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Abstract

This paper explores the application of novel knowl-
edge distillation techniques to improve the performance of
lightweight convolutional neural network (CNN) models for
skin lesion classification. Motivated by the substantial clin-
ical potential of smaller, more efficient skin lesion classi-
fiers, we evaluate the performance of knowledge distilla-
tion methods to transfer knowledge from a high-capacity
EfficientNet-B7 teacher model to a smaller MobileNetV2
student model on the highly imbalanced ISIC 2019 dataset.
We focus on exploring logit-based distillation techniques,
specifically KL divergence loss and the correlation-based
DIST loss, as well as curriculum learning as a promising
augmentative distillation method. We evaluate and compare
different configurations of these frameworks on the task of
skin lesion classification by assessing the accuracy of their
class predictions. Our experiments show that certain con-
figurations of logit-based knowledge distillation, particu-
larly those using KL divergence loss, improve skin lesion
classification performance of our baseline student model.
Moreover, we found that a curriculum learning distillation
approach, which involves re-ordering the input data to the
student model based on the teacher’s prediction confidence,
generally degrades the performance of our baseline stu-
dent model. Our findings suggest that logit-based knowl-
edge distillation can enhance model performance, and the
choice of distillation technique and loss weights are critical
to achieving optimal results for this task.

1. Introduction
Skin diseases constitute the fourth leading non-fatal bur-

den worldwide, impacting approximately 1.9 billion indi-
viduals [12]. Early detection is essential to preventing com-
plications and improving outcomes, especially as many of
these diseases may progress to the most life-threatening and
least predictable forms of skin cancer. However, a signifi-
cant challenge in achieving timely diagnosis and treatment
is the global shortage of healthcare professionals. More-

over, the diversity and similar symptomatology of skin dis-
eases makes the task of characterizing disease complex and
time-consuming for even experienced dermatologists.

In response to these challenges, there is a growing de-
mand for computational tools that can accurately diagnose
skin diseases and improve access to vital medical care.
Deep neural networks have shown considerable promise,
with remarkable achievements being shown for this task
with complex, large-scale CNNs such as ResNet [9] and
EfficientNet [23] [3] [6] [7] [21]. These research works
also indicate that sophisticated CNNs with more layers and
blocks tend to have better predictive performance with suffi-
cient training data. While these large models can allow us to
obtain better prediction results, they also require significant
computing resources for both training and inference. This is
impractical for resource-constrained clinical environments,
and an ideal world where mobile devices extends the reach
of dermatologists beyond the clinic. The development of
light-weight skin lesion classification models that can be
deployed on mobile devices thus holds significant clinical
potential. These models could provide more accessible and
efficient diagnostic capabilities, expanding the reach of der-
matologists and improving patient outcomes in underserved
areas.

Knowledge distillation (KD) is a promising strategy for
model compression and acceleration, achieved by transfer-
ring knowledge from a large, complex ”teacher” model to
a smaller, more efficient ”student” model. Formally popu-
larized in 2015 by Hinton et al.[10], KD is motivated by the
idea that large-scale teacher models are able to understand a
richer representation of the training dataset than the lighter
student models, and the student model can derive some ex-
tent of the teacher’s representation by being trained on a
combination of the original dataset and the soft labels of the
teacher model. In practice, KD involves minimizing a loss
function that balances the traditional cross-entropy loss on
the true labels with a distillation loss on the teacher’s soft
labels. This enables the student model to achieve perfor-
mance comparable to the teacher model while being signifi-
cantly smaller and faster, making it suitable for deployment
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in resource-constrained environments.
In this paper, we intend to achieve performance improve-

ments on skin disease classification with lightweight mod-
els designed to be trained and inferenced on mobile proces-
sors or other low-resource technology. In particular, we ex-
plore the use of state-of-the-art knowledge distillation tech-
niques and evaluate a diverse set of model types and hyper-
parameters. We aim to find an optimal ensemble of tech-
niques that improves the performance of lightweight mod-
els for accurately classifying the skin disease present in skin
lesion image inputs.

2. Related Work
Our work can be seen as an extension of work done using

CNNs for the task of skin lesion classification. Estava et al.
[6] used transfer learning with a pre-trained CNN to clas-
sify benign skin lesions from malignant melanomas, out-
performing dermatologist discrimination rates. In particu-
lar, deep, largle-scale CNNs such as the EfficientNet models
have been shown to perform well as skin lesion classifiers
on the ISIC 2018 and 2019 datasets [3] [7] [21]. For in-
stance, Gessert et al. [7] put together a multi-resolution en-
semble of EfficientNet models with loss balancing, achiev-
ing a balanced multiclass accuracy rate of 63.4% on the
ISIC 2019 leaderboard. Sun et al. [21] applies data augmen-
tation with a similar model ensemble as Gessert’s to achieve
an accuracy rate of 66.2% on the 2019 leaderboard.

While the above research clearly demonstrates that deep
learning and CNNs are the preferred technique for skin le-
sion image classification and investigates the development
of large-scale models for the task, how to optimize the task
performance with lighter weight models is a challenge for
real-world deployment that remains comparatively under-
studied. There is a growing body of literature that investi-
gates and proposes novel techniques for knowledge distil-
lation as a model compression method. The seminal pa-
per by Hinton et al. [10] suggests a logit-based knowl-
edge distillation method that trains the smaller model by
exactly aligning its logits with the teacher’s, i.e. minimizing
the Kullback-Leiber (KL) divergence between their logits.
Huang et al. [11] investigates optimizing this loss function
during the knowledge distillation process, demonstrating
improved performance with a correlation-based loss dubbed
DIST loss on popular image recognition benchmarks in-
cluding ImageNet [5] and COCO [14]. Other papers have
also investigated improving the knowledge distillation data
transferred to the student using another machine learning
technique called curriculum learning, in which a model is
taught by using easy samples firstly and gradually adding
more difficult ones as opposed to random order [1]. Re-
searchers have investigated various ”difficulty” proxies in
curriculum learning during the training process, with some
using methods as simple as sorting the inputs by magnitude

[1] and others going as far as to train a separate discrimina-
tor model [26]. For instance, Zhu et al. [26] demonstrates
that integrating curriculum learning into the knowledge dis-
tillation framework improves performance by using an ad-
versarial trained discriminator for measurement of difficulty
with respect to the original classification task loss. To the
best of our knowledge, it remains unexplored how effec-
tively curriculum learning can be used for lightweight mod-
els in skin lesion classification. As such, we focus on com-
paring various state-of-the-art knowledge distillation meth-
ods for this task.

3. Data
We train our models on the International Skin Imag-

ing Collaboration Challenge Dataset of 2019 (ISIC2019),
a publicly available repository comprising of 25,331 der-
mascopic images. The ISIC2019 training dataset con-
sists of several dermoscopic image databases: BCN 20000
[4], HAM100000 [24], and the MSK dataset [3]. Its aim
is to improve the diagnosis and treatment of melanoma
among nine different diagnostic categories: melanoma
(MEL), melanocytic nevus (NV), basal cell carcinoma
(BCC), actinic keratosis (AK), benign keratosis (solar
lentigo/seborrheic keratosis/lichen planus-like keratosis)
(BKL), dermatofibroma (DF), vascular lesions (VASC), and
squamous cell carcinoma (SCC). Examples from each of
these different categories can be seen in Figure 1.

The dataset was then split into a training set, validation
set, and testing set with a ratio of 70:20:10 so that the each
split contained 17,728 images, 5,062 images, 2,541 images
respectively. We resized each of the images to a dimension
of 224x224 pixels. We then normalized the dataset based on
the means and standard deviations of the ImageNet dataset
[5], which our pre-trained models were originally trained
on, to help stabilize and speed up the training process. Upon
analysis, we determined that this dataset presents a unique
challenge for our task because it has a severely imbalanced
distribution across the different classes (Fig. 2). To miti-
gate the effects of the imbalance on our model performance,
we used a weighted random sampler during training to en-
sure that each batch contains a balanced representation of
classes.

4. Methods
4.1. Baseline Models

4.1.1 Student Model

In order to assess and employ the use of knowledge distil-
lation as a means to provide high performance under low-
resource settings, we chose to use a MobileNetV2 base
model pretrained on the ImageNet training data for im-
age classification [20]. To this base we attach a trainable
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Figure 1. Examples of different skin lesions

Figure 2. Distribution of training dataset across skin lesion classes

dense layer from MobileNetV2-ImageNet’s 1000-size out-
put layer to the desired class size of 8. The final model
architecture contains 2,234,120 trainable parameters.

4.1.2 Teacher Model

After trialing the use of various large CNN model archi-
tectures (ResNet50V2, ResNet101V2, and EfficientNet-B7)
via cross-validation, we chose to use a PyTorch imple-
mentation of EfficientNet-B7 pretrained on ImageNet im-
age classification [17] [23]. Identical to the student model,
to this base we attach a trainable dense layer to the de-
sired class size of 8. The final model architecture contains
63,807,448 trainable parameters. We chose to restrict our
search for a teacher architecutre to CNNs in order to main-
tain structural similarity to the MobileNetV2-based student
model. We highlight the size of the models trialed to em-
phasize fit with the problem statement for applying tech-
niques for small model improvement.

4.2. Logit Distillation

The specific form of knowledge distillation adopted
is logit distillation. Logit distillation leverages the pre-
softmax logits as representations of knowledge from a fully-
trained teacher model. These logits are used in the train-
ing process to encourage the lighterweight student model’s
learning of similar output distributions.

The specific approach we employ was to first train the

Model Trainable Parameter Count Total Size (MB)

MobileNetV2
Student

2.2M 8.52

ResNet50V2
Teacher

24.8M 94.64

ResNet101V2
Teacher

42.8M 163.32

EfficientNetB07
Teacher

63.8M 243.41

Table 1. Sizes of Considered Model Architectures

Figure 3. Logit Distillation Method

teacher model to convergence on the training dataset using
the standard cross-entropy loss for classification tasks. Sub-
sequently, as seen in Figure 3, the student model’s parame-
ters were optimized by minimizing a hybrid objective func-
tion comprised of two components: the conventional clas-
sification loss computed using ground truth labels LCLS ,
and an auxiliary knowledge distillation term LKD quanti-
fying the discrepancy between the student’s output logits
and the logits outputted by the trained teacher model. This
distillation term imposes a regularization effect, encourag-
ing the student to emulate the teacher’s output distribution
over class labels.

An alternative source of knowledge transfer is the use
of feature distillation. This depends on each model shar-
ing some apparent embedded feature representation that is
comparabale such that the discrepancy of these as opposed
to the logits could be used for the KD loss term. As our
chosen architectures does not give way to this, we proceed
with investigating the use of logits.

In order to rigorously assess the capabilities of logit dis-
tillation, we chose to explore the use of both of the two most
commonly employed state-of-the-art distillation loss tech-
niques Kullback-Leibler Divergence Loss and DIST Loss.
With either choice of knowledge distillation loss, the fi-
nal loss of the student is computed over each batch using
a weighting of α for KD loss and 1−α for the classification
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loss as described in Figure 4. To ensure a rigorous survey
of logit distillation for our given task, we experiment across
a wide range of α values for evaluating the use of both loss
KD loss functions mentioned.

L = α · LKD + (1− α) · LCLS

Figure 4. Logit Distillation Loss Calculation

4.2.1 Kullback-Leibler Divergence Loss

Our first approach to logit distillation puts forward
a Kullback-Leibler Divergence loss function to repre-
sent discrepancy between student and teacher knowledge.
Kullback-Leibler (KL) Divergence is a statistic derived
from information theory used to quantify the divergence be-
tween two probability distributions [13]. Utilizing the soft-
max function, the student and teacher logits can easily be
converted and interpreted as a probability distribution (often
done in classification tasks) making KL Divergence a natu-
ral fit. Specifically, in training the student model, we soft-
max the teacher’s outputs for he given batch producing soft
targets or a ”true distribution” Q. We then apply softmax,
again, to the student’s outputs for the batch and produce
the model distribution (P ). After doing so, we are able to
evaluate function described in Figure 5 which computes the
logarithm of the outputs for each of these classes and sums
their differences weighted by the classes student probability
(P) producing our knowledge distillation loss LKD.

4.2.2 DIST Loss

Our next approach is a correlation-based metric DIST loss
introduced as a direct remedy for potential shortcomings
of loss functions that are unbounded in their measure of
student-teacher discrepancy [11]. More specifically, loss
functions such as KL Divergence can produce potentially
irreversably large loss values as it is an unbounded func-
tion weighted by the logits themselves. When using a
potentially significantly stronger teacher, a term such as
log

(
P (x)
Q(x)

)
= logP (x)− logQ(x) can potentially demand

a magnitude of similarity that is too high to assume. Thus,
DIST loss is an alternative for such an outcome that sacri-
fices this finer-grain discrepancy analysis for each class by
opting to preserve the relational similarity of the distribution

LKD = DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
Figure 5. KL Divergence-Based Loss

through use of interclass and intra-class correlation. Par-
ticularly, the function,, calculates the interclass loss Linter

as 1 minus the mean Pearson correlation between the stu-
dent and teacher outputs. Similarly, the function encour-
ages similarity to the teacher output’s relations Lintra be-
tween classes by using 1 minus the mean Pearson correla-
tion of the transposes of these outputs. These components
are summed as seen in Figure 6.

LKD = β · Linter + γ · Lintra

Figure 6. DIST-Based Loss

As suggested by the experimentation in DIST’s found-
ing paper, for CNN architectures assessed in image classi-
fication, the weightings of these two components (β, γ) are
initialized to 1.

4.3. Teacher-Ranked Curriculum Learning

In addition to our survey of logit distillation, we propose
the enhancement of knowledge distillation with a teacher-
involved curriculum learning procedure. In order to miti-
gate the potentially complex information produced by the
incorporation of transferring teacher knowledge, we moti-
vate training in an order of increasing difficulty. Specifi-
cally, we examine use of the teacher’s logit-derived confi-
dence as a measure of difficulty.

To do so, the training data is unloaded from the loader
directly, to account for the use of any custom sampling in
the data loader, at which point the trained teacher model
computes logits and its softmax scores for each example.
Measuring the model ”confidence” in a prediction as the
probability of the predicted class we sort the training data
and reload it for student training. This setup is visually de-
picted in Figure 7 in which the connection from the teacher
to the student’s input data in red marks our confidence sort-
ing.

We view this as a potential for further leveraging the
teacher’s understanding capabilities. As the logit distilla-
tion procedure alters the loss function, we consider this rep-
resentation of the complexity of matching teacher knowl-
edge as opposed to typical curriculum learning techniques
focusing on optimizing for measures of classification loss
convergence difficulty.

Accounting for change in behavior dependent on the loss
function, this method is applied in experimentation with a
range of α weighting values and both loss functions to en-
sure thoroughness.

5. Experiments
5.1. Model Setup

All experiments were trained using the student model ar-
chitecture detailed in methods: MobileNetV2 with a dense
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Figure 7. Curriculum Learning using Teacher-Based Reordering

output layer. By training on our preprocessed ISIC training
data and cross validating with the validation split (5 folds)
of the dataset, we experimented with the use of various
training setups and combinations of trainable/untrainable
base layers. In doing so, we noticed the need for substan-
tial unfreezing of the base model for adequate fitting as well
as a reduced learning rate with weight decay regularization
to avoid overfitting. Ultimately, we found a fully unfrozen
base model, learning rate of 1e-5, and Adam optimizer with
0.01 weight decay to produce the most promising configu-
ration for all experiments. We found the same configuration
to be appropriate for the training of the EfficientNet-B07
teacher model as well.

5.2. Experimental Setup

Ensuring consistency, all experiments are run using an
Adam optimizer, batch size of 32, and train for a maximum
of 25 epochs. Early stopping is implemented with a pa-
tience of 5 corresponding to the maximum number of con-
secutive epochs without a new lowest validation accuracy.
We employ a classification loss of categorical cross entropy
for all experiments as it is the standard for multi-class clas-
sification and this particular dataset.

5.3. Evaluation Metrics

Our quantitative evaluation consists of two primary met-
rics. The first one is accuracy on the classification task rep-
resented as a raw percentage (correct classifications / total
examples). Serves as straightforward assessment of quality
of model when used in application. However, accuracy is
not invariant to class imbalance and can often be inaccurate
as a representation of the quality of model understanding.

The second, which allows for a deeper and more bal-
anced measurement, is the weighted F1 score. Use of F1

score provides robustness to class imbalance as it incorpo-
rates both reliability in a certain positive classification (pre-
cision) and ability to capture all relevant classifications (re-
call) in balance with one another. For each class, precision
is calculated as the proportion of True Positive classified
examples out of the total classifications (True Positives +
False Positives). Recall is calculated, in each class, as the
proportion of correctly identified classifications (True Pos-
itives) out of the total possible correct classifications (True
Positives + False Negatives).

The F1 score for each class is calculated as the harmonic
mean of these two quantities scaled by 100. We calculate
the weighted average (by class counts in test data) of class-
wise F1 scores to combine these results while accounting
for the class imbalance which we know to exist in the data.

5.4. Results

In terms of F1 score and accuracy accuracy, based on Ta-
ble 1, we find the best performing model is the EfficientNet-
b07 Teacher Baseline. Amongst the MobileNetV2 student
models, we observe the use of KL Divergence loss with a
KD-loss weight of 0.1 produces the highest F1 and accu-
racy scores. Across all distillation weightages α, KL Di-
vergence loss without Curriculum Learning outperforms all
other model types including DIST distilled models and is
the only method which outperforms the MobileNetV2 Stu-
dent baseline (by 0.85 F1 and 0.93% accuracy). Amongst
DIST Distilled models, we notice the model performance is
largely invariant to the αDIST weight. On the other hand,
KL Divergence distillation notices a decrease in perfor-
mance as the value of αKL is increased dropping by more
than 1.5% from αKL = 0.1 to αKL = 0.9. Taking a closer
look at the performance of KL Divergence distillation in Ta-
ble 3, we notice KL distillation performance reaches a local
maxima around αKL = 0.1 with lowered performance for
lower and higher values even observed in a finer grain level.
Similar trend can be seen when Curriculum Learning also
applied as the best performance is reached with αKL = 0.1.

From Figure 8, we also note a significant drop in perfor-
mance with the use of curriculum learning for both DIST
and KL Divergence loss methods. Amongst the two, for
all loss weightage levels other than α = 0.5, the respective
performance of the distillation models follow the F1 per-
formance order from the best to worst of KL Distillation
without CL, DIST Distillation without CL, DIST Distilla-
tion with CL, followed by DIST Distillation with CL.

By examining the class-wise F1 scores in Figure 9, it
becomes apparent there still exists fairly significant vari-
ance in performance based off of class as the two largest
subclasses of the dataset (NV and BCC) are the classes on
which all of the method’s best performing models produce
the highest F1 score.
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Model F1 Accuracy

EfficientNet Teacher Baseline 77.646 77.33
MobileNetV2 Student Baseline 72.659 71.84

KL Distilled (αKL = 0.1) 73.508 72.77
KL Distilled (αKL = 0.3) 72.310 71.55
KL Distilled (αKL = 0.5) 72.009 71.15
KL Distilled (αKL = 0.7) 71.551 70.76
KL Distilled (αKL = 0.9) 71.986 71.19

DIST Distilled (αDIST = 0.1) 71.292 71.43
DIST Distilled (αDIST = 0.3) 71.351 71.47
DIST Distilled (αDIST = 0.5) 71.129 71.09
DIST Distilled (αDIST = 0.7) 71.292 71.07
DIST Distilled (αDIST = 0.9) 70.665 70.05

KL Distilled + CL (αKL = 0.1) 68.508 67.18
KL Distilled + CL (αKL = 0.3) 66.728 66.71
KL Distilled + CL (αKL = 0.5) 66.801 66.63
KL Distilled + CL (αKL = 0.7) 66.896 66.39
KL Distilled + CL (αKL = 0.9) 66.840 66.31

DIST Distilled + CL (αDIST = 0.1) 68.368 67.18
DIST Distilled + CL (αDIST = 0.3) 68.907 67.77
DIST Distilled + CL (αDIST = 0.5) 66.140 65.80
DIST Distilled + CL (αDIST = 0.7) 69.266 68.36
DIST Distilled + CL (αDIST = 0.9) 69.041 68.12

Table 2. F1 scores and Accuracies comparing best performing
KL Distilled and DIST Distilled student models with and without
Curriculum Learning (CL) in comparison with EfficientNet-B07
Teacher Baseline and MobileNetV2 Student Baseline. Additional
comparison of KL Distilled and DIST Distilled student models
with varying αKL and αDIST values.

Model F1 Accuracy

KL Distilled (αKL = 0.05) 73.322 72.49
KL Distilled (αKL = 0.075) 73.452 72.77
KL Distilled (αKL = 0.1) 73.508 72.77
KL Distilled (αKL = 0.125) 73.270 72.45
KL Distilled (αKL = 0.15) 73.111 72.33

Table 3. F1 scores and Accuracies for KL Distilled student models
with more fine-grained αKL values.

5.5. Discussion

5.5.1 Quantitative Analysis

From our evaluation metrics, we understand it is possible to
improve the F1 and accuracy performance of a light-weight
model (MobileNetV2) with the use of knowledge distilla-
tion for skin lesion classification. We find that the combina-
tion of methods and parameters that produces this improve-
ment is the use of KL Divergence loss weighted αKL = 0.1

Figure 8. F1 scores across weightages of the KD loss term for
KL Divergence Loss and DIST Loss with and without Curriculum
Learning.

Figure 9. F1 scores by class for best performing model of each
distillation method and use of CL compared with MobileNetV2
Student Baseline and EfficientNet-B07 Teacher Baseleine.

without the use of curriculum learning. We find, though,
that this added performance is not extremely significant as
it produces an increased F1 of 0.85. However, as this is still
not a statistically insignificant result, the use of KL Diver-
gence loss in knowledge distillation holds potential promise
for our said task.

Similarly, we find that no model with integration of
DIST-based logit distillation produce F1 or Accuracy per-
formance better than the base MobileNetV2 Student model.
This in combination with the relative invariance to the loss
weighting leads us to believe that for our given task, the
model capabilities of the MobileNetV2 might have neared
its capacity for the skin lesion task and dataset.

On the other hand, the consistent F1 out performance of
DIST loss-based methods by KL Divergence suggests the
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direct comparison of logits is more effective in matching
the teacher’s output than the inter/intraclass relations for the
different classes of skin lesions. This is understandable as
intraclass DIST-loss weights the maintenance of intraclass
relations which may not be prevalent in skin lesions as it
is unlikely there exists a strong hierarchy of proximity of
these classes with one another. In comparison a task such
as identifying a living creature would have a clear relation
in knowledge proximity to other objects.

Another explanation is that distillation losses have a
scale different to the classification loss making the linear
combination with this set of weight parameters unmoving.
However, upon observation of component loss curves this is
not the case.

Regarding Teacher-ordered Curriculum Learning, we
find that there exists consistent deprecation of F1 and ac-
curacy performance with the use of this preprocessing strat-
egy. Upon observing the variance that exists in the Class-
Wise F1 scores, we anticipate it is the case that the Teacher
model exhibits imbalances in its prediction probabilities
across examples. In other words, the ordering based on the
confidence of the Teacher may have produced one that starts
by teaching the student batches consisting mainly of a sub-
set of the total classes. This leads to low generalizability
in the early stages of training which would explain a dep-
recation of performance. We find this consistent with the
inheritance of a higher class-wise F1 variance in models us-
ing curriculum learning as seen in the results.

5.5.2 Qualitative Analysis

Across our experiments, we identified two common themes
of classification errors to analyze. A common error across
all the models was the misclassification of AK as BCC or
BKL. This makes sense given that the three classes of skin
lesions are pretty visually similar (Fig. 1), and the AK
class has very low representation in the training dataset rel-
ative to both the BCC and BKL classes. We also observed
more confusion and lower true positives in the classes SCC,
VASC, and DF, indicating that these models may need more
data for these classes. This makes sense given that these
are the three classes with the lowest representation in our
training dataset. These behaviors all imply that even with
weighted sampling, our student model did not have the ca-
pacity to build a rich and complex enough representation
for the classes that were severely underrepresented in the
training data. Most of our classification errors fell into this
category, highlighting the persistent challenge with training
a lightweight model on an extremely imbalanced dataset.

We also noticed that our best student model trained with
KL Divergence Loss had the same most frequent misclassi-
fication as our teacher model—classifying NV as DF—with
1015 and 1077 errors respectively (Fig. 10). This particular

Figure 10. Confusion matrices for the EfficientNet-B7 Teacher
Baseline and the best performing model of the knowledge distilla-
tion method with KL Divergence Loss.

misclassification is not prominent in our baseline student
model and our best student model trained with DIST loss
(Fig. 11 in Appendix). This would make sense because
KL Divergence loss demands a perfect match of the log-
its between the student and teacher models that leads to the
student model inheriting a representation very similar to the
teacher model, whereas DIST loss has a more cumulative
and softer loss function that allows the student to factor in
intra- and inter-class relations along with the representation
learned by the teacher model. Overall, this analysis high-
lights areas in which characteristics of our training setup,
as well as our knowledge distillation techniques, may intro-
duce inherent limitations to our model performance.
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6. Conclusions
This project rigorously examines the use of knowledge

distillation for skin lesion classification. This investigation
results in determining there exists configurations of Logit
Distillation, particularly, the use of KL Divergence in linear
combination with Categorical Cross Entropy Loss to im-
prove performance of small scale models. We are able to
show the particular weighting of these losses that produces
accuracy and F1 higher than their base models is a 0.1 to
0.9 weighting of LKL and LCLS . In comparison, the use of
DIST-based logit distillation is determined to not produce
any delectably better knowledge for this task across vari-
ous weightings and configurations. Similarly, we find that
the use of Curriculum Learning based on the use of teacher
model’s logit confidence leads to deteriorating performance
in this task.

We anticipate strategies that assist in making the task
more so within the student model’s capacity such as ran-
dom cropping of the image given the nature of skin lesions
could produce more pronounced benefit. Further, we would
suggest the exploration of feature distillation through use
of alternative teacher-student model architectures such that
the underlying embedded features are measured for discrep-
ancy as opposed to outputs. Furthermore, the use of an al-
ternate ordering method such as an adversarial-trained dis-
criminator model could be of use to improve these method
performances with curriculum learning.

7. Appendix

8. Contributions and Acknowledgements
R.D. designed the experiments, implemented the knowl-

edge distillation and curriculum learning methods, and con-
ducted training evaluations. R.P. conducted the literature re-
view, implemented the training pipeline, and performed the
experiments. R.D. and R.P. analyzed the results and wrote
the paper.
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