
On the Detection of GAN-Generated Facial Imagery

Harshal Agrawal Ricky Parada Colin Sullivan

Abstract

The rise of generative AI models such as Sora and Mid-
journey that can create human-level images and video con-
tent poses a significant threat to the well-being of our
democracy and the livelihoods of creators. Malicious ac-
tors can wrongly utilize these technologies to spread mis-
information and impersonate others without their consent.
In this research, we attempt to distinguish AI-generated
synthetic content from real images, with a focus on fa-
cial imagery, as it is the most consequential for preventing
wrongful impersonation. We approach this problem with
three models: a single-layer fully connected neural net-
work, a custom shallow neural network, and a fine-tuned
ResNet50 architecture. Each model is trained on 64p facial
images from the Kaggle-140k-Real-Fake-Faces dataset to
output an image classification as real or fake. The models
were trained on both augmented (randomly flipped, rotated,
color adjusted, and normalized) and non-augmented nor-
malized versions of images, as well as 2D discrete Fourier
transformations of the images. Testing on three different
test datasets suggests that no singular method outperforms
any other, though the shallow CNN seems to perform the
strongest overall.

1. Introduction

The AI revolution was (and is still) expected to threaten
blue-collar work, but its largest impact thus far has hit an
unlikely target — creators [24]. Artists, journalists, photog-
raphers, and even videographers have begun to face signif-
icant competition from generative AI models such as Mid-
journey, ChatGPT, and Sora, which can generate human-
level image, text, and video content, respectively. These
creators have shot back by suing the developers of these
models for their use of the creators’ work in training with
varying degrees of success (e.g., NYTimes [18]). With pol-
icymakers scrambling to regulate this new technology, con-
cern about the impact of misinformation (e.g., Twitter bots,
deep fakes) on the upcoming election, and the alarming
spread of AI-generated internet content, a crucial question
arises: can we differentiate real from synthetic content?

1.1. Problem Statement

There exist many modes for which AI image content
can be generated (e.g., cartoons, scenic photographs, paint-
ings, facial imagery) and many potential methods across
each of these modes (e.g., Generative Adversarial Networks
(GANs), diffusion models). We restrict our focus in this
project to facial imagery because it appears most conse-
quential, considering the potential impact of impersonation
on the upcoming election and the already-realized effect
on people’s lives (synthesized “revenge porn” [12], iden-
tity theft, etc.). We seek to distinguish AI-generated facial
imagery from real facial imagery using the following trio of
models:

1. Single Layer Fully Connected Neural Network (NN)

2. Custom Convolutional Neural Network (CNN)

3. Fine-tuned ResNet50 architecture. [8]

Each model acts as a discriminator, taking in a 64p facial
image and outputting whether or not the image was gener-
ated by AI. The single layer and custom CNN models were
additionally trained to take in an image in the Fourier do-
main (that is, the image after applying a 2D discrete Fourier
transform) based on a related work’s increased performance
on transformed data (see the Related Work/Dataset and Pre-
processing sections for more details).

2. Related Work
In this section, we discuss several prior approaches to fa-

cial imagery discriminators and comment on how our work
compares to the existing literature.

Image quality assessment based fake face detection [25]
This work proposes a novel method to detect forged faces
that trains a Random Forest (RF) classifier on Image Quality
Assessment (IQA) based features. The approach is based on
the hypothesis that the appearance of real and fake images
is quite similar, so most of the discriminative information
is available in the frequency and spatial domain of these
images. As seen in Figure 1, visualizations of the differ-
ence in magnitude of the frequency domains between real
and fake images appear to validate this idea. Further, the

1



Figure 1: Sample real/fake image and their respective Fast
Fourier Transform (FFT) magnitudes [4]. We observe a sig-
nificant difference between real and fake images in the mag-
nitude of their respective frequency domains.

most utilized feature, or the feature with the highest Shap-
ley additive explanation (SHAP value) [16] is based on the
frequency domain of input images. The approach achieves a
reported 99% accuracy on a varied combined dataset of real
images from CASIA (celebrities) [32] + VGGFace2 (reg-
ular people of various professions) [5], and fakes images
from iFakeFaceDB (pulled from the This Person Does Not
Exist dataset and modified by a GAN finger print remover)
[21]. Performance on wild data suggests that the approach
generalizes well, which motivated our training on images in
Fourier space.

GAN is a friend or foe?: a framework to detect various
fake face images [29] As part of their NN based proposed
framework for detecting adversarially constructed fake fa-
cial imagery, FakeFaceDetect, the authors try several clas-
sifier models, including three different shallow CNN archi-
tectures and several fine-tuned deeper models. The authors
note that, surprisingly, the shallow CNN classifiers, Shal-
lowNetV1/2/3, trained from scratch perform significantly
better than deeper fine-tuned approaches such as Xception-
Net [6] and VGG19 [26]. These larger models perform no-
tably worse on the lower-fidelity 64p images than the pro-
posed ShallowNet models. The data used in training and
evaluation is pulled from the CelebA (celebrity images) [15]
and PGGAN (PG-GAN generated celebrity images trained
on the CelebA dataset) [10] datasets. To see if our findings

match the authors, we also compare the results from a shal-
low CNN against a fine-tuned ResNet50 [8] model.

Fake Face Detection Methods: Can They Be Gen-
eralized? [13] This work provides a new dataset,
Fake Face in the Wild (FFW), of 53k images from 150
videos, originating from multiple sources of digitally gen-
erated fakes, including CGI generation, and the com-
monly used Swap-Face application. The authors make var-
ious attempts to classify this data, using both pre-trained
deep CNNs (AlexNet [14], VGG19, ResNet50, Xception,
GoogLeNet/Inceptionv3 [28]) and an SVM with Local Bi-
nary Patterns (LBPs) as features [22]. While not partic-
ularly impressive, Xception appears to generalize best to
new “unknown” data, but the LBP-featured approach also
performs surprisingly well. The authors suggest that future
research be directed toward the generalizability of fake fa-
cial imagery detection methods, suggesting that many cur-
rent CNN-based approaches may fail to succeed in practice
despite impressive experimental results. To determine how
well our discriminator generalizes, we evaluate each model
on the FFW dataset as a final evaluation.

3. Methods
Here we provide an overview of our loss function and

the details of each proposed model architecture. To develop
these models, PyTorch, which is an open-source machine
learning library developed by Meta AI, and subsequent
functions/packages such as torchvision were used [23].

3.1. BCE loss

We used Binary Cross Entropy (BCE) as our loss func-
tion during training for all three models: Fully Con-
nected Linear NN, Custom Shallow CNN, and a Fine-tuned
ResNet50. BCE is a great choice for our binary classifi-
cation task, where the goal is to categorize images as ei-
ther real or synthetic. The logarithmic component penalizes
wrong predictions more heavily than correct ones, driving
model improvement during training. BCE can be expressed
as

L =
1

N

N∑
i=1

− [yi log pi + (1− yi) log(1− pi)] , (1)

where N is the number of samples in the dataset, pi is the
probability of sample i being AI generated (i.e. our model’s
output), and yi is the actual label for sample i (0 if real, 1 if
synthetic).

3.2. Fully Connected Linear NN

We train a fully connected (FC) single layer linear NN
directly on the flattened pixel data as our baseline. The lin-

2



ear model can be expressed as

f(xi,W, b) = σ(Wxi + b), (2)

where xi is our flattened image of size D = 64 × 64 ×
3 (3 channels: R, G, and B), W is our weight matrix of
size D × D, and b is a bias vector of size 1. The sigmoid
function (σ) scales the output of the matrix operations into
a final probability of being AI generated between [0, 1]. To
produce a final decision value, we say that an image is real
if the output is less than 1

2 (i.e. closer to 0) or AI generated
otherwise (closer to 1). The sigmoid activation is given by
the following equation:

σ(x) =
ex

1 + ex
. (3)

We decided to use the simplest barebone NN classifier as a
baseline in order to either (a) identify any significant, easy-
to-spot biases in our image data prior to tackling other ap-
proaches, or (b) provide a nice sanity check assuring us that
the problem is non-trivial.

3.3. Custom shallow CNN

Taking inspiration from [29], our first approach at out-
performing the baseline was to create our own custom shal-
low CNN. We settled on an architecture interleaving Con-
volutional [3], ReLU [20], Dropout [27], and Max Pool [19]
layers in the following manner:

[((CONV − RELU − DROP)2 − POOL)2 − FC]. (4)

At a high level, the convolutional layers use a large number
of filters to detect local visual features, such as a facial edge
or color clusters. Our first CONV layer has a kernel size of
7p, with the others being 3p. The zero padding was appro-
priately set to P = F−1

2 , where F is the filter size, to ensure
the input/output volumes have the same spacial size. Each
CONV layer used a stride of S = 1, leaving the downsizing
operations to the POOL layers.

The ReLU layers apply the activation function given in
the following equation on each element:

f(x) = max(0, x). (5)

ReLU layers are extremely popular in CNN architectures
because of their simplicity and effectiveness at introduc-
ing nonlinearities. We experimented with other intermedi-
ate activation functions such as Leaky ReLU [17] and ELU
[7] during initial trainings and found that the performance
increase over ReLU was negligible.

The Dropout layers serve as our model’s form of regu-
larization by only keeping neurons active with probability
p = 0.8. The dropout probability was tuned to this value

Layer Output Shape Param #

Input 3× 64× 64 0
Conv2d 32× 64× 64 4, 736
ReLU 32× 64× 64 0
Dropout2d 32× 64× 64 0
Conv2d 64× 64× 64 18, 496
ReLU 64× 64× 64 0
Dropout2d 64× 64× 64 0
MaxPool2d 64× 16× 16 0
Conv2d 64× 16× 16 36, 928
ReLU 64× 16× 16 0
Dropout2d 64× 16× 16 0
Conv2d 128× 16× 16 73, 856
ReLU 128× 16× 16 0
Dropout2d 128× 16× 16 0
MaxPool2d 128× 4× 4 0
Flatten 2048 0
Linear 1 2049

Table 1: Shallow CNN parameter table (136, 065 total pa-
rameters).

because of our model’s tendency to overfit without the pres-
ence of dropout layers. Consequently, we aimed to general-
ize our model by reducing its complexity, thereby increas-
ing its performance on unseen data.

The max pooling layers were similarly added in order
to reduce the complexity of our CNN. They come with the
added benefit of reducing the model’s spatial size, which re-
duces the amount of computation required to train our shal-
low CNN. We settled on max pool layers that use a kernel
size of 4p with a stride of S = 4 for the same reasons as
dropout. Namely, our hope is that the complexity reduc-
tion that comes with aggressive downsampling will make it
harder for our CNN to overfit to the training set.

Finally, a FC layer followed by a sigmoid activation is
added to round out the binary classifier. A table of our
model parameters is shown in Table 1.

3.4. Fine-tuned ResNet50

Inspired by the promising results of the Xception model
[6] in our related work discussion [13] [29], we experi-
mented with fine tuning a state of the art architecture in
ResNet50, developed by Kaiming et al [8]. As an overview,
ResNet50 is a deep CNN with 34 layers of convolutions,
skip connections, and batch normalizations [9]. The skip
connections (also known as ”shortcut connections”) allow
intermediate inputs to bypass subsequent layers and stack
onto the output of other layers. Figure 2 provides an illus-
tration of the skip layer building block.

One of the key reasons why ResNet exhibited stellar per-
formance was its heavy use of batch normalization, which

3



Figure 2: ResNet50 skip connection example.

scales and shifts the outputs of each convolutional layer by
the mean and variance in mini-batches. Specifically, given
a mini-batch of size m denoted as B = {x1, . . . , xm}, the
values are scaled according to

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)
2

x̂i =
xi − µB√
σ2
B + ϵ

yi = γx̂i + β,

(6)

where ϵ is a small constant (added for numerical stability),
γ and β are learned parameters, and yi is the new batch
normalized value of sample i. Batch normalization has the
added benefit of reducing gradient dependence, thereby mit-
igating the issues of exploding gradients during backpropa-
gation.

We freeze the layers of ResNet50 and fine tune an ad-
ditional fully connected layer with output dimension 512.
We hypothesize that adding a single additional layer will be
sufficient to transfer learn and obtain a facial image discrim-
inator on par with our shallow CNN implementation.

3.5. Monitoring Progress

Given that our models were computationally intensive
and our compute resources were limited, we chose to im-
plement support for Tensorboard, which is a visualization
toolkit provided by TensorFlow [1], to track and visual-
ize key metrics such as loss and accuracy during training.
By doing so, we were able to understand the flow of data
through our model and debug various aspects of the training
process, such as overfitting, vanishing gradients, or extreme
learning rates. The real-time training monitoring provided
by Tensorboard was critical to our hyperparameter tuning
process.

4. Data
A perfectly balanced dataset of real and fake images with

binary labels was used to perform binary classification with
accuracy as our metric of success. The images are RGB
and 64p. No additional image metadata was used to inform
classification.

We used the Kaggle 140k Real and Fake Faces dataset
[31] which consisted of 70k real faces from Nvidia’s Flickr
dataset and 70k fake faces generated by Nvidia’s StyleGAN
[11]. The latter, fake data, was generated and compiled by
Bojan Tunguz as a Kaggle dataset of 1 million such samples
at 1024p [30] before it was down-sampled to 256p and sub-
sampled from to get the 70k images in the Kaggle dataset
we use for this project. We note that this means our model
will essentially act as a discriminator for the StyleGAN gen-
erator. This approach of training on both data generated by
a model and the data that the model was trained on has been
done [29] and reduces the potential for bias introduced in
the image-gathering process, allowing our classifier to fo-
cus instead on the peculiarities of the fake image generation
process.

We also believe this makes the problem tractable for
us for the short duration of our project and that some of
the findings we discover while trying several different ap-
proaches may generalize to facial imagery generated by
other models. To further our model application, we tested
on CelebA, a ”wild” dataset which is a large-scale face at-
tributes dataset with more than 200K celebrity images cov-
ering large pose variations and background clutter. [15]

4.1. Data Augmentation

We chose to train our models on both images with
and without augmentation to see whether augmenting the
images improves the model’s generalization capabilities.
We hypothesize that models trained on augmented images
will outperform those unexposed to augmentation because
the wider variety of examples will allow them to learn more
robust features. The following augmentations were used:

Normalization: To normalize our data, we computed
the average mean and standard deviation across all pix-
els for R, G, and B channels in our training data. The
torchivsion.transforms.normalize function was used, which
scales, shifts, and transforms data in the manner described
in Equation 6 subequation 3, with ϵ = 0. Every model was
trained on normalized input data.

Random Horizontal Flip and Rotation: For the
augmented data models, we introduce variance by utilizing
torchvision.transforms.RandomHorizontalFlip and torchvi-
sion.transforms.RandomRotation to randomly flip and
rotate certain images. This improves the model’s ability to
learn key features independently of image orientation.

4



Color Jitter: We further introduce variation in lighting and
color distributions for the augmented models, which is key
for facial recognition tasks. The following function was
used: torchvision.transforms.ColorJitter(brightness=0.2,
contrast=0.2, saturation=0.2, hue=0.1). The corresponding
property of the image is randomly altered by +/- the input
percent for each parameter in the function. As an example,
a brightness of 0.2 means that the function will randomly
alter the brightness of the image by +/- 20%. As a result of
this augmentation, the model is less likely to overfit to any
specific lighting conditions present in the training dataset.

2D Discrete Fourier Transformation While original
images are represented by pixel intensity values which
correspond to the spatial arrangement of visual features,
through this augmentation, the Fast Fourier Transform
(FFT) is used to convert an image from the spatial domain
to the frequency domain. This allows the model to analyze
the image based on its frequency components, which can
provide complementary information to spatial features.
Doing so increases the model’s robustness to spatial
variations such as flips and rotations.

4.2. Training Datasets

We first trained each of our three models (FC NN, CNN,
and fine tuned ResNet50) on the normalized, unaugmented
dataset. We then trained each model once again on the same
dataset augmented with random flips/rotations and color jit-
tering. Lastly, we trained the FC model and custom CNN
on training examples in the Fourier domain, resulting in
a total of eight unique models with the following labels
that we will refer to throughout the rest of the paper: (FC,
CNN, ResNet, FC augmented, CNN augmented, ResNet
augmented, FC FFT, and CNN FFT).

5. Experimental Results
This section will outline our hyperparameter selection

process and discuss experimental results in a quantitative
and qualitative fashion. We will compare the performance
of our eight models using the following metrics: visualized
weights (FC model), visualized filters (custom CNN), and
testing accuracy on three different unseen datasets.

5.1. Hyperparameter selection

To optimize our learning and tune our hyperparameters,
we used the Adaptive Moment Estimation (Adam) opti-
mizer which combines the advantages of the Adaptive Gra-
dient Algorithm (AdaGrad) and Root Mean Square Propa-
gation (RMSProp). Adam is an algorithmic optimizer that
utilizes gradient descent with momentum, accelerating con-
vergence by factoring in the exponentially weighted average
of the gradients in the last n steps. This enables it to speed

up convergence and skip over local minima. The learning
rate for our training was set to 1e-4 because the PyTorch
default value of 1e-3 proved too large during initial devel-
opment training. The optimizer can be described quantita-
tively as follows:

wt+1 = wt − αmt

mt = βmt−1 + (1− β)
δL

δwt

(7)

where mt is the aggregate of gradients at time t, mt−1 is
the aggregate of gradients at time t − 1, Wt describes the
weights at time t, Wt+1 describes weights at time t + 1,
αt is learning rate at time t, δL the derivative of our loss
function, δWt the derivative of our weights at time t, and β
the moving average parameter with constant value 0.9.

Additionally, we used a Step Learning Rate scheduler
to adjust our learning rate during the training process.
This helps the model explore the loss surface more effec-
tively and avoid getting stuck in local minima to converge
smoothly to a global minimum. With a gamma value of 0.2
and a step size of 3, our scheduler decreased the learning
rate by a factor of 5 every 3 epochs. We used a batch size
of 64 for the dataloader and set the total number of train-
ing epochs to 12 to allow for sufficient training. As another
safeguard against overfitting, we set the early stopping cri-
teria to 3, meaning our training terminates early if the vali-
dation accuracy decreases for 3 consecutive epochs.

5.2. FC Visualized Weights

We first evaluate the performance of the baseline linear
model by visualizing its weight matrix. Visualizing these
allows us to infer model performance because weights that
appear smooth or resemble diverse features when visualized
are a good indicator of successful training. On the other
hand, weights that are visually incoherent or noisy tend to
indicate an issue with the training, be it stemming from the
input data or improperly chosen hyperparameters.

Looking at Figure 3(a), we see that the vanilla fully con-
nected model emphasizes key facial features such as the
eyes and mouth, which generative models struggle with
replicating accurately. Investigating the synthetic images,
we found that the eyes of AI-generated faces point in ei-
ther direction in some cases, or have inconsistent light-
ing, features which aren’t typically present in real facial
imagery. Looking at the weight visualization for the aug-
mented model in Figure 3(b), we see that the linear model
struggles when images can be rotated up to 360 degrees,
as indicated by the faint circular ring present within the
noise. It’s reasonable that the linear model can’t handle
data augmentation simply because of the limited number
of parameters it possesses. Figure 3(c) demonstrates that
the FFT model tends to emphasize higher frequency regions

5



(a) Linear Model
(b) Linear Model (Augmented
Data)

(c) Linear Model (Discrete
Fourier-Transformed Data)

Figure 3: Linear models visualized weights.

(towards the corner of the image), which is consistent with
the results of Figure 1.

5.3. CNN Visualized Filters

In the same vein as the previous subsection, we get an
initial pulse on the shallow CNN’s performance by visual-
izing its filters.

5.4. Testing accuracy

To evaluate the overal performance of each model, we
compared the testing accuracy on a collection of three test
sets:

1. 1000 unseen images from CelebA [15]

2. 1000 unseen images from This Person Does not Exist
[21]

3. 1000 unseen images from our ”local” test (140k Real
and Fake Faces). [31]

The results are tabulated in Figure 5
In general, we observe that the shallow convoluitional

neural network performs best across most datasets. All
models perform surprisingly well on real wild data, contrary
to our expectations. Unfortunately, we observe that these
results do not extend as well to fake wild data. It seems

(a) CNN

(b) CNN augmented

(c) CNN FFT

Figure 4: CNN models visualized filters.

changing the generator does make the discriminative task
more challenging as we had anticipated. We also not that,
as expected, the large fine-tuned CNN was not up to the task
of recognizing fake facial imagery. This failure could help
to explain the indescribable patterns we see in the filters of
our shallow CNN. It appears that there is more to fake facial
image detection than meets the eye. We did not anticipate
that the FFT-transformed data would so significantly under-

6



(a) CelebA

(b) This Person Does not Exist

(c) 140k Real and Fake Faces

Figure 5: Final test accuracies for each of our proposed
models on different test datasets. Labels with ”lin” refer
to our Linear NN (FC), ”cnn” refer to our shallow CNN
(CNN), and ”lcn” refer to the fine tuned ResNet (ResNet).

perform. Perhaps using hand-crafted features as was done
in previous work would be more beneficial.

6. Conclusion and Future Work
This project described our efforts in training a facial im-

age AI discriminator, using three different models with a
variety of inputs (normalized data, augmented data, and
fourier domain data) to see how they stack up against one
another. We found that the shallow CNN trained on un-
normalized data outperformed the other models accross the
board, save for on the ”This Person Does not Exist” dataset,
where the FC model trained on augmented data surprisingly
performed the best. We noted that models trained on images
in Fourier domain were outperformed repeatedly on two of
the three test datasets, indicating that the Fourier domain
data may lend itself better to certain datasets or image fea-
tures such as those present in CelebA.

Random Forest of Features: An approach that we
would like to try in the future is to concatenate the Fourier
transform of our input image with its LBP features and train
a random forest to perform classification. This approach
is based on the finding from [25] that high frequency
image data is helpful in differentiating between real and
fake images combined with the semi-successful use in
[13]. Random forests are additionally great for such a task
because they can handle non-linearity between input and
output data really well in addition to being able to provide
feature-importance scores. From our visual analysis of fake
images as well as in some interesting plots produced during
training, we noticed consistently that AI generated images
had eyes that were distinguishable as non-normal. Perhaps
random forest would be able to better exploit this finding
than our current approaches.

Deeper CNN Architecture: For the project, we opted to
go with a shallower CNN architecture as deep networks
have larger processing times, but in the future, we believe
there is potential for deeper architectures to yield better
results. While there is always the fear of overfitting with
deep networks, there is also the potential for better learning
as deep networks are able to capture high-level features and
have larger receptive fields.

Increased Image Resolution: With higher-resolution
images, models can better learn features and presumably
better distinguish between real and fake. Unfortunately,
this also increases training time, which is why we were
not able to do so for this project, but there is potential for
future work. Additionally, we also hypothesize that higher-
resolution images would make any mistakes in artificially
generated images more glaring and easily captureable.

Societal Implications: As researchers in industry continue

7



to innovate and produce models that can generate more and
more realistic human-level content, it is concerning that
real or fake detection technology will not be able to keep
up as rapidly. Models today already exist with the potential
to create nearly indistinguishable deep-fakes of individuals
performing actions, and it is only a matter of time before
access to these models becomes commercialized and made
widely available. We saw in the case of OpenAI’s launch
of GPT-3 just how catastrophic the implications were for
K–12 education, where teachers were left unequipped to
detect AI-generated work from student work. We hope
that academia continues to focus on detection as well as
generation for research in artificially generated human-level
content.

7. Contributions and Acknowledgements
Harshal Agrawal took on responsibility for preprocess-

ing. Ricky Parada started initial work on model devel-
opment and Colin Sullivan built on Ricky’s work to per-
form fine tuning and training. All three authors contributed
equally to the write-up of this report and creation of the
poster. Our code is available at the cited Github repository.
[2]

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] H. Agrawal, R. Parada, and C. Sullivan. deep-
fakesonly. https://github.com/SullivanC19/
deepfakesonly, 2024.

[3] J. Bouvrie. Notes on convolutional neural networks. 2006.
[4] R. N. Bracewell and R. N. Bracewell. The Fourier trans-

form and its applications, volume 31999. McGraw-Hill New
York, 1986.

[5] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.
Vggface2: A dataset for recognising faces across pose and
age, 2018.

[6] F. Chollet. Xception: Deep learning with depthwise separa-
ble convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1251–1258,
2017.

[7] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units
(elus). arXiv preprint arXiv:1511.07289, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
2015.

[10] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive
growing of gans for improved quality, stability, and variation,
2018.

[11] T. Karras, S. Laine, and T. Aila. A style-based generator
architecture for generative adversarial networks, 2019.

[12] K. Kelleher. Revenge porn and deep fake technology: The
latest iteration of online abuse. Boston University School of
Law: Dome, 08 2023.

[13] A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik, and
C. Busch. Fake face detection methods: Can they be gener-
alized? In 2018 International Conference of the Biometrics
Special Interest Group (BIOSIG), pages 1–6, 2018.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, edi-
tors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

[15] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face
attributes in the wild. In Proceedings of International Con-
ference on Computer Vision (ICCV), December 2015.

[16] S. Lundberg and S.-I. Lee. A unified approach to interpreting
model predictions, 2017.

[17] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. Rectifier non-
linearities improve neural network acoustic models. In Proc.
icml, volume 30, page 3. Atlanta, GA, 2013.

[18] R. M. Michael M. Grynbaum. The times sues openai and
microsoft over a.i. use of copyrighted work. NYTimes, 12
2023.

[19] N. Murray and F. Perronnin. Generalized max pooling. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2473–2480, 2014.

[20] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
pages 807–814, 2010.

[21] J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes,
H. Proenca, and J. Fierrez. Ganprintr: Improved fakes and
evaluation of the state of the art in face manipulation detec-
tion. IEEE Journal of Selected Topics in Signal Processing,
14(5):1038–1048, Aug. 2020.

[22] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):971–987, 2002.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[24] A. Roy. Blue-collar jobs may weather raging ai storm better:
experts. The Economic Times, 01 2024.

[25] K. S. and V. Masilamani. Image quality assessment based
fake face detection. Multimedia Tools and Applications, 82,
01 2022.

8

https://github.com/SullivanC19/deepfakesonly
https://github.com/SullivanC19/deepfakesonly


[26] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning
research, 15(1):1929–1958, 2014.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision,
2015.

[29] S. Tariq, S. Lee, H. Kim, Y. Shin, and S. S. Woo. Gan is a
friend or foe? a framework to detect various fake face im-
ages. In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, SAC ’19, page 1296–1303, New
York, NY, USA, 2019. Association for Computing Machin-
ery.

[30] B. Tunguz. 1 million fake faces. Kaggle, 2019.
[31] xhlulu. 140k real and fake faces. Kaggle, 2020.
[32] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch, 2014.

9


