
Multimodal Retrieval Augmented Generation for Instruction Manual
Understanding via Contrastive Learning

Ali Hindy
Stanford University

557 Mayfield Avenue, Stanford, CA
ahindy@stanford.edu

William Denton
Stanford University

557 Mayfield Avenue, Stanford, CA
wdenton@stanford.edu@

Abstract

In this paper, we extend the commonly used text-based
Retrieval Augmented Generation (RAG) architecture to the
problem of downstream vision in the context of instruction
manual understanding. We use a multimodal text and image
embedding hybrid model for the retrieval task that outper-
forms vanilla RAG. We build a custom dataset for this task
and introduce a contrastive learning framework for better
retrieval results. We compare these results to baseline re-
trieval models, and discuss the implications in our overall
question-answering RAG pipeline. Our learned retrieval
system achieves 25% top-1 accuracy and 83% top-5 ac-
curacy on our custom dataset, significantly outperforming
vanilla RAG.

1. Introduction

Vision-based Retrieval Augmented Generation (RAG)
models, in parallel with text-based LLMs, have undergone
significant advancements in recent years [13, 8]. These
strides offer fresh perspectives for tackling model halluci-
nations, knowledge limitations, and other challenges with
large, pretrained language models. Among these challenges
lie the comprehension and navigation of complex multi-
step tasks such as instruction manuals, a perennial source
of frustration.

Instruction manuals represent a ubiquitous source of
guidance across various domains, yet they often pose signif-
icant challenges to comprehension and utility. The opacity
and length of instruction manuals frequently leads to frus-
tration and inefficiency in task completion. It can be in-
credibly tedious to find the information you need, despite it
being present somewhere in the manual. Consequently, the
development of a model capable of processing these manu-
als and offering instructive and relevant answers to specific
queries emerges as a compelling endeavor.

Moreover, the complexity inherent in understanding

instruction manuals underscores the necessity for multi-
faceted comprehension mechanisms within such models.
Beyond merely parsing textual instructions, these systems
must exhibit robust reasoning capabilities to assimilate var-
ious components, including explicit instructional text, cau-
tionary advisories concerning parts, and visual cues depict-
ing component assembly. Thus, the efficacy of such models
hinges not only on their ability to interpret textual infor-
mation but also on their adeptness in synthesizing textual
and visual inputs to generate coherent and informative re-
sponses.

1.1. Problem Statement

We propose a multimodal RAG pipeline for question an-
swering and image understanding that leverages contrastive
learning to improve retrieval. Currently, deep learning RAG
methods exist in text form, but we extend this pipeline
for image-based instruction understanding. Existing im-
plementations exist for vanilla multimodal RAG, but these
models struggle when given negative samples and conse-
quently are not robust to noise in the context database. One
improvement to vanilla RAG is to train the retrieval model
with negative samples, but these models often require large
amounts of compute during pretraining in order to learn to
identify negative samples. We apply a contrastive learning
approach that does not require large amounts of compute
yet significantly outperforms vanilla RAG. We will compare
these vanilla implementations to our adaptive deep learning
approach.

A typical RAG pipeline includes the following compo-
nents: a dataset of relevant context that we want to retrieve
from, an embedding model, a vector database of embed-
dings for retrieval, a re-ranker model, a language model for
generation, and a user prompt. As seen in Figure 2, the
documents (in our case, the images from instruction man-
uals), are encoded using an image embedding model. The
user’s prompt is also encoded using a text encoder model.
This prompt is then fed to the retriever, alongside the en-
coded documents, at which point the retreiver model de-

1



For the satsumas furniture, what pieces do I need for step one?

True Labels Retriever Output

User Prompt

Figure 1: Sample prompt with true labels (left) as compared with the output from the vanilla retriever (right) using top-5
accuracy. Given a prompt, we aim to retrieve the most relevant images and pass them along as context to the generator. The
true labels are hand labeled as part of our novel dataset. As we can see, the cosine similarity retriever identifies the first
image correctly; however, the other four images are not correctly retrieved from the naive implementation of the retriever.
We improve upon this retrieval mechanism with our learned approach and contrastive learning.

cides which contexts (i.e. pages) are most important us-
ing some similarity metric. The retriever then outputs this
context either set of images or a single image, and these
rankings are adjusted if a reranker model is in use. In our
case, since the retrieved pages are already in order of rel-
evancy, no reranker model is used. Using the prompt and
relevant context, the model generates its answer to the ques-
tion alongside the retrieved context.

Figure 2: Example RAG Pipeline. Source: Contextual AI
[12]

Our main technical contributions in this paper are three-
fold: 1) We introduce a novel dataset of instruction manuals
and relevant prompts leveraging synthetic data for the re-
trieval task. 2) Rather than using an out of the box frozen re-
triever, we train a custom deep learning retriever that learns
a combined embedding space given the image and text em-

beddings. 3) We use contrastive learning to distinguish be-
tween positive and negative samples in order to improve re-
trieval. The input to our retriever model will be a set of
images consisting of an instruction manual, as well as the
relevant query pertaining to that instruction manual, and the
output of our model will be a prediction of the most rele-
vant pages from that manual with regard to that given query.
These relevant pages are fed to the context of a generator
model (as well as the original prompt) to produce an an-
swer.

2. Related Work

Text-Based Retrieval Language models often strug-
gle with knowledge intensive or complex tasks, which has
been mitigated in the text field by Lewis et al. with their
Retrieval Augmented Generation architecture, which com-
bines a generator model with a retriever in order to aug-
ment a user’s prompt with relevant context fetched by the
retriever. [13] RAG models provide a valuable framework
for reliably fetching relevant information, which reduces
the likelihood of hallucinations and incorrect information.
The original RAG paper and subsequent improvements fo-
cus mainly on text augmentation by retrieving relevant text
from embeddings in a large vector database. [11, 8] How-

2



ever, these methods use a frozen retriever, which means the
retrieval model is not learning what relevant context looks
like, which causes many of the issues with RAG, such as
hallucination, struggling with false information, and nega-
tive rejection. [4] Contextual AI’s RAG 2.0 addresses the
frozen model issue by introducing an end-to-end pipeline
for text-based retrieval augmented generation that outper-
forms state of the art models like GPT-4, Mixtral, and
Claude 3 Opus. [12] Although RAG 2.0 is an architecture
focused on text, we apply a learned retrieval approach to
the world of computer vision and use similar frameworks in
approaching the problem of instruction based retrieval.

Multimodal Retrieval Vanilla approaches exist for
multimodal understanding as well. Most of the research in
multimodal RAG focuses on different retrieval metrics or
improved context databases, but they still leverage frozen
retrieval. [3, 10] One recent multimodal model architec-
ture, MuRAG, introduces a pretrained retriever that is also
finetuned on the task-specific multimodal context. MuRag
demonstrates significant performance increases in retrieval,
yet still struggles significantly with negative samples. [5] In
order to achieve state of the art retrieval performance, the
authors had to apply significant amounts of compute with
hand-labeled negative samples. Our method leverages con-
trastive learning in order to improve retrieval and recogni-
tion of negative samples in the dataset, demonstrating im-
proved image understanding with significantly less com-
pute.

Contrastive Learning A few different approaches cur-
rently exist that leverage contrastive learning for down-
stream vision tasks. One such approach leverages con-
trastive learning for image retrieval using vision transform-
ers, but mainly focuses on category-level retrieval, not ques-
tion answering. [7] COCA, introduced by Yu et al. lever-
ages contrastive learning to create an image-text encoder-
decoder model that achieves state of the art performance on
zero shot image retrieval. [18] This architecture deploys
contrastive loss between the text embedding and image em-
bedding within each (text, image) pair, whereas our method
finds negative samples within a context database (i.e. be-
tween different images). Furthermore, this architecture re-
lies on pretraining a full encoder-decoder on all of Ima-
geNet (and much more) in order to achieve state of the art
performance. Our model requires significantly less compute
and leverages contrastive loss in a vision-native setting (i.e.
identifying negative samples given a set of images). The
current research in contrastive learning applied to computer
vision motivates the need for low compute, vision-native
contrastive learning that allows for better image understand-
ing in high complexity settings like instruction manual un-
derstanding.

3. Methods
We train our model with a custom dataset of Ikea instruc-

tion manual PDFs, sourced from Ikea.com and the dataset
used by Wang et. al. in using Ikea manuals with computer
vision to learn shape assembly.[16] During training, we feed
our model a query and the most relevant image from the
manual so it learns to predict high scores for those pairings.
In addition, we feed it counterexamples, i.e. text queries and
a page from the instruction manual which is irrelevant. We
created a custom set of prompts that ask specific questions
about these manuals, such as ”Where would nail 8 fit in to
component C of the Agam chair?” The output of the overall
RAG model will be an answer from the generator, as well
as the highest scoring relevant images from the retriever.

Retrieval Stage The primary task in developing our
pipeline is training our retrieval model, as this is the pre-
dominant vision problem we need to solve to deploy our
multimodal RAG pipeline. In creating our retrieval model,
we build upon the work of large pretrained models which
have created robust embedding spaces. The primary task
of the retrieval model thus becomes to take 2 types of em-
beddings, a text embedding representing the user query and
image embeddings representing the pages of the instruction
manual, and decide on the relevancy of that image embed-
ding for the given text query.

We experimented with a variety of embedding models
for generating both text and image embedding inputs to
our retrieval model. For the text embeddings, we used
MiniLM-L6-v2, a general purpose text embedding model
for sentences, and compared its performance to word2vec
which embeds each word independently. [17, 14] We di-
rectly compare the performance of sentence-level embed-
dings to word-level embeddings in the retrieval task. For
the image embeddings, we used the last layer of a pre-
trained ResNet-18 and compare it to OpenAI’s natively
multimodal pre-trained embedding model, CLIP. [9, 15]
We compare these two image embedding models on the re-
trieval task.

Given the text and image embeddings, we train our re-
trieval model to project both embeddings to the same space,
and then use a relevant distance metric to evaluate rele-
vancy, and then use that distance metric to output a score
between 0 and 1 which represents the probability that the
inputted image embedding is the relevant image for the in-
putted text embedding. Thus, a single training example for
our model consists of (ximage

i , xquery
i , yi) where ximage

i is the
image embedding for a selected image, xquery

i is the text em-
bedding for the given query, and yi is the true label (0 or 1)
representing whether the inputted image was the most rel-
evant image from the manual for that text query or not. In
projecting both embeddings to the same vector space, we
are using MLPs (multi-layer perceptrons) which train inde-
pendently for the two sets of embedding spaces based on

3



the cross entropy loss in Equation 1 against the true yi.

L(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(1)
By this process, we seek to teach the relevant projecting

neural networks to find the most important features from the
embedding space for determining relevancy between a text
and image pair. We wrote all the code for this model and
training process ourselves, using the PyTorch deep learn-
ing framework. Of note is that this model architecture ap-
proach has parallels to the approach explored in the CLIP
paper. [15] The main differences are the type of model we
use to project the embeddings, and the fact that their loss is
in terms of the representation of the combined embeddings,
with the goal of generating similar representations for simi-
lar images/text while ours is in terms of the similarity score
between text and image, with the goal of maximizing rele-
vant image retrieval. As a result, we learn a different shared
embedding space via a distinct loss and backpropogation. In
other words, the general architecture design has similarities,
but the distinct tasks that these architectures are intended for
results in differing implementations and embedding repre-
sentation results.

Figure 3: Diagram representing the retrieval model. The
query and image embedding vectors are projected into a
common embedding space, and a similarity score is cal-
culated between the query and image embedding. Then
the model outputs a score between 0 and 1, representing
the probability that the image corresponds to the correct in-
struction manual page to be retrieved for that query. The
true label is the actual probability that the image corre-
sponds to the query (0 or 1). The key insight here is that
using binary cross-entropy loss we backpropogate (red ar-
rows) through the shared embedding space in order for the
model to learn to output correct probabilities for (image,
text) pairs.

We experimented with a number of different architec-
ture choices for the MLPs, but the primary architectural
features remained consistent, namely ReLU activation func-
tions, Dropout layers for regularization after activation, and
Layernorm layers for normalizing the embeddings.

Negative Samples After noticing that the retrieval accu-
racy was not improving with the baseline training process,
we revised the original method of training to include a con-
trastive approach to negative sampling to teach our model
to perform better at the more difficult task of differentiat-
ing between the most relevant pages to find the single most
relevant page. With the original training scheme, the nega-
tive examples were obvious enough that the model was not
learning the more subtle features important in determining
relevancy. For example, one hand labeled negative sample
might be a blank page at the end of a manual. Alterna-
tively if, for a given text query, we took the most relevant
page from an instruction manual to be the positive example
and all the rest of the pages from the manual to be negative
examples then we would have been left with a significant
dataset imbalance.

During training, we only fed the model positive exam-
ples, which were text queries and the single most relevant
page from their corresponding instruction manual, and the
model selected the negative examples to be the ones it found
most “confusing”. Note that each text query has a corre-
sponding set of images representing an instruction manual.
At training time, for each minibatch of positive examples
we chose the negative example for each of the text queries
in that minibatch to be the highest scoring image from the
relevant instruction manual which was not the correct (i.e.
most relevant) image. One of those images is the positive
sample (i.e. the relevant page which we want our model to
learn to retrieve). We run all of the images from that instruc-
tion manual through the model, along with the text embed-
ding of the query, then we choose as our negative example
to be the image which has the highest predicted probability
of being retrieved but is not the correct image to retrieve.
This helped our model learn to differentiate better between
multiple pages which are all relevant but by differing levels.
Via the contrastive learning process our results significantly
improved even though our training loss struggled more as
our model learned to differentiate between the top few most
relevant images from the instruction manual, but during the
training process the model adaptively chose datapoints that
made the loss high.

4. Dataset
Initial Dataset Our dataset is comprised of Ikea instruc-

tion manuals, which we process in order to create a dataset
such that we can train our multimodal retriever. We use this
dataset as previous research has shown model interpretabil-
ity and understanding of these manuals, such as Wang et. al.

4



who used computer vision and 3D representations of vari-
ous Ikea components in order to train agents to build the
relevant furniture. [16]

The initial dataset is comprised of 102 Ikea instruction
manuals, which detail how to assemble the following furni-
ture types: bench, chair, desk, table, shelf, and miscellenous
furniture. [1] From these PDFs we extract the individual
pages and store their embeddings within the document en-
coder database. In total, we extract 996 raw images, all in-
dividual pages from the 102 Ikea instruction manuals. Each
individual page is represented as a 596× 842× 3 image in
our dataset.

Figure 4: Example of images from the IKEA dataset.
Source: IKEA [1]

Feature Extraction We used a variety of different mod-
els to generate both text embeddings of the given prompt
and image embeddings of the context database. In order
to extract the image embeddings as features, we prepro-
cess with the relevant preprocessing necessary for the im-
age embedding model. For example, in order to extract
features from the ResNet-18 model, we resize the im-
ages to 224 × 224 × 3 with center cropping and normal-
ization across each channel (µ = [0.485, 0.456, 0.406],
σ = [0.229, 0.224, 0.225]). [9]

Data Processing In training our multimodal RAG
model, we created a custom dataset of 112 prompts, i.e.
questions about various instruction manuals and pair them
with a page which details the relevant information for the
given prompt. Using these (prompt, page) pairs, we can
train our model and evaluate it on retrieval accuracy, among
other metrics. This is especially important for the base-
line vanilla model, which is not trained at all but rather
only evaluated on its retrieval abilities. For each prompt,
we labeled the top 5 images most relevant to the prompt.
We assigned the most relevant image a relevancy score of
1 (highly relevant) and the rest a score of 0 (not relevant).
Note that we label negative samples within a certain instruc-
tion manual, as opposed to across the entire dataset, in order
to train the model to learn relevant features within a specific
manual.

Data Augmentation Furthermore, we augmented our
dataset to a total of 6380 (prompt, image) pairs. We used
a 70-15-15 split for training, validation, and testing. To
achieve this, we employed a variety of traditional NLP aug-
mentation techniques, including back-translation, synonym
replacement, and template-based augmentation. With syn-
onym replacement, we substituted specific words in the
prompts with their synonyms while maintaining the over-
all meaning of the sentence. This helped in diversifying the
language used in the prompts without altering their intended
message.

Additionally, we utilized back-translation, a process
where the original text is translated into another language
and then translated back to the original language. We im-
plemented this technique using French, Spanish, and Dutch.
By translating the prompts to these languages and then back
to English, we introduced variations in phrasing and struc-
ture while preserving the original semantic content. This
method has been shown to improve performance when scal-
ing and augmenting text data on a variety of NLP tasks like
machine translation. [6]

Moreover, we applied template-based augmentation,
where we created several templates with placeholders that
could be filled with different words or phrases. Through-
out this augmentation process, we manually reviewed and
ensured that the augmented dataset’s prompts retained their
semantic meaning. This step was crucial to maintain the
quality and relevance of the dataset, ensuring that each aug-
mented prompt still accurately described the corresponding
image. By combining these NLP augmentation techniques
and careful manual validation, we significantly expanded
and enriched our dataset, enhancing its robustness and di-
versity for retrieval.

5. Experiments
In order to create the highest performing RAG pipeline

possible, we experimented with several different ap-
proaches to our retrieval model. The baseline retrieval
model was a frozen layer which computed the cosine sim-
ilarity between the stored image embeddings and a given
text query. This similarity score was not trained, and did
not benefit further from more data.

We sought to train our retrieval model to perform opti-
mally. The architecture of this model is explained in depth
in the methods section. In order to optimize for the best
possible performance of this model, we varied over several
different hyperparameter and architecture design choices.

For learning rate, we tried several different orders of
magnitude, but found that if that learning rate was below
0.001 that the model got stuck in local minima within the
loss space. Thus, we primarily found success with learn-
ing rates between 0.01 and 0.05. Furthermore, we used the
SOTA Adam optimizer in training our model, as we hypoth-

5



esized that an optimizer with momentum would be advan-
tageous given the high variability of the data.

The more interesting experiments were with respect to
the model architecture and training process. To this end,
we tried multiple neural network architectures for project-
ing the original embeddings into the same embedding space
(including number of layers, and size of hidden layers). Ul-
timately, based on results and the qualitative aspects of the
model, we decided on a three layer neural network which
used Layernorm layers, Dropout layers, and ReLU non-
linearities. We furthermore used Contrastive Learning when
our regular training processes were producing underwhelm-
ing results. This change helped boost our performance, as
discussed in Section 6.

The outputs of these neural networks were embeddings
projected into the same space, and from that point we chose
a final layer to calculate the similarity of those embed-
ding projections. We ultimately found greatest success with
cosin similarity, but we tried using the L2 norm as well in
calculating the similarities of these projected embeddings.
Depending on the process we used for calculating similar-
ity, we then rescaled the score to be between 0 and 1 for our
task of binary classification.

Finally, we also experimented with different combina-
tions of embedding models to create the inputs of our
retriever. We tried the Resnet-18 and CLIP embed-
ding models for the images, and the Word2Vec and
MiniLM-L6-v2 for the query embeddings. Over the
course of these experiments, we were able to produce
promising results with respect to retrieving the first most
relevant instruction manual page. Our ability to retrieve
the top k most relevant instruction manual pages benefit-
ted greatly from training, and in practice feeding multiple
image embeddings to an LLM for generation is practical,
and thus our generator also had improved performance due
to the strides we made in retrieval.

6. Results
Experiment 1: Dealing with Negative Samples In

order to achieve better retrieval performance, we exper-
imented with hand-labeled negative samples and a con-
trastive learning approach. For the hand-labeled negative
samples, each prompt was assigned a positive (1) and neg-
ative (0) image from its instruction manual. For the con-
trastive learning approach, during training the model is only
given the positive sample and it adaptively selects negative
samples in the relevant manual for a respective prompt, as
explained in the methods section. The contrastive learn-
ing approach outperformed hand-labeled negative samples,
but the training loss for contrastive learning stagnated. We
evaluate whether, for each prompt, if the retriever correctly
returns the most relevant image (top-1 accuracy) or if it cor-
rectly returns the most relevant image in the top 5 retrieved

Table 1: Retrieval Results with MLP Retriever with Adver-
sarial Learning vs Human Generated Negative Samples

Training Method Top-1 Accuracy (%) Top-5 Accuracy (%)
Adversarial 0.25 0.83
Human Generated 0.16 0.66

images (top-5 accuracy). By choosing each “closest but
wrong” guess as a negative sample, the model is able to
quickly learn and generalize as to the structure of the pages
that correspond to types of prompts. We used the same
test set for these experiments, and kept the hyperparameters
fixed (learning rate, model depth, embedding models, sim-
ilarity score) except for the type of negative samples. The
results of this experiment is summarized in Table 1.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

2

0

2

4

6

8

In
de

x 
Of

fs
et

Relative Index Offset vs Epoch

Figure 5: Example of selected negative samples for a single
positive datapoint using the contrastive learning approach
during training. At each epoch the model identifies a dif-
ferent image as the negative sample. Here each image is
represented by its index in the instruction manual, and we
show the offset between the selected negative sample image
and the true most relevant image. In this example, the query
is ”Can you tell me about for the Herman chair, what is the
last step?” Initially, the model identifies the beginning of the
manual as negative samples, but then learns that a “better”
negative sample is an image closer to the last step, namely,
a few steps before the desired “last step” of the query. This
negative sample is much more informative for the model
than the hand labeled negative samples, which may be any
arbitrary index of the manual.

Experiment 2: Similarity Score In a further effort to
improve our retrieval results, we experimented with two dif-
ferent similarity scores: cosine similarity and L2 similarity.
Although L2 is a commonly used similarity metric in deep
learning, it consistently underperformed when compared to
the cosine similarity metric in all of our experiments. We
used the same test set for these experiments, and kept the
hyperparameters fixed (learning rate, model depth, embed-

6



Table 2: Retrieval Results with MLP Retriever with Cosine
vs L2 Similarity Scores

Similarity Score Top-1 Accuracy (%) Top-5 Accuracy (%)
Cosine 0.25 0.83
L2 0.16 0.75

ding models) except for the similarity score. The experi-
ments are summarized in Table 2.

Experiment 3: Embedding Models We experiment
with 2 different types of pretrained text embedding
models (word2vec, MiniLM-L6-v2) and 2 different
types of pretrained image embedding models (CLIP,
ResNet-18). As mentioned in the Methods section,
word2vec is a word level embedding model, whereas
MiniLM-L6-v2 is a sentence level embedding model.
The sentence level embedding outperforms the word-level
model, which makes sense since we want to capture depen-
dencies across words in our understanding of the prompts.
CLIP is a multimodal native image embedding model,
whereas ResNet-18 is a deep CNN. The “zero-shot” ca-
pabilities of CLIP allow for better generalization to our
novel dataset. We used the same test set for these exper-
iments, and kept the hyperparameters fixed (learning rate,
model depth, similarity score, negative sample type) except
for the type of embedding models. Results for this experi-
ment are summarized in Table 3.

Experiment 4: Comparison to Vanilla RAG We com-
pare the retrieval results of our best MLP retriever to a
vanilla retriever on our custom test set of 850 (image,
prompt) pairs. As a baseline, we use vanilla RAG, i.e. we
calculate cosine similarity between the image embedding
and the prompt embedding. For the vanilla RAG model,
the image embeddings are generated using the CLIP em-
bedding model, and the text embeddings are generated us-
ing the MiniLM-L7-v2 sentence embedding model. We
then calculate cosine similarity between the text and im-
age embeddings and return the highest scoring image as the
retriever output. Using the vanilla retriever, we achieve a
top-1 retrieval accuracy of 12.1% on the test set and a top-5
retrieval accuracy of 35%. As seen in Table 4, our best MLP
model (using cosine similarity, CLIP, MiniLM-L7-v2)
significantly outperforms vanilla RAG, achieving 25% top-
1 accuracy and 83% top-5 accuracy on the test set. The
top-5 evaluation metric is highly relevant since in practice
our text generator may recall the top k most relevant images
from the instruction dataset before generating a reply to the
query.

7. Discussion

Retrieval Performance The contrastive learning ap-
proach outperformed the hand labeled negative sample per-
formance. We struggled to increase our accuracy even fur-

ther due to limited compute constraint and the size of the
dataset. In the future, we hope to increase the size of the
dataset as well as the diversity of the prompts, so that the
model retrieval performance can improve. Furthermore, we
hope to apply closed source retrieval models like RAG 2.0
or COCA and compare the retrieval results to ours. In order
to avoid overfitting with our training set we used Dropout
with p = 0.5.

Generator Performance We evaluated our entire
pipeline with the answer generated by an LLM given the
initial prompt plus the context (either the true most rel-
evant image vs the predicted most relevant image). We
initially set out to fine-tune a generator on our dataset,
but due to limited GPU availability (we needed Ampere
GPUs or higher, which were not available on GCS, AWS,
or Azure) we were unable to fine-tune the generator. We
used Scale AI’s LLMEngine Model Zoo with a pretrained
mixtral-8x7b model with temperature 0.2. [2] As a re-
sult, the output of the generator was reasonable at times but
unreasonable at other times. For example, given the true
context image (correctly predicted from the model) and the
prompt

Given a target question and a set of image embed-
dings, representing relevant images related to the
question, answer the question in as much detail
as possible. Target question: ”What is the Alex
Desk?” Image Embeddings: [1.89, -0.96, ...]

the model output is

Alex’s desk is a desk that is used by Alex. It is
made of wood and has a black finish. The desk
has two drawers and legs. The desk is located in
Alex’s bedroom.

As we can see, the first and last sentence are complete hallu-
cinations, although the second and third sentences correctly
describe the Alex desk and require explicit knowledge from
the retrieved image embeddings.

Limitations of Our Method Our method has a few ex-
plicit limitations. 1) The generator model is frozen and not
fine-tuned on our dataset, leading to strange and halluci-
nated outputs by the generator in Section 7. 2) Our method
solely focuses on text-image retrieval. In addition to the
image context database, one might include text as well, in
which case the text embeddings must also be projected into
the embedding space. One solution might be to use image
captioning to add more information to the images and pre-
vent hallucinations in the text generation. 3) In an attempt
to use the most current, state of the art models, we found
ourselves limited by package compatibility and GPU con-
straints. For example, the FlashAttention 2 library
is necessary to finetune current state of the art models like
LLama-3 and mixtral-8x7b, but FlashAttention

7



Table 3: Retrieval Results with MLP Retriever on Test Set with Different Embeddings

Image Embedding Text Embedding Top-1 Accuracy (%) Top-5 Accuracy (%)
CLIP MiniLM-L7 0.25 0.83
CLIP word2vec 0.17 0.67
ResNet-18 MiniLM-L7 0.17 0.34
ResNet-18 word2vec 0.16 0.58

Table 4: Retrieval Results with MLP Retriever vs. Vanilla
Frozen Retriever

Method Top-1 Accuracy (%) Top-5 Accuracy (%)
MLP (Ours) 0.25 0.83
Vanilla 0.121 0.350

2 only supports Ampere GPUs or newer (i.e. NVIDIA
A100s). However, none of these GPUs were available
to us on leading cloud provider platforms. Furthermore,
FlashAttention 1 is deprecated on the GPUs we
could access (T4), which prevented us from fine-tuning ear-
lier generator models. Additionally, very little support ex-
ists for different types of chips like TPUs, which presents
a major problem in the field for researchers with monetary
constraints or minimal access to computational resources.

8. Conclusion
In this work, we introduce a contrastive learning ap-

proach to image retrieval with a novel retrieval architecture,
building off of the work of contrastive learning in com-
puter vision. [18, 15] We also introduce a custom dataset
of instruction manuals and augmented prompts, to help re-
searchers working on image understanding and retrieval but
who are limited by compute. Our MLP-based retrieval
model outperforms vanilla RAG significantly on our custom
dataset, paving the way for further development on learned
retrieval methods using contrastive learning. Many cur-
rent libraries today, like LlamaIndex, use frozen RAG,
and we hope to provide researchers with a learned, ro-
bust methodology for retrieving relevant documents in their
database.

9. Contributions and Acknowledgements
Ali Hindy: Ali worked on generating the dataset that

we used for retrieval, generating the augmented data using
synthetic data techniques, generating image and text em-
beddings using the ensemble of models we attempted, as
well as connecting the retriever model to the generator us-
ing Scale AI’s LLMEngine. We both contributed equally to
the paper.

William Denton: William focused on the retrieval
model and took lead of running experiments for different

hyperparameter experimentation. He also created the cus-
tom contrastive learning scheme, and implemented a train-
ing and hyperaparameter framework for different types of
embeddings using PyTorch. We both contributed equally to
the paper.

References
[1] Download IKEA product assembly instructions -

ikea.com. https://www.ikea.com/ch/en/
customer-service/product-support/
assembly-guides/. [Accessed 15-05-2024].

[2] GitHub - scaleapi/llm-engine: Scale LLM Engine pub-
lic repository — github.com. https://github.com/
scaleapi/llm-engine. [Accessed 04-06-2024].

[3] D. Caffagni, F. Cocchi, N. Moratelli, S. Sarto, M. Cor-
nia, L. Baraldi, and R. Cucchiara. Wiki-llava: Hierarchical
retrieval-augmented generation for multimodal llms, 2024.

[4] J. Chen, H. Lin, X. Han, and L. Sun. Benchmarking large
language models in retrieval-augmented generation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 17754–17762, 2024.

[5] W. Chen, H. Hu, X. Chen, P. Verga, and W. W. Cohen.
Murag: Multimodal retrieval-augmented generator for open
question answering over images and text. arXiv preprint
arXiv:2210.02928, 2022.

[6] S. Edunov, M. Ott, M. Auli, and D. Grangier. Understanding
back-translation at scale. arXiv preprint arXiv:1808.09381,
2018.

[7] A. El-Nouby, N. Neverova, I. Laptev, and H. Jégou. Training
vision transformers for image retrieval, 2021.

[8] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun,
M. Wang, and H. Wang. Retrieval-augmented generation for
large language models: A survey, 2024.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[10] Z. Hu, A. Iscen, C. Sun, Z. Wang, K.-W. Chang, Y. Sun,
C. Schmid, D. A. Ross, and A. Fathi. Reveal: Retrieval-
augmented visual-language pre-training with multi-source
multimodal knowledge memory. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 23369–23379, 2023.

[11] Z. Jiang, F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu,
Y. Yang, J. Callan, and G. Neubig. Active retrieval aug-
mented generation, 2023.

[12] D. Kiela, A. Singh, and C. A. Team. Introducing RAG 2.0 -
Contextual AI — contextual.ai. https://contextual.
ai/introducing-rag2/. [Accessed 13-05-2024].

8

https://www.ikea.com/ch/en/customer-service/product-support/assembly-guides/
https://www.ikea.com/ch/en/customer-service/product-support/assembly-guides/
https://www.ikea.com/ch/en/customer-service/product-support/assembly-guides/
https://github.com/scaleapi/llm-engine
https://github.com/scaleapi/llm-engine
https://contextual.ai/introducing-rag2/
https://contextual.ai/introducing-rag2/


[13] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel,
et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space, 2013.

[15] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision, 2021.

[16] R. Wang, Y. Zhang, J. Mao, R. Zhang, C.-Y. Cheng, and
J. Wu. Ikea-manual: Seeing shape assembly step by step. In
NeurIPS 2022 Datasets and Benchmarks Track.

[17] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou.
Minilm: Deep self-attention distillation for task-agnostic
compression of pre-trained transformers, 2020.

[18] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini,
and Y. Wu. Coca: Contrastive captioners are image-text
foundation models, 2022.

9


