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Abstract

In recent years, Neural Radiance Fields (NeRFs) [1]
have gained considerable attention for its capabilities in
implicit neural scene representation and novel view synthe-
sis. Particularly, NeRFs have found applications in a range
of domains, including robotics, augmented reality, motion
planning, and autonomous driving contexts. However, de-
spite its ability to achieve state-of-the-art visual quality on
generated novel-view images, such quality often can only
be achieved in static context scenes. Therefore, given more
dynamic scenes, such as different lighting conditions and
moving objects in the background, often leads to diminished
reconstruction quality with NeRF. This can be especially
problematic in autonomous driving scenarios, for example,
which observes diverse lighting and weather conditions, in
addition to dynamic objects such as other cars and pedestri-
ans. This work thus explores methods to efficiently prepro-
cess an input set of images and camera poses and feed it into
the NeRF pipeline. By ensuring that the input information is
more consistent, the NeRF model can more effectively learn
and render the scene, leading to better overall performance
and visual quality. We show that by our processing methods,
we are able to achieve a heightened reconstruction quality
with fewer artifacts.

1. Introduction

Neural Radiance Fields, which was first pioneered by
Midenhall et al. in 2020 [5], achieved quality novel view
synthesis by training a deep network which maps 5D input
coordinates consisting of spatial location (x, y, z) and
viewing direction (θ, ϕ) to an output of volume density and
view-dependent emitted radiance at that spatial location.
Thus, feeding this 3D encoded scene into a multi-layer per-
ceptron, we can synthesize novel viewpoints by querying
5D coordinates along the camera rays and utilize classic
volume rendering techniques to project the output colors
and densities into an image.

However, NeRF’s ability to construct novel photo-realistic
views operates under the assumption that the scene is
static–that is, without moving objects in its input. Specif-
ically, because NeRFs require consistent training data in
order to overfit to a scene, the viewpoints used to train
the model should correspond to the same scene, and
the presence of a moving object within the scene would
therefore introduce inconsistencies across different images
taken from various viewpoints, confusing the model and
leading to artifacts or blurry reconstructions. Furthermore,
accurately modeling dynamic scenes would require not
only understanding the geometry and appearance but
also the temporal dynamics of object, adding a layer of
complexity that NeRFs, with its original formulation,
would not be equipped to handle. And as expected, such
assumption on static scenes has been problematic in NeRFs
applications to the real world because a single given scene
can vary immensely from time to time, even seconds apart.
For example, the lighting would change as the sun moves
across the sky, the weather may be different from day
to day, and people in the background will be constantly
moving. These changes especially apply in autonomous
vehicle applications, where moving cars, pedestrians, and
bikers, among many other dynamic entities, are common
features encountered in driving scenarios.
To handle dynamic scenes, research methods have in-
cluded time-aware extensions which incorporates temporal
information [8] and/or geometry priors [15] in order to
reduce artifacts left from moving objects. To address
this challenge, we propose a NeRF framework leveraging
image segmentation, where we reconstruct non-static
input scenes by explicitly removing non-scene dynamic
objects and then perform occlusion inpainting, as shown
in Fig 1. Specifically, we use Mask-RCNN for semantic
segmentation, enhanced with moving shadow detection, to
identify and exclude objects that are not part of the static
scene, such as people and bicycles. After segmentation,
we apply DeepFill V2, an advanced inpainting algorithm,
to recreate the background occluded by these dynamic
objects. Finally, we input the processed images and utilize
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Figure 1: Our Method

Structure-from-Motion for pose estimation and perform
NeRF reconstruction to produce high-quality images from
new perspectives.

2. Related Works

2.1. Dynamic Scene Handling in NeRFs

Dynamic Scene Handling in Neural Radiance Fields
is a research area focused on extending NeRFs to han-
dle scenes with moving objects and other such temporal
changes. While NeRFs have shown remarkable success in
synthesizing photorealistic views of static scenes, its per-
formance degrades significantly in dynamic environments,
yielding artifacts in the reconstructed scenes. In this sec-
tion, we review key advancements and methodologies thus
far which have addressed the challenges posed by dynamic
scenes in NeRFs.

2.1.1 Geometry Prior Utilization

Incorporating geometry priors into NeRFs have been a well-
explored method to enhance dynamic scene handling, as it
allows insight into the 3D structure of a scene, which is cru-
cial for accurately modeling occlusions. When dynamic ob-
jects move, understanding the underlying geometry helps
in determining what parts of the scene should be visible or
hidden from different viewpoints, therefore assisting with
maintaining a more consistent representation of the scene’s
structure. Geometry priors also generally allow better gen-
eralization across different viewpoints and object poses, es-
pecially as objects can appear in various orientations and
positions in dynamic scenes. A robust geometric prior helps
the model understand these variations, enabling it to pre-
dict unseen views more accurately and handle new object
configurations effectively. GeoNeRF employs a geometry
reasoner to to obtain fine and high-resolution geometry pri-
ors, showing its usefulness in enabling sophisticated occlu-
sion reasoning and detailed image rendering via classical
volume rendering techniques [3]. H-NeRF is an instance
of using geometric priors to target rendering and tempo-

ral reconstruction of humans in motion, integrating neural
scene representation and implicit statistical geometric hu-
man models using signed distance functions [15]. These ad-
vancements highlight the crucial role of geometry priors in
improving NeRF performance for dynamic scenes, address-
ing key challenges such as occlusions, motion handling, and
geometric consistency. However, the integration of geomet-
ric priors implies having access to 3D ground-truth geom-
etry, which is often expensive or impossible to obtain for
scenes encountered in the wild.

2.1.2 Temporal Coherence Integration

Ensuring the consistency and smoothness of visual proper-
ties over time, given a sequence of dynamic scenes, is cru-
cial for ensuring that elements within a reconstructed scene
appear stable and avoiding visual artifacts such as flicker-
ing or jittering. D-NeRF is a notable approach that extends
NeRF to dynamic scenes, including time as an additional
input to the system and decomposing learning into a canon-
ical scene and scene flow, ultimately being able to render
high-quality images for scenes with non-rigid objects [9].
Neural Scene Flow Fields are based on a variation of NeRFs
that models the dynamic scene as a time-variant continuous
function of appearance, geometry, and 3D scene motion and
captures 3D scene dynamics effectively, allowing an effec-
tive space-time view synthesis [4]. A temporal interpolation
approach, which extracts features from space-time inputs
and interpolates them across time frames allows capturing
of short-term and long-term temporal features, achieving
state-of-the-art results in both rendering quality and train-
ing speed [8]. However, these methods either fail in cases
with large deformations between temporally consecutive in-
put images [9], have prohibitively high training and render-
ing times [4], or are non-generalizable to dynamic regions
that are not observed in the training sequence [8]. NeRF-W
is able to deal with large deformations, such as photometric
and environmental variations, across an input photo collec-
tion as it optimizes an appearance embedding for each input
image, allowing it to maintain consistency across different
images and contributing to a greater temporal coherence.
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Figure 2: Sample Images in Dataset

2.1.3 Static-Dynamic Scene Decomposition

Static-dynamic scene decomposition is an increasingly pop-
ular approach to extend NeRFs to handle dynamic scenes.
By decomposing a scene into its static and dynamic compo-
nents, NeRFs can better model each part’s unique charac-
teristics, allowing high-fidelity reconstruction without be-
ing influenced by the movement and variability of dynamic
objects. EmerNeRF introduces a self-supervised method
for stratifying scenes into static and dynamic fields, which
is then used to parametrize an induced flow field–the cou-
pling of these three fields enables the quality representation
of highly-dynamic scenes [16]. D2NeRF achieves state-
of-the-art in decoupling dynamic and static 3D objects and
image segmentation for moving objects by representing the
moving objects and the static background by two separate
neural radiance fields, with only one allowing for tempo-
ral changes, in addition to a shadow field network to de-
tect and decouple dynamically moving shadows [14]. In
general, as a result of ground truth annotations for segmen-
tation being expensive, many static-dynamic scene decom-
position methods in NeRFs rely on self-supervised meth-
ods [6, 7]. However, a common limitation of these ap-
proaches is the difficulty in successfully reconstructing the
background when a moving object dominates the image
and obscures different perspectives, especially in areas with
insufficient observations or frequent occlusions. Our ap-
proach attempts to overcome these challenges by utilizing
a NeRF framework which explicitly removes dynamic ob-
jects in the scene, combined with occlusion inpainting to
use static-dynamic scene decomposition with more accurate
reconstruction results.

3. Dataset
3.1. Data Collection

4. Evaluation
Because our focus was on a scene containing dynamic

objects, we chose a central pillar in the main quad, a rela-
tively busy area, for our data collection. Here, we collected
85 images by periodically circling the pillar over a span of 5

Figure 3: COLMAP Pose Estimation Visualized

minutes. Over the 85 images, there include a range of mov-
ing objects, such as pedestrians standing in the background
or bicyclists biking by. As we did not take a frame-by-frame
sequence of but instead and continually moved around the
pillar, it is often the case that certain background objects are
only present in only one or a few images of the set, yielding
to a not wholly temporally-consistent image sequence, as
shown in Fig 2. This figure demonstrates a variety of sce-
narios: some images have no moving objects visible, some
have very visible pedestrians dominating the scene, and oth-
ers show partially occluded pedestrians further in the back-
ground.

4.1. COLMAP Pose Estimation

To feed our custom dataset into the NeRF pipeline,
we must include the camera poses for each image. We
achieve this preprocessing step by applying COLMAP [11].
COLMAP facilitates image-based 3D reconstruction by
first recovering a sparse representation of the scene and
the camera poses of the input images using Structure-from-
Motion (SfM). SfM is the process of reconstructing 3D
structure from its projections into a series of images taken
from different viewpoints. The input is a set of overlapping
images of the same object, while the output is a 3D recon-
struction of the object, including the intrinsic and extrinsic
camera parameters of all images. Typically, SfM systems
divide this process into three stages: feature detection and
extraction, feature matching and geometric verification, and
structure and motion reconstruction. The output from SfM
then serves as the input to Multi-View Stereo (MVS) to re-
cover a dense representation of the scene. This process en-
sures that our dataset includes accurate camera poses nec-
essary for the NeRF pipeline.

5. Method
5.1. Baseline

For our baseline evaluation, we remove 3 images from
the dataset to serve as validation viewpoints. Initially, we
train the NeRF model on the entire dataset without any pre-
processing. Using COLMAP for pose estimation, this ap-
proach attempts to match all images, including those with
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Figure 4: Flow of Network

dynamic elements, which we expect to contain numerous
artifacts due to the presence of moving objects that are
present in many images of the dataset. As a second base-
line, we train the NeRF model exclusively on static im-
ages, which we recover by retrieving the images containing
no segmented masks during our segmentation step. While
COLMAP performs pose estimation on this reduced set,
where because of the absence of dynamic images, which
reduces the dataset by approximately 42.4% to a total of 49
images, we expect its reconstruction to be less accurate in
some regions due to the diminished dataset coverage.

5.2. Model Flow

We divide the process of handling dynamic scenes in
NeRFs is divided into three models, as shown in Fig. 4.
First, an instance segmentation model is used to mask dy-
namic objects. Next, the masks along with the original input
images inform the inpainting of the occluded backgrounds
of the masked areas. Finally, the inpainted results are fed
into a Neural Radiance Field to generate the final video ren-
dering of the scene

5.2.1 Segmentation

In our model, the segmentation stage is crucial for accu-
rately identifying and creating masks from dynamic objects
in the input data to be used in the inpainting stage. We
experimented with several semantic segmentation architec-
tures to qualitatively determine the most effective model for
our task. Initially, we evaluated U-Net and DeepLabV3 ar-
chitectures, but found that they struggled with accurately
segmenting more complex scenes with our dynamic objects.
We ultimately found Mask R-CNN to visually demonstrate
superior performance on our data. For our implementa-
tion, we utilized Mask R-CNN with a ResNet-50 backbone,
as it offered a good balance between accuracy and com-
putational efficiency. We also attempt to couple the seg-
mentation framework with shadow-removal features with
implementations as outlined in Mask-ShadowGAN [2] and
WRSD [13], however were unable to fully integrate it into
our pipeline.
Our pipeline uses Mask R-CNN [1] for instance segmenta-
tion, which is similar to Fast R-CNN [10] as it processes
an image through a backbone convolutional neural network
(CNN) to extract feature maps, which are then used to pro-
pose Regions of Interest (RoI). These regions are then pro-
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Quantitative Results
Scene 1 Scene 2 Scene 3

Static Dynamic Inpainted Static Dynamic Inpainted Static Dynamic Inpainted
PSNR 12.23900 17.78892 19.05412 11.60325 17.65667 19.06477 11.61922 17.26071 19.75633
SSIM 0.430463 0.551500 0.559876 0.386409 0.490666 0.506976 0.331359 0.489227 0.494153
MSE 8747.833 7993.848 7784.771 8124.500 7859.569 7964.972 8098.355 7709.193 7877.753
MS-
SSIM

0.556070 0.748474 0.792299 0.454635 0.796186 0.742656 0.433555 0.699996 0.735969

LSPIPS 0.353489 0.322726 0.374649 0.338432 0.304704 0.388221 0.319227 0.368444 0.364292

Table 1: Quantitative results for different scenes and categories

cessed to be passed through individual CNNs to classify
objects in its breadth. However, Mask R-CNN also builds
upon the foundation established by Faster R-CNN [10] by
incorporating an additional branch specifically for predict-
ing segmentation masks for each Region of Interest (RoI).
The mask branch, which is a small fully convolutional net-
work (FCN), is applied to each RoI to predict segmentation
masks in a pixel-to-pixel manner, significantly improving
the granularity of the segmentation process.
For our purposes, we leverage pretrained weights from the
COCO V1 dataset for the Mask R-CNN model and pre-
trained weights from ImageNet for the ResNet-50 back-
bone. The use of COCO V1 weights allows our model
to benefit from extensive training on a diverse set of im-
ages containing various objects, which improves its ability
to generalize to different scenes in our dataset.

5.2.2 Occlusion Inpainting

Following segmentation, we can input the resulting binary
masks into an inpainting framework, which will handle
recreating aspects of the scene affected by removing the
area within the masks. We use the DeepFill v2 model, with
weights trained from the Places2 dataset, which deals with
scene understanding and is therefore relevant to our case of
scene reconstruction. DeepFill v2 is similar to its predeces-
sor DeepFill v1, and their network architecture largely re-
mains the same, with notable features such as a Contextual
Attention layer which allows the generator to utilize infor-
mation from distant spatial locations for the reconstruction
of more local areas and a two-stage coarse-to-fine network
structure. In this two-stage approach, the first generator net-
work creates a coarse reconstruction, while the second gen-
erator network further refines upon the coarse image. How-
ever, DeepFill v2 takes a departure from DeepFill v1 in that
it proposes Gated Convolution as a replacement to standard
convolution in v1, which would improve handling of irreg-
ular masks. Specifically, in gated convolutions, the output
is modulated by a gate that controls the contribution of the
input features. The gate itself is another convolutional layer
followed by a sigmoid activation function, which produces

values between 0 and 1 to serve as multiplicative gates. It
is multiplied element-wise with another convolutional layer
that can be followed by any such activation function. The
equation for the output of a gated convolution can thus be
expressed as:

y = (Wx+ b)⊙ (Gx+ c)

5.3. Evaluation Method

We validate the reconstruction quality of our approach
by visually assessing the novel view synthesis and pro-
viding quantitative results by comparing the reconstructed
image to ground truth with Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), Multi-Scale
Structural Similarity Index (MS-SSIM), Mean Squared Er-
ror (MSE), and Learned Perceptual Image Patch Similarity
(LPIPS) metrics to provide a robust evaluation of the recon-
structed image quality from various perspectives.

6. Experiments
6.1. Quantitative

We assess the success of our framework through im-
age similarity measures as discussed in 5.3. See Table 1
for Quantitative Results, where ”Static” denotes the sec-
ond baseline and ”Dynamic” denotes the first baseline dis-
cussed in 5.1, while ”Inpainted” denotes the processed seg-
mentation+inpainting steps before being fed into the NeRF
pipeline.
We notice that for all 3 scenes, in most of the image similar-
ity metrics, our inpainted model outperforms both the static
model and dynamic model, though by a slight margin.

6.2. Qualitative

We can also visually assess the resulting images of each
preprocessing technique by checking for artifacts and other
such irregularities. See Table 2 for Qualitative Results.
We notice that the static model images are very blurry in
many areas, which can be attributed to the fact that we
took many images away during its training because they
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Qualitative Results
Ground Truth Static Dynamic Inpainted

Scene 1

Scene 2

Scene 3

Table 2: Qualitative results for different scenes and categories

Figure 5: Artifacts in Dynamic (Left) vs Inpainted (Right)
Novel View Reconstruction

contained dynamic objects. Because NeRFs rely on over-
fitting to a specific scene, by removing even images with
dynamic objects, it removes information and thus greatly
lowers the novel view synthesis quality. Meanwhile, we
see that Dynamic does not suffer from this blurriness, but
instead contains many artifacts that are a result of the NeRF
interpreting the dynamic objects in the training images as
part of the scene, as shown in Fig 5. Finally, the inpainted
images as a result of our framework does not suffer from
this blurriness faced by the static model or many artifacts
that blur the background faced by the dynamic model.

7. Conclusion

We found that segmenting+inpainting a dataset before
feeding it into a NeRF model yields novel view reconstruc-
tion results that both qualitatively and quantitatively surpass
results from simply feeding a dataset containing dynamic
objects into a NeRF model.
To acknowledge a few limitations, it is important to note
that segmentation+inpainting techniques are not yet com-
pletely seamless and often struggle with certain challenges,
such as when considering an object’s shadows as well. Ad-
ditionally, the quality of inpainting reconstruction can di-
minish when dealing with complex textures or large oc-
cluded regions, as the algorithms may not accurately predict
the missing content. In future works, there is substantial
room for improvement in developing more sophisticated in-
painting methods and integrating better context-awareness
to enhance the dynamic scene reconstruction process.
Nevertheless, adapting Neural Radiance Fields (NeRFs) to
handle dynamic scenes opens up exciting applications, par-
ticularly in the field of autonomous driving. By incorpo-
rating motion masks and advanced inpainting techniques,
NeRFs can effectively reconstruct high-fidelity 3D scenes
from multiple viewpoints, even in the presence of moving
objects as is the case in most real world scenarios. This ca-
pability is crucial for NeRFs usage in broader contexts, such
as in autonomous vehicles, which require precision and reli-
ability in reconstruction to navigate safely. As we continue
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to refine these techniques, we continue to improve the accu-
racy and quality of dynamic scene reconstruction, and grow
closer to reaching the full potential for NeRFs in many ap-
plications from virtual reality to robotics and beyond.
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