Different from [36] which cali-
brates the conflicting gradients with fixed strength, in our
setup we introduce the coefficient c (0 ≤ c ≤ 1) in
S-TL-p{c} as a tunable hyperparameter that balances the
strength of conflict calibration and domain-specific knowl-
edge preservation. A higher value of c prioritizes more on
conflict avoidance, and a lower value of c prioritizes more
on domain information preservation. Configuring c = 1
will yield an equivalent setup as [36]. In our current ex-
perimental configuration, we experiment with 0 (S-TL), 0.5
(S-TL-p0.5), and 1 (S-TL-p1). In the multi-round setup, we
report results based on n=11 (S-TL-p0.5-11).

Regular Hyperparameters The number of total training
epochs for each task, learning rate, and optimizers follow
the setup of [20] and are kept consistent on the same task
across all experimental setups that are used to compare the
performance of different training methods. Specifically, the
optimizer is AdamW, the learning rate is 1e − 5, the batch
size is 128, the total training epochs for EuroSAT, RE-
SISC45, Cars, and DTD are respectively 12, 11, 35, 76. We
confirm that further increasing training epochs still keeps
improving evaluation accuracy scores, hence the models
have not been overfitted to training data under this setup.

We use the same hyperparameters as the reference pa-
per that proposes the baseline method in the main experi-
mental results reporting to facilitate comparison. We fur-
ther present an analysis of the impact of hyperparameters
such as calibration strength, learning rate, and the number
of total training epochs in Section 5.4.

5.2. Baseline method

We compare our approach with 3 baseline methods.

• Baseline-standard (B-Stand): We separately fine-tune
each target image classification task under the stan-
dard setup, and combine these specialized models into
a unified model by weights interpolation.

• Baseline-TanLin (B-TL): We separately fine-tune each
target image classification task under the tangent lin-
earization setup, and combine these specialized mod-
els into a unified model by weights interpolation.

• Seq-standard (S-Stand): We sequentially fine-tune
each target image classification task under the standard
setup, and obtain a single final model.

For the implementation of the B-Stand and B-TL methods,
we follow the setup of [20]. The task vector interpolation
coefficients among different specialized domain tasks are
set to be equal. The coefficient to interpolate task vectors
with pre-trained models is tuned by maximizing average tar-
get task accuracy, through grid search between [0, 1] (inclu-
sive) with step size 0.05. This is a generalization of direct
equally weighted interpolation among domain expert mod-
els, with the flexibility of adjusting the contribution of pre-
trained model weights. When the task vector interpolation
coefficient is 0.25, it’s equivalent to the simple average of
fine-tuned domain expert models. For the S-Stand method,
we follow the same sequential fine-tuning order as in Sec-
tion 3, and the first task is pre-calibrated with the task vec-
tors of other tasks obtained through B-TL setup.

5.3. Experimental Results

We report results using average accuracy scores, follow-
ing the evaluation metric of baseline paper [20] for easier
comparison. Figure 2 shows the bar plot of accuracy scores
by dataset. To facilitate comparison, we further summa-
rize the average accuracy scores on target, reference, and all
tasks in Table 3. Below we summarize our main findings.

Table 3: Summary of average accuracy scores. The rows
“tgt”, “ref”, and “all”, represent the average scores of target
tasks, reference tasks, and all tasks. The columns repre-
sent (1) CLIP: the pre-trained CLIP ViT-B/32 model with-
out fine-tuning; (2) ∼ (8): our proposed method in Section
3.3 and baseline methods in Section 5.2. The best perfor-
mance has been highlighted in bold.

Baseline Our Methods

Acc CLIP B-Stand B-Lin S-Stand S-TL S-TL-p1 S-TL-p0.5 S-TL-p0.5-11

tgt 0.525 0.716 0.798 0.796 0.850 0.847 0.852 0.846
ref 0.439 0.201 0.301 0.263 0.352 0.387 0.379 0.396
all 0.482 0.458 0.549 0.530 0.601 0.617 0.615 0.621

Fine-tuning improves domain-specific performance but
degrades out-of-domain generalizability. Compared with
the out-of-box CLIP model, on average all fine-tuning
methods improve the accuracy scores on target tasks
(19% ∼ 33%), but all suffer from performance degradation
on reference tasks (4% ∼ 24%). This indicates the fine-
tuning processes inject domain-specific knowledge to the
model, but lose some common knowledge useful for gener-
alization capabilities.

Sequential training setup significantly outperforms sep-
arate fine-tuning and interpolation setup. With other
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Figure 2: Accuracy scores by dataset.

conditions being the same, the sequential training setup
brings 6% ∼ 8% more improvement in target tasks and
5% ∼ 6% less degradation in reference tasks.

The tangent linearization fine-tuning regime signifi-
cantly outperforms the standard fine-tuning regime.
Under both separate fine-tuning and interpolation setup, and
sequential training setup, tangent linearization fine-tuning
approach brings respectively 8% and 5% more improve-
ment on target tasks, as well as 10% and 9% less degra-
dation in reference tasks.

Conflicting gradient calibration effectively balances
domain-specific and general knowledge preservation.
Among all approaches, the sequential tangent linearization
fine-tuning setup with PCGrad calibration achieves the most
improvement on the target tasks, while suffering the least
degradation on the reference tasks. When the gradient cali-
bration coefficient is set to 1, it better preserves information
for the reference domain, i.e. less degradation (5%) on the
reference tasks. When set to 0.5, it better preserves informa-
tion for the target domain, i.e. more improvement (33%) on
target tasks. Keeping calibration strength the same as 0.5,
when the calibration frequency is increased to 11, the ref-
erence task accuracy further increases by 1.7%, with only
0.6% degradation in target task accuracy, demonstrating
calibration frequency as another effective factor in balanc-
ing knowledge preservation, like the calibration strength co-
efficient.

Our proposed approaches show promising performance
improvements over the baseline methods. Compared
with the 3 baseline methods, our best-performing setup S-
TL-p0.5-11 shows 6% ∼ 14% higher average accuracy on
target tasks, and 10% ∼ 20% lower average degradation on
reference tasks.

5.4. Ablation Study

In this section, we conduct a thorough analysis of the
factors that impact the performance of the proposed meth-
ods.

Sequential Training Order Based on S-TL-p0.5, we col-
lect experimental results for all possible sequential orders.
The statistics of the results are shown in Table 4. We can see
that the standard deviations of average accuracy scores are
less than 0.01, indicating the method is relatively robust to
sequential training orders. The gaps between the maximum
and minimum accuracy scores are around 0.03, indicating
some space for performance improvement from strategic se-
quential training ordering. The best performances on aver-
age accuracy scores on target and all tasks are achieved un-
der the curriculum learning setup as reported in Section 5.3,
where the sequential training order is by ascending order of
task complexity. The best performance on reference tasks
is achieved with order [RESISC45, Cars, EuroSAT, DTD],
whose average accuracy scores on target and all tasks are
0.842 and 0.611.

Table 4: Summary statistics for final average accuracy
scores from all 24 sequential training orders. The rows rep-
resent target tasks (tgt), reference tasks (ref), and all tasks
(all). The columns represent mean, standard deviation, min-
imum, and maximum values.

Mean Std Dev Min Max

tgt 0.8383 0.0092 0.8181 0.8516
ref 0.3691 0.0090 0.3522 0.3802
all 0.6037 0.0071 0.5855 0.6153

Gradients Calibration Strength This is an important
factor that impacts the balance between the target domain
and reference domain knowledge preservation during the
training process. In Figure 3, we show the plots of av-
erage accuracy scores versus the calibration frequency,
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Figure 3: Accuracy scores by calibration frequency.

with the total number of training epochs fixed. We can see
that higher calibration frequency yields better reference task
performance, while roughly preserving the target task per-
formance, and achieves better overall performance. This
effect is similarly shown with the calibration coefficient.
In Table 3 we can see that as the calibration coefficient in-
creases, by varying among 0 (S-TL), 0.5 (S-TL-p0.5), and 1
(S-TL-p1), the target task performance holds roughly con-
stant, but the reference task performance improves signifi-
cantly, and it achieves increasing overall performance.

This is potentially because the PCGrad calibration only
projects the conflicting gradients while preserving the non-
conflicting gradients. Higher calibration strength guides the
gradient updates toward the direction that more effectively
preserves the common knowledge that brings positive syn-
ergy among multiple domains, and this common knowledge
is likely valuable for more general tasks as well. The bet-
ter preservation of this common knowledge is beneficial for
preserving reference task performance. The target task per-
formance holds relatively constant across calibration fre-
quency, potentially because the model capacity achieved
with over-parameterization is large enough to provide ideal
solution space for each task, even given tighter gradient up-
date constraints. In addition, the tangent linearization tech-
nique effectively alleviates conflicts among the tasks that
are explicitly optimized during the training process. There-
fore, even with a lower calibration strength, it could still
achieve a relatively good balance in knowledge preservation
among different target tasks, compared with higher calibra-
tion strengths.

Alternative Calibration Method Our proposed frame-
work provides flexibility in applying alternative calibration
methods to detect and calibrate the conflicting gradients
among different domains. One example is to check whether
the signs of gradients agree with each other, which indicates
the consistency of weight update directions needed by dif-
ferent tasks [18]. When conflicts occur, we can scale the
magnitude of the conflicting gradients by (1 − c). When
c = 1 it zeros out the conflicting gradients, which is equiv-
alent to full-strength calibration. When c = 0 it scales
the weights by 1, which is equivalent to no calibration. A

performance comparison among the sign agreement cali-
bration method with calibration coefficient of 0.5, our pro-
posed method, and baseline methods, is shown in Table 5.
We can see that, the sign agreement method outperforms
all the baseline methods. Compared with the S-TL setup
which is without conflicting gradients calibration, the sign
agreement method achieves better performance on the ref-
erence task and the overall result, but worse performance
on the target task. It under-performs the PCGrad method
in all the target, reference, and overall tasks. This is poten-
tially because, PCGrad redirects the gradients’ directions
without constraining the gradient magnitudes, which still
sufficiently effectively explores the large solution space en-
abled by the model over-parameterization. However, the
sign agreement method keeps the gradient direction but
only shrinks the gradient magnitude, which poses stronger
constraints, more heavily reducing the expressivity of the
model and the explorable solution space that could lead to
ideal performances during optimization.

Table 5: Summary of average accuracy scores. The rows
“tgt”, “ref’, and “all”, represent the average scores of target
tasks, reference tasks, and all tasks. The columns repre-
sent (1) CLIP: the pre-trained CLIP ViT-B/32 model with-
out fine-tuning; (2) ∼ (6): our proposed method in Section
3.3 and baseline methods in Section 5.2; (7) Sign agree-
ment method. The best performance has been highlighted
in bold.

Baseline Our Methods Sign Agr

Acc CLIP B-Stand B-Lin S-Stand S-TL S-TL-p0.5 S-TL-a0.5

tgt 0.525 0.716 0.798 0.796 0.850 0.852 0.845
ref 0.439 0.201 0.301 0.263 0.352 0.379 0.375
all 0.482 0.458 0.549 0.530 0.601 0.615 0.610

Learning Rate and Total Training Epochs They impact
the balance between target knowledge and reference knowl-
edge by adjusting the extent of deviation from original pre-
trained weights during the fine-tuning process. The smaller
learning rate and less total training epochs tend to make the
model weights stay closer to the start point, hence natu-
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Figure 4: Accuracy scores by learning rates, based on S-TL-p0.5-20 setup.

Figure 5: Accuracy scores by total training epochs, S-TL-p0.5-20 setup.

rally preserving more prior knowledge embedded in the pre-
trained weights. Due to the nature of the high transferability
of pre-trained foundation models, smaller deviations from it
tend to preserve better performance on reference tasks. This
can be verified by the “Average Reference Accuracy” plots
in Figure 4 and Figure 5. In our experiment, the optimal
learning rates are around 1e−6 ∼ 1e−5, depending on the
objective balance between target and reference tasks. The
higher number of total training epochs tends to increase the
target task performance, but marginal gains decay gradu-
ally. The total performance is determined collectively by the
increasing trend of target performance and the decreasing
trend of reference performance. The best value depends on
the ideal balance between the target domain and reference
domain knowledge preservation. When setting the learning
rate as 2.5e−6 under the S-TL-p0.5-20 setup, it achieves the
average accuracy scores on the target task, reference task,
and the overall result of 0.855, 0.401, 0.628. This is the
best performance of all setups in our experiments, outper-
forming all the other setups in all the 3 metrics.

6. Conclusion and Future work
In this work, we propose a sequential training paradigm

based on tangent linearization and conflicting gradients
calibration techniques. Our experiments focus on multi-
domain transfer learning for image classification tasks. The
experimental results demonstrate that sequential training
setup significantly outperforms separate fine-tuning and in-
terpolation configuration. The tangent linearization fine-
tuning method yields substantial performance gains by ef-

fectively magnifying weight dis-entanglements across dif-
ferent domains. Conflicting gradient calibration provides
an effective approach to balance domain-specific and gen-
eral knowledge retention. The combination of the above
techniques yields the best performance in our experiments,
potentially due to their effectiveness in alleviating conflicts
during knowledge fusion across different domains. Within
the gradient calibration setup, the calibration coefficient and
the calibration frequency are the key factors in balancing
conflict mitigation and domain knowledge preservation. In
the general sequential training context, the learning rate and
the total number of training epochs also play crucial roles in
balancing the performance of target and reference tasks, by
adjusting the extent to which the fine-tuned model weights
deviate from the original foundation model weights.

Although tangent linearization and PCGrad introduce in-
creased computational complexity, regular fine-tuning ef-
forts generally suffice to achieve efficient and stable learn-
ing performance. The high expressivity and well-initialized
weights of the pre-trained model might be critical to this ro-
bustness, and reducing sensitivity to hyperparameter varia-
tions.

In future studies, we will investigate the combined im-
pact of different hyperparameters. We will also aim to ex-
plore more foundation models across a wider range of tasks,
such as image segmentation, object detection, image cap-
tioning, and vision question answering. Additionally, we
plan to extend our research to include more modalities and
domains, such as natural language, speech, video, robotics,
and reinforcement learning.
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