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Abstract

Portraits form a significant portion of personal photo al-
bums, making the development of neural aesthetic assess-
ment specialized for portraits beneficial to everyone’s ev-
eryday life. To improve upon a general aesthetic model to
perform neural aesthetic assessment on portraits, we inte-
grated facial embeddings from the VGG-Face model into
the Neural Image Assessment (NIMA) framework. This
proved effective, with the enhanced model achieving an
accuracy of 0.8341, an LCC of 0.7786 and an SRCC
of 0.7849, surpassing the baseline results. Additionally,
we conducted interpretability experiments using gradient-
weighted class activation mapping (Grad-CAM) and guided
backpropagation to visualize the regions of images that con-
tribute most to the model’s predictions. These visualiza-
tions help validate the model’s decision-making process and
highlight its focus on relevant facial features.

1. Introduction
With the proliferation of digital photography, organizing

and curating personal photo albums has become an essen-
tial task for many individuals. Following our original idea
of creating an intelligent album organizer, we have identi-
fied that portrait photos constitute the majority of images in
most people’s albums. This observation has led us to fo-
cus on refining neural aesthetic models to better assess the
aesthetic quality of portrait photographs.

Existing aesthetic models tend to generalize across all
image types, which may not adequately capture the unique
features and nuances specific to portraits. By developing
a specialized model for portraits, we aim to improve the
accuracy and relevance of neural aesthetic assessments in
personal photo album organising.

The input to our algorithm is a portrait image. We then
use a Convolutional Neural Network (CNN) architecture
based on MobileNet, augmented with facial recognition em-
beddings derived from VGG-Face[8], to output a predicted
aesthetic score probability distribution on a scale of 1-10.

This score is intended to reflect the human perception of
aesthetic quality, providing a valuable tool for intelligent
photo album organization. We have proven the viability and
effectiveness of this approach by our experiments.

We have also conducted interpretability experiments,
such as using gradient-weighted class activation mapping
(Grad-CAM) and guided backpropagation, to visualize
which regions of the images contribute most to the model’s
predictions. These experiments help in understanding the
decision-making process of our model.

2. Problem Statement
We use 4000+ portraits from Aesthetic Visual Analysis

Dataset [7] as our primary dataset. We trained a model to
perform a neural aesthetic assessment on a portrait which
takes in a photo and outputs a probability function of how
humans may score it on a scale of 1-10.

Running the NIMA model with MobileNet as a base
model with provided weights gives an accuracy of 75.2%
when tasked with categorizing images into 2 classes (below
and above 5.5). It also achieves an LCC(linear correlation
coefficient) of 0.645 and an SRCC(Spearman’s rank corre-
lation coefficient) of 0.636. We will compare our neural
portrait aesthetic model against these results where accu-
racy shows we can correctly identify good and bad portrait
photos and where LCC and SRCC make sure we can cor-
rectly rank the quality of portraits.

3. Related Work
The field of aesthetic quality assessment of images has

advanced significantly with deep learning models, lever-
aging convolutional neural networks (CNNs) and attention
mechanisms.

The Aesthetic Visual Analysis (AVA) dataset [7] serves
as a cornerstone for many aesthetic assessment studies,
comprising over 250,000 images with extensive metadata,
including aesthetic scores, semantic labels for over 60 cat-
egories, and photographic style labels. This comprehensive
dataset provides a solid foundation for training and evaluat-
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Figure 1. Model Structure

ing models, enabling a nuanced understanding of aesthetic
quality across diverse images.

Pioneering work in this domain includes the Adaptive
Layout-Aware Multi-Patch Deep CNN (A-Lamp) model by
Ma et al. [6], which uses a multi-patch approach to capture
both global and local features, providing a comprehensive
aesthetic evaluation. Similarly, the Attention-based Multi-
Patch Aggregation (MP ada) model [13] incorporates an at-
tention mechanism to focus on difficult-to-assess features,
enhancing prediction accuracy.

Kao et al. [3] introduced a deep convolutional neural net-
work specifically for aesthetic quality assessment, capturing
both global and local features for robust evaluation. Lu et
al. [5] proposed a deep multi-patch aggregation network,
leveraging multiple image patches to improve performance
by capturing detailed visual information. Wang et al. [17]
presented a brain-inspired deep network, mimicking hierar-
chical visual processing to incorporate both low-level and
high-level features for aesthetic evaluation.

However, models like A-Lamp and MP ada do not
specifically target the unique characteristics of portrait pho-
tography, where facial features play a critical role in aes-
thetic evaluation.

Building on the Neural Image Assessment (NIMA)
model by Talebi and Milanfar [15], our work aims to
enhance NIMA’s performance for portrait photography
by incorporating facial recognition and feature embed-
ding. We generate rich facial embeddings, combining them

with NIMA’s output to focus on critical facial features,
thus improving aesthetic assessment of portraits. Inspired
by advancements in facial recognition pipelines, Serengil
and Ozpinar [12] benchmarked various facial recognition
pipelines, highlighting effective modules for integration
into aesthetic assessment models.

In visual interpretability, guided backpropagation [14]
and Grad-CAM [11] are prominent methods providing vi-
sual explanations for model predictions, highlighting im-
portant regions in images that contribute to decisions.

Overall, our work extends these approaches by address-
ing the specific challenges of portrait photography, using
facial recognition, feature embedding, and interpretability
techniques to create a robust aesthetic assessment model tai-
lored for portraits.

4. Dataset
We used the Aesthetic Visual Analysis (AVA) dataset

[7]. The AVA dataset is a comprehensive collection of
over 250,000 images, each accompanied by a rich variety
of metadata. This metadata includes:

• Distribution of Ratings: Each image in the dataset
has a distribution of aesthetic ratings on a scale from 1
to 10, provided by multiple human raters. This allows
for a nuanced understanding of the perceived aesthetic
quality of each image.

• Semantic Labels: The dataset includes over 60 cate-
gories of semantic labels, offering detailed annotations
about the content of the images. These labels help in
identifying and categorizing the images based on vari-
ous visual and contextual elements.

• Photographic Style Labels: The AVA dataset also
provides labels related to different photographic styles,
such as portrait, landscape, macro, and more. These
labels are crucial for tasks that involve style-specific
analysis or enhancement.

Given our task to examine and optimize the model’s per-
formance on portrait photos, we focused specifically on this
subset of the AVA dataset. The extraction process involved
the following steps. First, we filtered the dataset to identify
images labeled with portrait-related tags. This ensured that
the selected images were relevant to our specific focus on
portrait photography. The filtered set contained over 4000
portrait images. Then, this dataset was further divided into
training and testing subsets to facilitate robust model train-
ing and evaluation. Each subset had 2000+ images.

By leveraging the AVA dataset and carefully extracting
and preparing a high-quality subset of portrait images, we
aimed to build and refine a model capable of delivering ac-
curate and interpretable aesthetic assessments specifically
for portrait photography.
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We used the same preprocessing procedures used by the
original NIMA model[15], whereby input images are firstly
scaled to 256 × 256, before randomly cropped into 224 ×
224. The initial scaling was performed to alleviate the issue
of changing composition by cropping directly and the crop-
ping is to avoid over-fitting. Random horizontal flipping is
also performed for data augmentation purpose.

5. Methods

Now we will discuss how we generated the validation
test set accuracy on the specific portrait category of the AVA
dataset and made explorations on our model with reference
to the NIMA model.

5.1. Portrait Validation Accuracy

We extracted images from the ”portrait” category within
the AVA dataset and processed them using the NIMA model
to generate the ”mean score prediction” for each image,
identified by their unique ”image id.” We then computed the
ground truth mean score for each image. We performed a
binary comparison to assess the predictive accuracy, where
a mean score above 5.5 was categorized as having high aes-
thetic quality. In contrast, a score below 5.5 was categorized
as having low aesthetic quality.

5.2. Facial Embedding

We experimented with facial feature embedding us-
ing wrapped facial recognition algorithms called Deep-
Face, which provides different 4096-dimensional embed-
dings generated from various facial recognition base mod-
els. We primarily used VGG-Face [8] for our experiments.
VGG-Face is trained on a large dataset of face images and
has demonstrated high accuracy in recognizing and distin-
guishing facial features. This makes it well-suited for cap-
turing the detailed and nuanced features necessary for as-
sessing the aesthetic quality of portrait photographs. We
believe the result could be generalised to other embedding
methods, and will experiment and compare performance in
the future.

In our model, we concatenate the facial representation
vector with the output from NIMA (with the last fully-
connected layer removed) and pass them through a fully-
connected layer. By doing this, we hope to incorporate de-
tailed facial features directly into the aesthetic assessment
process, allowing the model to focus on critical elements
such as facial expressions and skin texture.

To further understand the extent of impact of a richer
facial embedding on the performance of the model, we used
PCA to reduce the dimension of the embeddings and did
comparative experiments to show how embeddings of 4096,
2048, 1024, 512, 128 dimensions differently affect portrait
aesthetic evaluation.

5.3. Face and Body Cropping

Given that portrait images predominantly feature live
subjects, photographers often emphasize these subjects, and
viewers naturally focus on them as well. To investigate the
impact of this emphasis, we explored the cropping of human
faces and bodies and conducted predictions based on these
cropped images. Utilizing the ”haarcascades” algorithm in
OpenCV, we extracted facial regions from the portrait im-
ages and input them into our prediction model for evalua-
tion. This approach allowed us to assess the influence of
subject-centric cropping on our prediction accuracy.

Figure 2 shows an example of a cropped face and its orig-
inal image.

(a) Cropped face of a girl. (b) Original image.

Figure 2. Illustration of face croppping on a example image.

Then, we attempted to optimize our model output with
face rating. Based on our analysis of the face rating re-
sults, we observed a trend where the majority of the data
points fall below the line defined by cropped face rating =
1.15 × ground truth. Consequently, we postulate that the
face rating can serve as a lower bound for the prediction out-
comes. To refine our predictions, we apply an affine trans-
formation to the face rating. By comparing the maximum
value between the transformed face rating and the original
model’s prediction score, we establish a new, adjusted pre-
diction score.

6. Experiments and Results
6.1. Portrait Validation Accuracy

Table 1 provides a detailed summary of the prediction
statistics and the corresponding test accuracy metrics. Fig-
ure 3 is a visualization of the data where each data point
represents an image with its ground truth rating as x-value
and portrait rating as y-value. We found a test accuracy rate
of 75.15%.

6.2. Facial Embedding

In this section, we will discuss our finding which shows
an improved performance of NIMA model with a richer fa-
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Mean 5.509
Median 5.542
Standard Deviation 0.544
Minimum Score 3.597
Maximum Score 6.791
Test Accuracy 75.15%

Table 1. Prediction statistics on portrait dataset.

Figure 3. Plot of Nima vs. Ground Truth for Portraits

cial embedding.

6.2.1 Training detail

Training of the model is performed in two stages. In the
first stage, only the top layer, namely the concatenated fully-
connected layer which takes in MobileNet-embeddings and
facial embeddings are trained. After experimenting with
different hyper-perimeters, we decide to compare the per-
formance of the improved model on different embedding
size with a FC layer training rate of 0.001, dropout rate of
0.75 and train it for 10 epochs. This first stage of training is
then followed by the training of the entire network, which
includes the weights of the CNN. In this stage, we train the
model for 15 epochs with a learning rate of 0.00003. The
epoch choice is decided to be such because we realise not
capping the epochs of the first training stage tend to over
train the dense layer and result in little or no learning of the
full model.

We trained the improved NIMA with different embed-
ding size. We have also re-trained the basic NIMA model
using the same hyper-parameters for a fairer comparison.

6.2.2 Quantitative Comparison

To evaluate the results of the experiment, we calculate the
binary classification accuracy. This is determined by com-

No. Of Embedding Accuracy LCC SRCC
0 0.7718 0.6814 0.6872

128 0.7789 0.6992 0.7026
512 0.7908 0.7229 0.7304

1024 0.8032 0.7404 0.7479
2048 0.8124 0.7518 0.7626
4096 0.8341 0.7786 0.7849

Table 2. Performance metrics for different numbers of embeddings

Figure 4. Performance metrics vs. number of embeddings

paring the mean score of the predicted probability distribu-
tion with a threshold of 5.5. If the predicted mean score is
greater than 5.5, it is classified as positive; otherwise, it is
classified as negative. This binary classification accuracy is
then compared to the ground truth mean score.

In addition, we also calculate the Linear Correlation Co-
efficient (LCC) and the Spearman Rank Correlation Coeffi-
cient (SRCC). The LCC measures the linear relationship be-
tween the predicted scores and the ground truth scores, indi-
cating how well the predicted scores match the actual scores
in a linear sense. A higher LCC value indicates a stronger
linear relationship. The SRCC assesses the monotonic rela-
tionship between the predicted scores and the ground truth
scores. It evaluates how well the predicted rankings of the
scores correspond to the actual rankings, irrespective of the
linearity. A higher SRCC value indicates a stronger mono-
tonic relationship.

The results, as presented in the table and graph, show that
as the number of embeddings increases, all three metrics
(accuracy, LCC, and SRCC) significantly improve. This
suggests that increasing the number of embeddings en-
hances the model’s performance in terms of both binary
classification accuracy and the correlation with ground truth
scores.

This trend indicates that a higher number of embeddings
allows the model to capture more complex features of the
facial features in the portraits, leading to better performance
across all metrics. Therefore, our improvements of the
model by concatenating with facial features is effective.
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6.2.3 Qualitative Comparison

Figure 5. Top 10 images rated by human

Figure 6. Top 10 images rated by NIMA

Figure 7. Top 10 images with 4096D embeddings
Figure 8. Comparison of Top 10 Images

By observing Figure 8 the top 10 rated images by human,
NIMA, and facial-embedding-enhanced NIMA, we can ef-
fectively discern the differences in rating criteria, despite all
images being valid aesthetic representations.

Both NIMA and enhanced-NIMA tend to prefer portraits
with a clear and prominent subject, often framed in close-
up shots. In contrast, human selections show more appre-
ciation for a balanced environment and the subject. This
may be because our models are built on top of MobileNet
and VGG-Face, which were primarily trained for classifica-
tion and recognition tasks and therefore tend to favor im-
ages with well-defined, central subjects. This preference
highlights the models’ limitation in appreciating a holistic
aesthetic. It is also evident that human-preferred images are
much more subdued in terms of color compared to those
favored by the models, indicating that the models struggle
to understand more nuanced aesthetic qualities and prefer
stronger technical features.

Figure 9. Worse 10 images with 4096D embeddings

Mean 4.407
Median 4.277
Standard Deviation 0.884
Minimum Score 2.986
Maximum Score 6.739
Test Accuracy 46.57%
Normalized test accuracy 53.54%

Table 3. Prediction statistics of cropped face and body on portrait
dataset.

Comparing enhanced NIMA and NIMA, we observe that
enhanced NIMA filters out images of animals, likely be-
cause the facial features in these images cannot be recog-
nized effectively. On the other hand, when examining Fig-
ure 9 the worst 10 images rated by enhanced NIMA, it be-
comes clear that most have obstructed faces. This obser-
vation highlights that, due to the embedding features used
in the model, there is a strong preference for clear facial
features, which may be a significant limitation in assessing
portrait aesthetic holistically.

6.3. Face and Body Cropping

Table 3 provides a detailed summary of the prediction
statistics and the corresponding test accuracy metrics for
cropped face and body images. Figure 4 is a visualization
of the data where each data point represents an image with
its ground truth rating as x-value and face rating as y-value.

The initial accuracy of 46.57% was suboptimal. We
hypothesize that this is attributable to the down-rating of
cropped images, which suffer from insufficient contex-
tual information, thus impairing aesthetic evaluation perfor-
mance. To address this, we normalized the statistics from
both the ground truth and the cropped face images. Upon
recalculating the accuracy, we observed an improvement,
with the accuracy increasing to 53.54%.

However, visualizing the data distribution in Figure 2,
we found that, interestingly, most of the data fit under
the cropped face rating = 1.15 × ground truth line, which
means there is a potential threshold of face and body pre-
dictions.

Based on our result of face cropping, we explored opti-
mizations with Face Rating. Specifically, we set a minimum
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Figure 10. Plot of Cropped Face vs. Ground Truth for Portraits

bar for prediction scores based on the face ratings, defined
by the linear equation threshold = m× face rating + b.
The modified face rating is calculated as (face rating −
b)/threshold. We tried a range of bs and thresholds and
calculated the resulting accuracy, though we did not see an
improvement in the accuracy rate.

7. Visual Interpretability
On top of model enhancement, we also explored provid-

ing visual explanations for the decisions made by the NIMA
model using the Grad-CAM method, helping to understand
which regions of an image contribute most to the model’s
predictions. We also experimented with guided backpropa-
gation on images to enhance the score of an image.

7.1. Method

7.1.1 Gradient Mapping

We produced ’visual explanations’ for decisions from the
NIMA model using the Grad-CAM method [11]. This
method utilizes the gradients of any target concept flowing
into the final convolutional layer to create a coarse local-
ization map. This map highlights important regions in the
image that contribute to predicting the concept. We pro-
duced maps on our portrait images based on the PyTorch li-
brary for CAM methods [2]. We computed the gradients of
the rating classes from 1 to 10 concerning the image pixels.
These gradients are then averaged with each layer’s weight
corresponding to their normalized prediction distributions.

7.1.2 Guided Backpropagation

We employed guided backpropagation to identify the re-
gions of an image that most significantly influence the pre-
diction score, thereby enhancing the overall aesthetics rat-

ing of the image [14][18]. The process began with an initial
calculation of the gradient for a single step to determine how
alterations in the image affect the NIMA score. Following
this, the image underwent 100 iterations of guided back-
propagation, specifically focusing on higher rating classes
(7-10) to maximize the aesthetic score. By selectively am-
plifying or modifying these critical regions, the overall aes-
thetic quality of the image was improved.

7.2. Result

7.2.1 Gradient Mapping

We generated ’visual explanations’ for the NIMA model’s
decisions using the Grad-CAM method [11]. We created
these maps for our portrait images. The explainability var-
ied across images, while some mapping clearly highlighted
the subject of the portrait, some generated mappings that
did not correlate to the position of the subject.

(a) A case where the mapping appears explainable

(b) A case where the mapping appears unexplainable

Figure 11. GradCAM visualizations by rating class 1-10 for two
examples.

Figure 12. Average GradCAM
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Here we provide some visualization examples, Figure 11
shows two groups of gradient maps by classes of ratings
ranging from 1 to 10. Figure 12 shows the average map-
ping based on the score distribution of the rating classes.
As shown in Figure 11(a), this set of images shows an in-
stance where the Grad-CAM mapping appears explainable.
The gradient maps clearly highlight the important regions in
the image that correspond to the face of the subject. In cases
such as that depicted in Figure 11(b), where the mapping ap-
pears unexplainable, it highlights a significant challenge in
the interpretability of deep learning models. When the gra-
dient maps fail to show clear and distinct regions of impor-
tance, it becomes difficult to trust the model’s predictions,
especially in critical applications where understanding the
model’s decision-making process is essential.

While the explainable mappings prove the strength of
NIMA in understanding portrait photos, the unexplainable
mappings underscore the need for further development of
interpretability methods that can provide more consistent
and reliable insights into model behavior. Ensuring that
models not only perform accurately but also do so in a man-
ner that is comprehensible to human users is crucial for fos-
tering trust and facilitating the responsible deployment of
AI systems. Additionally, the contrast between explainable
and unexplainable mappings in these examples emphasizes
the importance of continuous evaluation and improvement
of interpretability tools like Grad-CAM to achieve better
transparency and accountability in AI models.

7.2.2 Guided Backpropagation

We explored improving the mean score of the portraits via
guided backpropagation. We picked channels of distribu-
tion of scores from 6 to 10 and calculated the gradients of
those neuron values with respect to image pixels.

(a) Gradient Map Visualization

(b) Enhanced Images Visualization

Figure 13. Guided Backpropagation Visualization by Rating Class

Figure 14 illustrates the process and results of guided
backpropagation used to improve the mean score of por-
traits. Figure 13(a) shows the gradient maps for classes of
ratings 6, 7, 8, 9, and 10. These maps display the distribu-

tion of gradients with respect to the image pixels, highlight-
ing the areas that contributed most to the class predictions.
However, upon closer inspection, the gradient maps do not
emphasize significant shapes. The variations between the
maps are subtle, suggesting that the gradients do not pro-
vide clear distinctions or improvements across different pix-
els. Figure 13(b) shows the enhanced images generated us-
ing guided backpropagation for the same classes of ratings.
Despite the application of guided backpropagation, the en-
hanced images appear largely unchanged from the original
ones.

(a) Original Image: 4.44 (b) Enhanced Image: 6.24

Figure 14. We used 100 steps of guided backpropagation on rating
classes 7-10 to increase the mean score of the image passes into
the NIMA model. The original image (a) has a prediction score of
4.44, while the enhanced image (b) achieves a score of 6.24.

Based on the calculation for a single step described
above, we enhanced the image through 100 iterations of
backpropagation. Figure 14 shows our result. While we
can not visually recognize significant changes from 14(a)
to 14(b), the original image gets a prediction score of 4.44,
whereas the enhanced image gets a prediction score of 6.24.
Since the evaluation of the image is binary - whether the
image rating is above or below 5.5 - the enhanced image is
classified as an image with high aesthetics just by making
imperceptible modifications.

The enhancement process using guided backpropagation
effectively raised the aesthetic rating of an image as mea-
sured by the NIMA model while only subtly modifying its
appearance. This raises significant questions about the un-
explainability inherent in such models. Aesthetic judgment
is inherently subjective, varying widely among individuals
based on personal preferences, cultural backgrounds, and
contextual factors. The NIMA model’s training data, which
consists of human ratings, may not capture the full diver-
sity of aesthetic preferences. Moreover, the enhancements
made by the model reflect an averaged or generalized aes-
thetic judgment, which might not align with specific indi-
vidual tastes.

8. Conclusion
In this paper, we presented a specialized neural aesthetic

assessment model for portrait photography, building upon
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the NIMA model and integrating facial recognition embed-
dings to enhance its performance. Our approach, leveraging
a convolutional neural network architecture based on Mo-
bileNet and augmented with facial recognition embeddings
from VGG-Face, demonstrated significant improvements in
assessing the aesthetic quality of portrait images.

Through extensive experiments, we showed that our
model, enriched with detailed facial embeddings, outper-
formed the baseline NIMA model across several key met-
rics, including binary classification accuracy, Linear Cor-
relation Coefficient (LCC), and Spearman Rank Correla-
tion Coefficient (SRCC). The results indicated that a higher
number of embeddings enhanced the model’s ability to cap-
ture complex features in portrait photographs, thereby im-
proving overall performance.Additionally, we explored the
impact of subject-centric cropping and incorporated visual
interpretability techniques such as Grad-CAM and guided
backpropagation. While Grad-CAM provided insights into
the decision-making process of our model by highlighting
important regions in the images, guided backpropagation
was used to subtly enhance the aesthetic quality of images.
These methods underscored the strengths and limitations
of our model, particularly in terms of transparency and ex-
plainability.

Our work underscores the importance of tailored aes-
thetic models for specific image categories, such as por-
traits, where unique features and nuances play a critical
role in overall aesthetic judgment. By incorporating facial
recognition and feature embedding, we have demonstrated
a promising direction for improving the accuracy and rel-
evance of neural aesthetic assessments. Future work will
focus on further refining our model by experimenting with
different embedding methods and expanding our dataset to
include a more diverse range of portrait images. Addition-
ally, enhancing the interpretability of our model remains
a priority, aiming to provide more consistent and reliable
visual explanations that align with human aesthetic prefer-
ences.
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