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Abstract

The processing and application of neural signals in the
context of image generation are still in their nascent stages,
with significant advancements emerging in recent years,
particularly within the specific realm of Civil Engineering.
However, recent academic developments have paved the
way for exploring such applications by connecting gener-
ative models with the processing of electroencephalograph
(EEG) data, tailored to this particular focus.

This project endeavors to capitalize on recent advance-
ments in academia by integrating research-based architec-
tures with gathered and processed neural data, in consid-
eration of the limited availability of resources in the field.
Despite incomplete access to reference works, this project
has partially replicated their outcomes and achieved com-
prehensive results in generating Civil Engineering images
from proprietary data.

The project acknowledges and expresses gratitude for
the valuable orientation and guidance provided by PhD
candidate Alberto Tono.

1. Introduction
1.1. Problem

The introductory state of research on the application of
EEG signals in generative models has, so far, generally lim-
ited the scope of its applicability. Despite the latest en-
deavors on the application of EEG-collected data for image
generation, which have been able to visually produce suffi-
ciently satisfactory outcomes, it has still been presented far
from a specific orientation or industry specialization. These
factors would be significant in order to configure viable em-
ployment in multiple fields. Such imminency is consid-
erably more noticeable in the field of Civil Engineering,
which presents a vast scope of possible applications of such
models, despite the still limited solutions derived from the
field.

Recognizing this critical gap in research and the myriad

solutions that could stem from its resolution, this project
endeavors to address these challenges head-on. By navigat-
ing the uncharted territory of EEG-based generative mod-
els within the context of Civil Engineering, it seeks to not
only advance scientific understanding but also unlock trans-
formative opportunities for innovation and problem-solving
within the industry.

1.2. Motivation

In subsequent consideration of the presented problem,
the project has been motivated by advances in research
fields connecting EEG signal processing and generative
models, most noticeably by ”DreamDiffusion” (Bai et al.,
2023). Regarding its applicability, Neurocife was also in-
fluenced by the possible future implementation of genera-
tive models in the context of architecture and engineering
3D models, which is further discussed in section 7.1.

1.3. Inputs

Neurocife utilized EEG tensors obtained from 129 sig-
nals in the laboratory as input data for the pre-training and
generation sets. Similarly, future applications are expected
to likely involve EEG signals and their reconstructions.

1.4. Outputs

There are two different outcomes arising from Neuro-
cife’s architecture. Initially, in relation to its pre-training,
the project generated checkpoint models that could be used
for fine-tuning in equivalent scope in future projects. Ad-
ditionally, and most significantly, the generative model uti-
lized in the project resulted in the outputs of generative-
based images (.png).

2. Related Work

The utilization of neural signals has been approached
initially through functional magnetic resonance imaging
(fMRI), in which case the use of generative adversarial net-
works (GAN) has been widely applied, including Ozcelik
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et al. (2022) and Shen et al. (2019), with the later applying
it to the training of a deep neural networks.

Despite the relative success in the generative capac-
ity of fMRI models, the extensive cost of data acquisi-
tion in such methods has led researchers to explore al-
ternative approaches, such as EEG. One of the pioneer-
ing endeavors in utilizing EEG data for generative mod-
els is ”Brain2Image,” developed by Kavasidis et al. (2017).
Brain2Image significantly revolutionized the understanding
of neural signals obtained from patient stimulation and their
consequent reproduction. The project utilized a wide and
internet-available dataset, ImageNet, to obtain training im-
ages, which were subsequently exposed to individuals for a
period of 0.5 seconds concurrently with the measurement of
their respective signals.

Architecture-wise, Brain2Image relied on Auto-
Encoding Variational Bayes, or Variational Autoencoders
(VAE), proposed by Kingma and Welling (2022), instead
of the more common application of GANs. VAE intro-
duced the utilization of a stochastic variational inference
algorithm with advancements in determining a lower bound
estimator. In Brain2Image, this involved the utilization of
an encoder by feeding the obtained signals into an LSTM
network, whose output was processed by a fully connected
neural network using ReLU activation. The decoding
architecture of the model utilized fully connected neural
networks followed by deconvolution layers. The accuracy
of the final outcomes, measured by the accuracy of labeling
the generated image, reached 0.35.

Sequentially, one of the most recent progresses on the
field has been demosntrated by ”Seeing Through the Brain”
(Lan et al., 2023), which introduced its own architecture,
”Neuroimagen”, a cohesive pipeline which proposed the in-
corporation of a multi-level semantics extraction module.
Similarly, Zeng et al. (2023) ahve proposed DM-RE2I, a
framework which aimed to introduce the extraction tempo-
ral and spatial information of the signals, whose evaluated
metric, the Inception score, was superior to models using
GAN architectures. Still, many models have continued to
apply GAN structures, including NeuroVision (Kahre et a.,
2022) and ThoughtViz (Tirupattur et al., 2018), with the
later presenting a limited dataset of 230 EEG signals, which
correlate with the conditions of the current project. As in
Brain2Image, LSTM has been applied with visible success
in Bozal, which reproduced part of a similar architecture
used by Spanizato et al. (2019), which by itself was pi-
oneer on automated classification using visual descriptors
from directly measured EEG signals, and also used Ima-
geNet for image data.

Finally, and most importantly for the current project,
the advancements of DreamDiffsuion (Bai et al., 2023)
have brought similar methodology in comparison to
”Brain2Image”, in which it was inspired, but with the devel-

opment of architecture modellings that constituted in a more
robust system on the accuracy of its outcome. Although the
metrics of the result evaluation configuring an essentially
qualitative analysis, DreamDiffusion demonstrated a visu-
ally significant improvement over its predecessor. Due to
the improvements presented in comparison to similar aca-
demic works, DreamDiffusion served as the base structure
and architecture of Neurocife. Importantly, most of its posi-
tive outcomes can be traced to the extensive dataset utilized,
which consisted on 120,000 EEG data samples gathered
from a open-source repository entitled MOABB, and simi-
larly to Brain2Image used ImageNet as the image source for
the gathering of data through the exposition of figures for
laboratoriy voluntaries. The processing includes a masked
signal pre-training and the fine-tuning, through the refer-
ence images from ImageNet, into pre-trained stable diffu-
sion.

3. Methods
The methodology applied within the training architec-

ture for this application has been based on the model from
DreamDiffusion.

3.1. Signal Reconstruction

In its initial state, the architecture targets the reconstruc-
tion of EEG signals to establish a reliable and robust gen-
erative input. After the initial data gathering, the resulting
EEG signals are often inefficient for any generative outcome
due to several layers of noise involved. For instance, mea-
surements occurring at sequential time intervals frequently
present non-continuous measurements, which are largely
influenced by the complexity of identifying such patterns as
well as by the imprecision of the data acquisition methods.

Consequently, the inaccuracies found in the original data
gathering necessitate the use of architectural structures to
correct and reconstruct the original signals. In this di-
rection, the project has employed Masked Autoencoders
(MAE), as proposed by He et al. (2021). This model utilizes
asymmetric encoding of randomly assigned mask tokens.

The initial stage is named ”random sampling,” which
involves the random selection of non-overlapping samples
from the original data (in this case, a two-dimensional sig-
nal) with the removal of the remaining information.

The subsequent encoding proceeds with the use of Vi-
sion Transformers (ViT) following the approach outlined
by Dosovitskiy et al. (2021). ViT is applied exclusively
to the selected samples, initially through a linear projection
with positional embeddings, followed by the application of
transformers in blocks. The basis of this transformer appli-
cation lies in the use of multi-headed self-attention (MSA)
and Multilayer perceptron (MLP) through blocks alternat-
ing layers, with the application of LayerNorm (LN) after
each block.



MAE then progresses to its decoder, where the inputs
consist of both the set of tokens resulting from the en-
coded process described above and the originally masked
(removed) tokens. All tokens once again receive positional
embeddings.

The relevant mathematics in this aspect are mostly relate
to the transformers within the ViT encoding, in which:

1. z0 = [xclass;x
1
pE; ...;xn

pE] + Epos

2. z′l = MSA(LN(zl−1)) + zl−1

3. zl = MLP (LN(z′l)) + z′l

4. y = LN(z0L)

3.2. Fine Tuning through owned EEG data

After obtaining the reconstructed EEG signals in orga-
nized checkpoints, the generation of images is followed by
the fine-tuning of Stable Diffusion (SD) in pretrained mod-
els.

Like all diffusion models, Stable Diffusion is essentially
based on probability, which involves learning a data distri-
bution (p(x)) with the structured implementation applied
to a normally distributed variable to gradually denoise it
(Rombach et al., 2022). Similarly, it also presents an exten-
sion to the application of UNet, an architecture designed,
as in the pretraining, to obtain context through contraction
and precise localization by the application of decontraction
(Ronneberger et al., 2022). Stable Diffusion applies a
methodology class entitled ”Latent Diffusion Models”,
which is an advance in relation to purely transofer-based
models. Initially, it proposes the encoding of the input
image x through ϵ into z = ϵ(x), further decoded by δ(z).
This consists essentially on the application application
of a vector quantization (VQ) GAN (whose details are
out of scope for this project), with the difference that the
quantization layer is in fact absorbed by σ.

Sequentially, the model presented is the introduction of
a domain specific encoder, τθ, which projects the already
processed input y to τ(y).

Attention is subsequently calculated in a similar method-
ology in relation to the well-known transformer models:

Yi(Q,K, V ) = softmax(( (XQi)(XKi)
T√

d/h
) · V )

Given the values of:

Q = W
(i)
Q · ϕi

K = W
(i)
k · τ0(y)

V = W
(i)
V

For intermediate values ϕi, or a representation of
U-NET implementing ϵθ and W

(i)
V .

Another mathematical definition whose details are out
of escope for thesis explanation is:

ϵθ := ϵθ(t)
T
t=1

which is a set of T functions, each ϵθ(t) : χ →
χ (indexed by t) is a function with trainable parameters
θ(t) (Song, 2021).

Thus, the loss function is finally:

LSD = Ex,ϵ(||ϵ− ϵθ(xt, t, τθ(y)||))2

The optimization of which is done in terms of the
variables ϵθ and τθ.

As the project aimed to develop an application of the
previous findings of DreaamDiffusion to its own processed
data, the same architecture structure and code base has been
maintained, following the GitHub repository ”Reproduce
DreamDiffusion”. The code changes were made on the
configuration of the original code to the newly processed
outputs and differences in datasets and training machines.

4. Dataset and Features

4.1. Data Gathering

Considering the utilization of EEG signals on the
pre-training, the project required the acquisition of data
through laboratory reproduction of similar methodologies
applied by the related projects described before. Therefore,
the student was the voluntary for the data gathering through
Stanford’s Wu Tsai Neurosciences Institute laboratory.

4.2. Images

The methodology used in the previous projects required
that the voluntary was exposed to images in different classes
in order for the EEG signals to be obtained. As described,
the reference projects used ImageNet, which was also
applied on the first stage of the project, which consisted on
the reproduction of the results obtained by DreamDiffusion.



For the adaptation to the owned dataset, through the assis-
tance of PhD candidate Alberto Tono from the Department
of Computer Science, 50 images from each of the three
classes in the scope of the project, ”Firmitas,” ”Utilitas,”,
and ”Aesthetic”, were found virtually and shaped to an
adequate format. The images can be found at https:
//drive.google.com/drive/folders/1iaeg_
wODnHFiysnQBgMe75mieSfcjaJO?usp=sharing.

4.3. EEG lab collection

After following the guidelines for such operations in ac-
cordance with Koret HNCL, the EEG stimulus was config-
ured through the software xDiva. The name of the files fol-
lowed the structure ”cife-001[name of the participants]”

4 total stimulus were ran, including 2 vertical with and
without Vision Pro at slow and high frequency. Among
those, only one referred to the gathering of EEG data
directly focused on processed, with the other being in
respect of the gathering of information of validation and
possible future applications, especially on 3D contexts.

There were in total frequency ranges: 14-70Hz, 5-95Hz
and 55-95Hz, which were created through Milena.

Following the general structure of dataset detail for EEG
configurations, the description consists on:

The recording protocol involved 3 object classes with
50 images each, sourced from a new dataset, resulting in
a total of 150 images. Visual stimuli were presented to
users in a block-based setting, with images of each class
shown consecutively in a single sequence, each displayed
for 0.5 seconds. A 10-second black screen (during which
EEG data were recorded) was presented between class
blocks. The collected dataset comprises 150 segments
(time intervals recording the response to each image);
each EEG segment contains 128 channels, recorded for 0.5
seconds at a 1 kHz sampling rate, represented as a 128×L
matrix, with L approximately 500, indicating the number
of samples in each segment on each channel. The exact
duration of each signal may vary, so the first 20 samples
(20 ms) were discarded to reduce interference from the
previous image, and the signal was then cut to a common
length of 440 samples (to accommodate signals with L ¡
500). The dataset includes data already filtered into three
frequency ranges: 14-70Hz, 5-95Hz, and 55-95Hz.

In our case, the 5-95Hz, due to its use on DreamDiffu-
sion, was employed for pre-training.

Importantly, the generated output was converted to .mff,
due to the necessity of compatibility with MNE-Python and
MATLAB.

Figure 1. Data Gathering

4.4. Data Tranformation

In order to use to the gathered EEG signals for the
pre-training, it was necessary to convert them to a .pth file,
wtih the following dictionary structure:

’eeg’: tensor, ’image’: int, ’label’: int, ’subject’: int ’la-
bel’: string ’image’: string

Which was accomplished by using the library Python
MNE for data processing. In total, therefore, each of
the tensors was of the shape (129, 500) and were later
converted to the shape (128, 500) for matching the expected
output.

5. Experiments/Results/Discussion
5.1. Reproduction

During the reproduction, importantly, the definition of
the hyperparmeters was done by the utilization of the same
values of the original implementation, in order to guarantee
fidelity of results.

On the reproduction of the initial outcomes by DreamD-
iffusion, the project was able to obtain equivalent results
in comparison to the original project. Initially, the project
aimed to obtain, using the same dataset, which consists, by
its own description:

”This dataset includes EEG data from 6 subjects. The
recording protocol included 40 object classes with 50
images each, taken from the ImageNet dataset, giving a
total of 2,000 images. Visual stimuli were presented to the
users in a block-based setting, with images of each class
shown consecutively in a single sequence. Each image
was shown for 0.5 seconds. A 10-second black screen
(during which we kept recording EEG data) was presented
between class blocks. The collected dataset contains
in total 11,964 segments (time intervals recording the
response to each image); 36 have been excluded from the
expected 6×2,000 = 12,000 segments due to low recording
quality or subjects not looking at the screen, checked by

https://drive.google.com/drive/folders/1iaeg_wODnHFiysnQBgMe75mieSfcjaJO?usp=sharing
https://drive.google.com/drive/folders/1iaeg_wODnHFiysnQBgMe75mieSfcjaJO?usp=sharing
https://drive.google.com/drive/folders/1iaeg_wODnHFiysnQBgMe75mieSfcjaJO?usp=sharing


using the eye movement data. Each EEG segment contains
128 channels, recorded for 0.5 seconds at 1 kHz sampling
rate, represented as a 128×L matrix, with L about 500
being the number of samples contained in each segment
on each channel. The exact duration of each signal may
vary, so we discarded the first 20 samples (20 ms) to reduce
interference from the previous image and then cut the signal
to a common length of 440 samples (to account for signals
with L ¡ 500). The dataset includes data already filtered
in three frequency ranges: 14-70Hz, 5-95Hz and 55-95Hz.”

The obtained signals can visualized as follows:

Figure 2.

Quantitatively, the procedure obtained a considerably
small loss after 14 epochs:

Figure 3.

Figure 4.

In sequence, in the iamge generation, the results were
very similar to those found by DreamDiffusion in image
quality. Some of the samples can be seen below:

Figure 5.

Figure 6. Enter Caption

Figure 7. Enter Caption

Figure 8. Enter Caption

6. Neurocife

As an extension to the original project of DreamDiffu-
sion, Neurocife was also effective on the reconstruction of
the obtained signals in lab, which was also reproduced un-



der a short amount of time.
——

Figure 9.

Figure 10.

Figure 11.

In addition, the generated images qualitatively presented
a similar quality to those of DreamDiffusion. Nonetheless,
to incoehrences were found: i. some of the images
presented unrelated content in relation to that present
in training, e.g., people or objects not presented in the
image dataset; ii. abstract content, with non-clarity of
representation, was more common than on the original
project.

Those issues could be explained by some primordial
factors:

• The selected image dataset, as well as the obtained sig-
nals from training, are still limited in scope and com-
prehensiveness

Figure 12.

Figure 13.

Figure 14. Enter Caption

• The brain processing of more abstract concepts, such
as the structure of a building, may be harder to identify
in Diffusion Models

• The vast majority of the data in the pre-trained diffu-
sion model is not correlated to Civil Engineering

Some of the samples are:

7. Conclusion/Future Work
In general, Neuro-cife was succesful on reproducing

the original outcomes from DreamDiffusion and on obtain-



Figure 15. Enter Caption

Figure 16. Enter Caption

Figure 17. Enter Caption

ing visually equivalent images for the own obtained data.
This demonstrates that, despite the non-extensive focus pre-
sented by brain signal analysis generative models in the
field of civil engineering up to this point, there is a great
possibility of application on the field.

In future works, a important factor would be obtaining
more comprehensive training data, especially from more
than one voluntary. In addition, a possible future exten-
sion is the implementation of similar generative models for
3D structures or models based on scatches instead of purely
signals.
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