
On Fairness of Low-Rank Adaptation of Vision Models

Zhoujie Ding
Department of Computer Science

Stanford University
d1ng@stanford.edu

Qianzhong Chen
Department of Mechanical Engineering

Stanford University
qchen23@stanford.edu

Abstract

Low-rank adaptation (LoRA) of large models has gained
traction due to its computational efficiency. This efficiency,
contrasted with the prohibitive costs of full-model fine-
tuning, means that practitioners often turn to LoRA and
sometimes without a complete understanding of its rami-
fications. In this study, we focus on fairness implications
and ask whether LoRA has an unexamined impact on utility,
calibration, and resistance to membership inference across
different subgroups (e.g., races) compared to a full-model
fine-tuning baseline. We present extensive experiments on
image classifications using vision transformers – ViT-Base
and Swin-v2-Large. Intriguingly, experiments suggest that
while one can isolate cases where LoRA exacerbates model
bias across subgroups, the pattern is inconsistent—in many
cases, LoRA has equivalent or even improved fairness com-
pared to its full fine-tuning baseline.

1. Introduction

The challenge of efficiently scaling large models has
led to the growing interest and reliance on parameter-
efficient fine-tuning, which focuses on adjusting only a
small, deliberately chosen set of parameters in the base
model (14; 7; 19; 18). Of particular interest is the low-
rank adaptation (LoRA) technique (14), in which the pre-
trained weight matrices are frozen while their changes from
fine-tuning are approximated by low-rank decompositions.
LoRA has received significant attention due to its simplic-
ity and effectiveness in a variety of tasks across both lan-
guage (21) and vision (10) domains. Despite the popularity
of LoRA, little is known about its effects on trustworthiness,
such as fairness and robustness. The lack of understanding
together with LoRA’s wide adoption implies that practition-
ers may be deploying models with unintended and poten-
tially harmful consequences in high-stakes applications. To
this end, this work initiates a study on fairness and asks the
following:

What are the effects of LoRA, if any, on subgroup fairness?
Central to the existing knowledge gap is the prohibitive

cost of full fine-tuning, which deters a direct comparison
against LoRA. This is troubling since the increased adop-
tion of large models often involves taking off-the-shelf pre-
trained models (e.g., Llama-2 (27)), fine-tuning them on
custom data (if said models cannot reason in-context with
few-shot prompts), and running them as part of (poten-
tially high-stakes) decision-making processes. In many of
these scenarios, such as enterprise (29), healthcare (33), and
banking (23), practitioners may gravitate towards LoRA
solely for its cost-effectiveness without adequate consider-
ation for unfair outcomes. This can cause tangible harm
when applied to tasks such as risk assessment, credit score
estimation, loan approvals, and hiring/promotion evalua-
tions.

Apart from the real-world motivations above, tangen-
tial prior work also inspired this study from an algorith-
mic standpoint. Specifically, LoRA is characterized by its
reduced fitting capacity through low-rank approximations;
a similar property is also inherent to model pruning and
differentially private training. Respectively, (28) and (2)
found that both pruning and private training can worsen
the fairness of accuracy across subgroups (despite achieving
good overall accuracy), as the sparsity and noisy gradients
(due to private training) can both impact a model’s ability to
fit minority and underrepresented inputs. On the other hand,
(17) and (1) showed that low-rank weights and representa-
tions can lead to better adversarial robustness. Prompted by
these studies, we ask whether LoRA exhibits similar side ef-
fects and, if so, whether they are consistent across tasks and
datasets. All in all—is LoRA’s efficiency a “free lunch”?

In this study, we seek to better understand the fairness
implications of LoRA on vision models via extensive ex-
perimentation. Our study and findings can be summarized
as follows:

1. We fine-tune vision pre-trained models of ViT-Base (8)
and Swin-v2-Large (22) across image gender and age
classifications, juxtaposing full-model fine-tuning and
LoRA and measuring the subgroups disparities on ac-
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curacy, calibration, privacy as resistance to membership
inference. To our knowledge, our work is the first to
provide a comprehensive empirical investigation into
the fairness properties of low-rank adaptation.

2. Intriguingly, our experiments reveal no consistent
pattern of LoRA worsening subgroup fairness, com-
pared to full fine-tuning across different vision model ar-
chitectures and fairness evaluation metrics (§5). Note
that isolated examples do exist where LoRA worsens
fairness across subgroups, though such cases should be
viewed with target metric sensitivity in mind (16); e.g.,
LoRA may appear less fair via worst subgroup accuracy
but equally fair under equalized odds difference (EOD),
which also considers false positives. Nonetheless, for
any fixed task and its appropriate fairness metrics that
we experimented on, we found no strong evidence that
LoRA is less fair.

3. The fairness implications may depend on the qual-
ity of the underlying pre-trained model (§5.2). We
also observe cases where LoRA does exacerbate unfair-
ness can disappear when the base pre-trained model is
stronger (Fig. 2) and all else is kept constant. This sug-
gests that the fairness properties of LoRA are not merely
a function of its parameter efficiency (comparing model
pruning (28)).

4. The LoRA rank and subgroup size have little impact
on subgroup fairness (§5.5 and §5.6). While rank can
be a confounding factor for its impact on model capacity
and thus fairness (comparing pruning and private train-
ing), we did not observe a significant influence of rank
on either utility or fairness. This is in line with existing
utility analysis (14). Fairness is not solely a straight-
forward function of data, and we have verified that sub-
group size did not significantly affect either utility or
fairness.

2. Related Work and Background

An important paradigm in modern machine learning
(ML) is to adapt large pre-trained models to downstream
tasks through fine-tuning. The benefits of fine-tuning are
two-fold: (1) it leverages the extensive knowledge stored
in these pre-trained models, and (2) it promises greater ef-
ficiency compared to training from scratch. However, as
models grow in size, this efficiency advantage becomes elu-
sive due to increased demand on compute; for example,
simply keeping the gradients of Llama-2 70B (27) in 16-
bit precision requires around 140GB of memory, which is
already infeasible for most commodity hardware. This gap
motivates parameter-efficient fine-tuning methods and sub-
sequent novel trustworthiness concerns. Here, we briefly

outline work most closely related to the focus of this paper
and some preliminaries that ground our analyses.

2.1. Low-Rank Adaptation

LoRA (14) is a widely used parameter-efficient fine-
tuning algorithm for large models. It proposes to sepa-
rate out the weight deltas from fine-tuning and approximate
them using low-rank matrices; inference then involves for-
ward passing both the (frozen) pre-trained model and the
low-rank model deltas, also known as adapters, and sum-
ming the activations. Specifically, for a pre-trained weight
matrix W ∈ Rd×k with dimensions d, k, LoRA approxi-
mates its changes from fine-tuning as ∆W ≈ BA where
B ∈ Rd×r and A ∈ Rr×k with rank r ≪ min(d, k),
and thus inference on input x ∈ Rd is Wx + BAx ≈
(W +∆W)x if ∆W is obtained through full fine-tuning.
A and B can be updated directly via backpropagation. Typ-
ically, implementations of LoRA apply to all query and
value matrices of self-attention layers in the pre-trained
transformer. To fine-tune for supervised tasks, an additional
head is also attached to the last layer of the model.

2.2. Definition of Equalized Odds Difference

Equalized Odds Difference (30) is calculated as the
larger of two quantities: the disparity in true positive rates
and the disparity in false positive rates between two groups
distinguished by a sensitive characteristic. Mathematically,
it is represented as:

Meod = max {MTP,MFP} ,

with the components defined as follows (Y here is the true
label and A is the sensitive attribute):

• True positive equalized odds difference:

MTP = |P (f(X) = 1 | Y = 1, A = 1) − P (f(X) = 1 | Y = 1, A = 0) |

• False positive equalized odds difference:

MFP = |P (f(X) = 1 | Y = 0, A = 1) − P (f(X) = 1 | Y = 0, A = 0) |

A significant Meod reflects a discrepancy in error rates be-
tween the groups, indicating the unfairness of the model
prediction.

2.3. Definitions of Terms in Model Calibration

Reliability Diagrams (or Calibration Curves): Relia-
bility diagrams (26) plot the model’s predicted confidence
against its observed accuracy. To construct these diagrams,
predictions are grouped into M interval bins (each of size
1/M ). Within each bin (say Bm), the model’s accuracy,
denoted as acc(Bm), is computed as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi),
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where ŷi represents the predicted class label for sample i,
and yi is the corresponding true label. The average con-
fidence for bin Bm, expressed as conf(Bm), is the mean
predicted probability for the samples within that bin:

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i,

with p̂i denoting the confidence for sample i. A perfectly
calibrated model should exhibit acc(Bm) = conf(Bm) for
each bin, i.e., the diagram should plot the identity function.
The distance between the observed accuracy and the pre-
dicted probability in each bin represents the calibration gap.

Expected Calibration Error(ECE): ECE (25) is a
scalar summary statistic of how well the model is calibrated
by calculating the weighted absolute difference between
predicted probability (i.e., confidence) and accuracy across
all the confidence bins. Mathematically, it is represented as:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| ,

where n is the total number of samples. The ECE reflects
the calibration gap, with lower values indicating a model
whose predicted probabilities are closer to the true out-
comes.

Importance of Calibration for Fairness: Well-
calibrated models produce probability estimates that can be
trusted equally across different demographic groups. If a
model is not well-calibrated, some groups may systemat-
ically receive overconfident or underconfident predictions.
For example, in the scenario of image gender classification,
it’s imperative that the model operates impartially among
all demographics to avoid unfairly censoring content from
specific groups.

2.4. Membership Inference Attacks (MIAs)

We first discuss common considerations and evalua-
tion metrics for MIA. We then dive deeper into the two
MIAs we consider, Likelihood Ratio Attack (LiRA, (4)) and
LOSS (32), and provide more details about the training and
attack setup.

The goal of MIAs is to estimate the membership of query
points as accurately as possible. To this end, consider a
dataset space X , label space Y , a real-world distribution
D over X × Y , a training dataset D sampled from D, and
a training procedure fD ← T (D) where fD is a machine
learning model that outputs a probability distribution overY
for any given instance x ∈ X . The attacker has black-box
access to the model fD (known as the target model) and
wishes to determine whether (x, y) ∈ D. Following (4),
evaluating the effectiveness of an MIA is typically done by
measuring the true positive rate at a low false positive rate.

The justification for this is that being able to confidently in-
fer that just one data point is a member is a much bigger
breach in privacy than being 51% confident in the mem-
bership of a larger number of datapoints, even though both
instances may score the same in other classification met-
rics such as accuracy or AUROC. In other words, an attack
is only an effective privacy breach when it has a low false
positive rate.

LiRA: The Likelihood Ratio Attack (LiRA) is an impor-
tant MIA strategy due to its efficacy (4). Here, the attacker
trains N shadow models fDi ← T (Di) where each Di (for
i ∈ {1, . . . , N}) is randomly sampled from D (such that
∀i : (x, y) ̸∈ Di) in order to mimic the behavior of the tar-
get model fD. For any given model f : X → Y , let f(x)y
denote the confidence of f on (x, y), in other words, the
probability value output by f(x) for label y. Although the
attacker has no information about D, it has complete infor-
mation about each Di as they were the one who sampled
the dataset themselves. Thus, the attacker models a distri-
bution of the confidences fDi

(x)y for each shadow model
i, where Di is sampled from D and (x, y) ̸∈ Di. From this,
the attacker can then compare the target model’s confidence
fD(x)y and perform a hypothesis test against the null hy-
pothesis of (x, y) ̸∈ D (rejecting the null hypothesis and
inferring membership whenever the cumulative distribution
function of fD(x)y is above some threshold τ ). Note that
here, we are performing the “offline” version of the attack,
as the traditional “online” approach is infeasibly computa-
tionally expensive. For more details about LiRA, we refer
the reader to (4).

In our experiments, we partitioned a small subset (20%)
from both the training and evaluation sets (for the target
models) for membership inference evaluation and used the
remaining data to train the shadow models. This way, we
ensure that the membership inference target dataset is dis-
joint from the shadow training dataset, which is a neces-
sary assumption for the offline LiRA attack. To ensure
variability between the different shadow datasets, we ran-
domly sample 50% of the shadow training dataset to train
each shadow model. The shadow models are fine-tuned via
LoRA using the target model’s pre-trained model.

LOSS: The LOSS attack (32) is based on the observa-
tion that machine learning models are trained to minimize
the loss of their training examples. Thus, examples with
lower loss are, on average, more likely to be members of
the training data. Mathematically, it is defined as follows:

Aloss(x, y) = 1[−ℓ(f(x)y) > τ ],

where ℓ(·) is the loss function, τ is a tunable decision
threshold parameter, and Aloss(x, y) is the attack model
which outputs 1 if the loss is below the threshold τ (indi-
cating membership) and 0 otherwise.
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2.5. Fairness evaluations in machine learning

Fairness is a pivotal concern as biased models from train-
ing data/algorithms can lead to misleading and even catas-
trophic consequences, and understanding and mitigating
such bias has been an active area of research (15; 3; 5; 24).
The precise definitions and measurements of fairness, how-
ever, are often application-dependent.

2.6. Fairness evaluations of model fine-tuning

When evaluating the fairness properties of fine-tuning al-
gorithms (20), we argue for the following key desiderata:
(1) the fine-tuning task should not teach the model to be
fair (or else we cannot extrapolate the evaluation to new
tasks); (2) there is a “side-channel” through which we can
measure fairness (e.g., measuring race bias for gender clas-
sification); and (3) the fairness implications are directly rel-
evant to the task being fine-tuned on (so that any observed
fairness issues are indicative of realistic harm). We strive to
achieve all these desiderata when designing fairness eval-
uations, though experiments forgoing desideratum (3) may
still serve as “probes” and provide useful insights.

3. Data

Face image classification. We use the UTK-Face
dataset1 (34), where each face image (see Fig. 1 for ex-
amples) is labeled with gender, age, and specified race of
the person. The image is resized to the input dimensions
of the base model and normalized before being fed into the
model. During training, the images are augmented via ran-
dom horizontal flips. The training and evaluation split is
80% and 20%, respectively. We consider gender classifi-
cation (binary) and age classification (9-bins) as the fine-
tuning tasks, and race attributes are used as subgroups to
evaluate fairness, following (2) and (28).

Figure 1. Example images from UTK-Face dataset. Image adapted from
the same dataset website.

1https://susanqq.github.io/UTKFace/

4. Methods
For all the three fairness evaluations below, our base-

lines are full-model fine-tuned models (i.e., training all the
weight parameters).

4.1. Fairness Evaluations for Accuracy

Classification tasks have well-accepted fairness evalua-
tion methods and metrics. Subgroup accuracy parity and
worst subgroup accuracy (relatedly, best-worst spread) are
two metrics commonly studied in prior work (15; 2; 31; 28),
which measure differences in accuracy. E.g., are people
with different skin colors equally well-classified? Does the
subgroup with the worst utility get “poorer” under the ML
algorithm? We also consider the one common fairness met-
ric seen in recent work (30; 13). Equalized odds difference
(EOD) measures if the model has similar predictive perfor-
mance across both true and false positive rates, regardless
of the protected attribute. In scenarios where equitable out-
comes are critical, such as the success of medical diagnosis
across different demographic groups, the “balanced” EOD
may be the most appropriate. See §2.2 for formal defini-
tions.

A fair fine-tuning method should produce models that:
(1) perform well across all subgroups (i.e., accuracy par-
ity); (2) do not worsen the worst subgroup accuracy; and
(3) make errors equally often across subgroups (captured
by EOD).

4.2. Fairness Evaluations for Model Calibration

While metrics in §4.1 concentrate on equality in er-
ror rates across groups, the measure of calibration within
groups is another important fairness metric to ensure the
probability estimates align with real-world outcomes, both
globally and across different subgroups (16). To measure
calibration, we extract the model’s confidence on the 20%
evaluation set by examining the probability outputs from
the classification head. We then follow (12) and generate
the confidence histograms and the reliability diagrams. See
§2.3 for additional background.

4.3. Fairness Evaluations for Membership Infer-
ence Attacks

Membership inference attacks (MIA) involve predict-
ing whether an example was in the training set of a target
model. They pose risks from data privacy to intellectual
property protection and it is useful to understand the impact
of fine-tuning on the model’s resistance to MIA. One rea-
son to hypothesize that LoRA may exhibit different behav-
iors than full fine-tuning is its parameter efficiency and thus
its decreased capacity to memorize and overfit. Past work
showed that overfitting tends to result in higher vulnerabil-
ity of MIA (4; 32), and minority groups tend to be treated
as outliers and thus possibly memorized more often (9).
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Motivated by the above hypothesis and relevant obser-
vations, we evaluate the resistance of fine-tuned models
against MIA to see whether LoRA makes the fine-tuned
model more (or less) vulnerable compared to full fine-
tuning. In particular, we focus on the Likelihood Ratio
Attack (LiRA, (4)) due to its efficacy (See §2.4 for back-
ground and implementation of MIA). We attack ViT-Base
and Swin-v2-Large fine-tuned with the UTK-Face dataset
for binary gender classification. We repeat this for both
LoRA and full fine-tuning and compare their resistance to
MIA when the training loss is about the same for both meth-
ods.

5. Experiments and Results
5.1. Training Settings

We fine-tune on ViT-Base (8) and Swin-v2-Large (22),
utilizing the HuggingFace API for model loading and dis-
tributed training and the PEFT package for adapting LoRA.
However, we write the entire pipeline (from dataset pre-
processing to model predictions) by ourselves. All mod-
els are fine-tuned with a batch size of 32 and a single-cycle
cosine learning rate schedule with a warmup ratio of 0.01.
We perform a grid search over initial learning rates and the
number of fine-tuning epochs and pick the best hyperpa-
rameters for each model and fine-tuning method. Specif-
ically, for full-model fine-tuning, we search the learning
rate from [0.00001 0.00005 0.0001 0.0003] and the training
epoch from [1 2 3 4 6 8]. For LoRA, we search the learning
rate from [0.00001 0.00005 0.0001 0.0003] and the training
epoch from [2 4 6 8 12]. We believe that LoRA takes longer
to train because of its limited number of parameters that can
be fine-tuned. LoRA can match full-model fine-tuning in
terms of both train/test performances (using default LoRA
rank 8), allowing fair comparisons as absolute performance
advantage can be a confounding factor in fairness evalua-
tions.

5.2. Accuracy / Utility

Fig. 2 presents results on UTK-Face age and gender
classifications across two base vision model architectures.
More results can be found in §A.1. There are several inter-
esting observations:

No consistent pattern of LoRA worsening subgroup
fairness compared to full fine-tuning. Overarchingly,
LoRA and full fine-tuning exhibit similar performance
across all subgroups, with the absolute subgroup perfor-
mance and worst subgroup performance for LoRA being
consistently on par with full fine-tuning.

Fairness implications can depend on the quality of
pre-trained model. A closer look at Fig. 2 suggests that
while LoRA may be considered less fair than full fine-
tuning on ViT-Base—by decreased worst subgroup utility

on Black group for age classification (upper left subplot)
and by increased EOD on Asian group for gender classifi-
cation (bottom left subplot)—the tendency disappears when
the base model is switched to the more powerful Swin-v2-
Large (all else kept the same). This is interesting as it sug-
gests that the fairness properties of LoRA are not only a
function of its parameter efficiency and they provide a sep-
aration from model pruning where (28) found that the fair-
ness ramifications persist across model sizes.

It is nonetheless possible to isolate cases where LoRA
is less fair, but such cases should be viewed with target
metric sensitivity in mind. Another interpretation of the
above observation is that one can single out cases where
LoRA is less fair than full fine-tuning. We note that differ-
ent fairness metrics may be more or less relevant depending
on the goals and priorities of the task at hand. Take, for
example, UTK-Face gender classification where the female
category is labeled as 1; for applications where correctly
classifying females is important (e.g., when there is drasti-
cally fewer data for females than males), the unfairness of
LoRA according to accuracy (Fig. 8 in §A.1) may be less
relevant than EOD (Fig. 2) which also looks at false posi-
tive predictions. There, EOD may very well lead to a dif-
ferent conclusion that LoRA is slightly less fair. In the con-
text of fairness metric sensitivity (16), it is therefore crucial
for practitioners to adopt a target-centric perspective (e.g.,
whether false positives are important) to ensure a meaning-
ful and relevant fairness evaluation.

Figure 2. LoRA vs. full fine-tuning on group-wise accuracy and equal-
ized odds difference (EOD, lower is fairer) on UTK-Face gender and
age classification for ViT-Base and Swin-v2-Large. Error bars: 95% CI
across 5 seeds. By all metrics, LoRA may be considered less fair than full
fine-tuning on ViT-Base but equally as fair when switched to a better base
model Swin-v2-Large.

5.3. Model Calibration

Fig. 3 presents calibration results on UTK-Face gender
classifications for both vision model architectures, with the
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worst subgroup performance of the Swin-v2-Large model
included on the bottom subplot.

LoRA and full fine-tuning show comparable calibra-
tion levels, and both show signs of overconfidence. Fig. 3
shows that both LoRA and full fine-tuning exhibit a rea-
sonable level of calibration, with their expected calibration
error (ECE) being relatively low and comparable. The re-
liability diagrams illustrate that the probabilities predicted
by both methods are aligned (but not too well) with the ob-
served accuracies. Neither method consistently yields less
calibrated models than the other, and the conclusion holds
even when we specifically look at the respective subgroups
with highest ECE. One subtle observation is that both fine-
tuning methods show a tendency for their predicted proba-
bilities to cluster at the lower and upper ends of the scale,
particularly in the 0-0.1 and 0.9-1 confidence bins (top row
of Fig. 3). This skewness indicates a degree of overconfi-
dence in their predictions, leading to less reliable decision-
making (26) that could potentially affect subgroups dis-
parately.

Figure 3. Confidence histograms (top row of the four subplots) and
reliability diagrams (bottom row of the four subplots) for vit-base on
UTK-Face gender classification (upper left), swinv2-large on UTK-Face
gender classification (upper right), and swinv2-large on subgroups with
highest ECE within different races (bottom). Dotted purple line indicates
perfect calibration. Gap is calculated by confidence minus accuracy. A
lower ECE is better calibrated.

5.4. Resistance to Membership Inference Attacks
(MIA)

Figs. 4 and 5 present membership inference attacks re-
sults on UTK-Face gender classifications for both two vi-
sion architectures. We also obtain receiver operating char-
acteristic (ROC) curves by varying the confidence thresh-
olds. The lower true-positive rate indicates the model is

more resistant to attacks.
LoRA is generally as resistant to MIA as full fine-

tuning. Figs. 4 and 5 show the ROC curves in log-scale to
emphasize true positive rates at low false positives. We de-
fer results for a simpler MIA attack (LOSS) to §A.2. From
Figs. 4 and 5, we see that there is no clear evidence that
LoRA makes the model less resistant to MIA compared to
full fine-tuning. On Swin-v2-Large with UTK-Face, LoRA
is actually more resistant than full fine-tuning overall and
also at the subgroup level across different races. On ViT-
Base with UTK-Face, while LoRA is slightly less resistant
overall, there are subgroups (e.g., Asian) for which LoRA
provides higher resistance than full fine-tuning.
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Figure 4. Likelihood Ratio Attack (LiRA) on ViT-Base for member-
ship inference on UTK-Face gender classification. Results indicate that
the LoRA fine-tuned model is roughly equally (or slightly less) resistant to
membership inference compared to full fine-tuning.
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Figure 5. Likelihood Ratio Attack (LiRA) on Swin-v2-Large for mem-
bership inference on UTK-Face gender. Results indicate that the LoRA
fine-tuned model is slightly more resistant to membership inference than
full fine-tuning.

5.5. Effect of LoRA Rank

We also explore the choice of rank for LoRA, as it may
also be a confounding factor in the model’s fitting capacity
and fairness impact. Results from UTK-Face gender clas-
sification (Fig. 6) reveal that accuracy and fairness metrics
(EOD) are not influenced by rank, aligning with findings
from (14).

5.6. Effect of Subgroup Size

Fig. 7 illustrate the effect of increasing group size on util-
ity (e.g., accuracy in the plots) and fairness. We observe that
these metrics are not solely dependent on the size of the
group:

• On the UTK-Face gender dataset with vision models,
while there is a general trend of increasing accuracy with
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Figure 6. Subgroup accuracy and EOD across of LoRA ranks from 0 to
768 on ViT-Base on UTK-Face gender classification.

larger group sizes, the practical impact of group size on
accuracy is limited, since the absolute difference in accu-
racy across these sizes is marginal.

• The equalized odds difference exhibits fluctuations across
different group sizes without showing a clear trend that
correlates with group size. It tends to decrease and then
increase as the group size increases, and the subgroup
with a medium size gets the best EOD score.
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Figure 7. Accuracy and fairness metric (EOD) on UTK-Face gender clas-
sification with subgroups sorted by size.

6. Conclusion
We have presented extensive empirical analyses and

found no conclusive evidence that LoRA may exacerbate
subgroup fairness compared to full fine-tuning. Does this
imply that the parameter efficiency of LoRA is a free lunch?
Possibly, but not necessarily.

Our study sheds light on the fairness properties of low-
rank adaptation (LoRA) across vision model architectures,
model sizes, and fairness considerations. In future work, we

hope to extend fairness evaluations on exploring and com-
paring other parameter-efficient methods (e.g., (19; 21)) and
their intersection with related techniques such as quantiza-
tion (7; 13) and pruning (6; 11). This may offer insight
whether our findings with LoRA is unique to its algorith-
mic constructions.
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A. Additional Results
A.1. Accuracy / Utility

Fig. 8 shows the results for UTK-Face gender and age
classification for ViT-Base and Swin-v2-Large with sub-
group F1 score, accuracy, and equalized odds difference
(EOD) for each subset of the dataset. Note that for age
classification, we only report accuracy since other metrics
might not be well-defined for this multi-class (more than
two classes) classification.

The results are consistent with the main results described
in §5.2:

• By worst group performance, best-worst group perfor-
mance spread, and equalized odds difference (EOD), in
most cases, LoRA does not worsen these fairness metrics.

• The fairness assessment of the fine-tuning methods can be
sensitive to the choice of the metrics and the base model
(ViT-Base or Swin-v2-Large).
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Figure 8. Classification fine-tuning results for ViT-Base and Swin-v2-
Large on UTK-Face (gender and age classification). Top row: ViT-Base
on gender classification; metrics are subgroup F1 score, accuracy, and
EOD. Middle row: Swin-v2-Large on gender classification with the same
metrics. Bottom row: Subgroup accuracy of ViT-Base and Swin-v2-Large
on age classification. See §4.1 and §5.2 for more details.

A.2. Resistance to Membership Inference Attacks
(MIAs)

We present the LOSS attack results in Figs. 9 and 10. See
§2.4 for background on the definitions and implementations
of membership inference attacks.
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Figure 9. LOSS attack on ViT-Base for membership inference on
UTK-Face gender classification. Results indicate that the LoRA fine-
tuned model is roughly equally resistant to membership inference com-
pared to full fine-tuning.
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Figure 10. LOSS attack on Swin-v2-Large for membership inference
on UTK-Face gender classification. Results indicate that the LoRA fine-
tuned model is roughly equally resistant to membership inference com-
pared to full fine-tuning.
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