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Abstract

Echocardiograms are commonly used as a cardiac
diagnostic tool. One particular area of interest is the left
ventricle (LV), the structure of which informs multiple im-
portant heart failure metrics. In this project, we evaluated
the performance of several deep learning algorithms for
LV segmentation of echocardiograms, and compared our
results to existing methods.

The two models that we evaluated were Meta’s DINOv2
and Segment Anything (SAM), and they were compared
against the EchoNet-Dynamic model developed by Ouyang
et. al. We found that neither of these models were able
to achieve satisfactory segmentation performance as
measured by Dice score; however, SAM performed much
better than DINOv2. Our average Dice score for SAM with
two reference points was 0.584.

Existing segmentation models trained on a general im-
age dataset do not appear to transfer with good accuracy to
the task of LV segmentation. Future work including hyper-
parameter tuning or testing of different models could lead
to improved segmentation, with the long-term goal of mov-
ing towards fully automated, real-time LV segmentation of
echocardiograms.

1. Introduction
Cardiovascular disease (CVD) remains the leading cause

of death worldwide, with 17.8 million deaths in 2017 alone
attributed to CVD [7]. Simultaneously, CVD remains one
of the leading causes of hospital admissions in the United
States in recent years [14].

Echocardiography is an important and widely used
screening methodology for the diagnosis and assessment
of heart failure patients [12, 1]. Over 7 million echocar-
diograms are performed in the United States annually,
each requiring a skilled cardiologist to interpret [3].

Structural areas of interest in cardiac imaging include the
left ventricle, right ventricle, and myocardium. However,
of these, the structure of the left ventricle (LV) provides im-
portant insight into key clinical measures such as ejection
fraction and stroke volume, which are oftentimes reduced
in patients with heart failure [8]. Thus, it is critical to be
able to precisely identify the extent of the left ventricle at
multiple timepoints during echocardiogram videos.

Currently, left ventricle traces must be created by a
cardiologist manually which is a relatively involved and
time-consuming process. Furthermore, only one frame of
an echocardiogram can be annotated at a time, limiting
the information that can be realistically reported [4].
Development of an accurate and real-time segmentation
system would be a significant improvement to the current
standard of care.

In this project, we aim to test whether well-known and
pretrained image segmentation models could be applied to
a novel task of left ventricle segmentation. We furthermore
aim to compare the performance of these models with ex-
isting models that have been specificially trained for the LV
segmentation task. The input to our algorithms will be im-
age frames from echocardiograms and the output will be a
mask representing the predicted LV location.

2. Literature Review
There are a variety of previous studies that have used

machine learning to analyze echocardiograms. Duffy
et al. used a deep learning model with a modified
DeepLabV3 backbone in combination with videos of
the heart obtained from over 20,000 echocardiograms to
measure left ventricular diameter and identify patients
with increased left ventricular wall thickness [2]. In a
different application, Omar et al. used data from speckle
tracking echocardiograms (STE) to create two models: an
unsupervised learning model that clustered patients into
three groups, which seemed to be based on worsening of
cardiac function, as well as a regression to predict several
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measures of cardiac pressure such as E/e’ using STE data
[9].

In 2020, Ouyang et al. developed EchoNet-Dynamic, a
model which is able to predict ejection fraction, assess car-
diomyopathy, and segment the left ventricle [11]. As part
of their publication, they made their dataset of over 10,000
labeled echocardiogram videos publicly available for future
research. Similarly to Duffy et al., EchoNet-Dynamic is
based on a DeepLabV3 backbone for segmentation tasks.
However, instead of only performing segmentation of the
LV wall as in Duffy et al., EchoNet-Dynamic segments the
entire left ventricle.

Since the publication of the EchoNet-Dynamic database,
several groups have attempted to achieve similar or im-
proved segmentation accuracy using different training
methodology. One area of interest thus far has been con-
trastive learning, which is a partially self-supervised algo-
rithm, involving a long unsupervised training portion and
then a shorter supervised training portion. This technique
could be beneficial in the future not only for LV segmen-
tation but for other cardiac labeling tasks where more lim-
ited labeled data is available. Up to now, one group was
able to achieve comparable LV segmentation results to the
original EchoNet paper while training using only 5% of the
labeled data [13]. Another method that has been tried thus
far on the EchoNet-Dynamic database involves local atten-
tion, allowing the algorithm to better understand pixels in
context. One such model, which was called a pyramid lo-
cal attention neural networks (PLANet), was able to achieve
results eclipsing those of the original EchoNet-Dynamic pa-
per while simultaneously achieving real-time segmentation.
[5]

3. Methodology
In this report, we evaluate the performance of widely uti-

lized models on the EchoNet-Dynamic dataset and compare
their performance to the performance of the model proposed
in the original paper. In particular, we were interested in
models that are useful for general image segmentation and
object detection. We compared the quality of segmentation
between these generalized models and a model developed
specifically for LV segmentation. A NVIDIA T4 GPU (pre-
configured for deep learning on Google Cloud or through
Google Colaboratory) was used for all training and evalua-
tion tasks.

3.1. Baseline Method

We first aimed to reproduce similar results to the original
EchoNet-Dynamic paper [11] by using the code available
in their Github repository. The EchoNet-Dynamic model
was trained on the training set for a total of 50 epochs and

subsequently evaluated on the validation set. Reproducing
the results from the original paper using our available com-
puting resources was important to ensure a fair comparison
with future models that we would try.

3.2. Other Models

We also evaluated the ability of two different existing
models to perform LV segmentation. These models were
developed a number of years after the original EchoNet-
Dynamic paper, and as such, we hypothesized that they may
do better than the original in either speed or segmentation
accuracy.

3.2.1 DINOv2

The first model we tried is Meta’s DINOv2 [10]. DINOv2
is designed for not just segmentation but also classification,
video understanding, and depth estimation. DINOv2 uses
self-supervised learning and claims to be able to learn
from any collection of images. We intended to test if
this flexibility extended to LV segmentation. One of the
main upsides of DINOv2 compared to other models is the
theoretical “out of the box” function, as the developers
found in the original paper that DINOv2 was able to
perform well on new segmentation tasks without any
finetuning. Furthermore, they found that finetuning only
slightly increased the performance (about a 2% increase in
accuracy) compared to only training a linear classifier layer
on top of the backbone (linear probing).

Thus, for this project, we evaluated the ability of DI-
NOv2 to perform quality LV segmentation using a pre-
trained frozen backbone with a linear classifier. Our linear
probing was based on a tutorial developed for semantic seg-
mentation with DinoV2 but modified for our specific task,
loss, and dataset. The original tutorial used a batch size
of 2, but we also tested a batch size of 32. For the linear
classifier, we used a convolutional layer with a kernel size
of 1 × 1 and an input channel dimension of 768 (which is
the hidden output dimension from the DINOv2 backbone).
As we learned in class, convolutional layers can be used to
represent a linear classifier.

3.2.2 Segment Anything

The second model we tried is also from Meta: Segment
Anything (SAM). Segment Anything can be prompted
with graphical or text inputs and has the ability to create
masks from them. The authors claim to have the largest
segmentation dataset to date (2023). They also claim
its design makes it well suited to transfer learning and
zero-shot; we wanted to see if this could transfer to the
LV segmentation task (where it is unlikely their model has



been trained on such images).

SAM can take as input a set of points and/or bounding
boxes. For the point inputs, they can be set as either
foreground points or background points; that is, they can
tell the model to include a specific region in the mask,
or to exclude it. While it would in theory be possible to
train a network on top of this to generate these ”prompts,”
we were interested in the model’s zero-shot performance.
However, since we would still need some point(s) to feed
in as input, we decided to use the traces provided in the
data set. The idea is that rather than being fully automated,
a physician might select a few points and easily generate a
segmentation.

We ran the model with two different types of inputs: one-
point and two-point inputs. For the one-point inputs, we cal-
culated a midpoint from the provided traces and used only
this point as a ”foreground” input. This input might corre-
spond to a technician selecting a single point in the center
of the left ventricle. For the two-point inputs, we calculated
a midpoint as well as two additional co-linear points outside
of the left ventricle (with these two additional points being
designated as ”background” points). This input might cor-
respond to a technician selecting two points on the boundary
of the left ventricle.

3.3. Evaluation Metrics

The primary metric of evaluation is Dice score, accord-
ing with the metric for previous echocardiogram segmenta-
tion studies. For two different areas A and B, Dice score is
defined as

2
|A ∩B|
|A|+ |B|

.

In this study, the two areas under comparison will be the
model-predicted segmentation area and the “ground truth”
area from the labeled data. A Dice score of 0 represents no
overlap, while 1 represents perfect agreement.

We will secondarily evaluate training loss curves. The
loss functions that we used for this project are all cross-
entropy loss functions, taking the following form:

Loss = − 1

N

N∑
i=1

S⋆(pi) log

(
expS(pi)∑N
j=1 expS(pj)

)

where N is the total number of pixels, S⋆ is the ground
truth segmentation, S is the predicted segmentation, and pi
is the ith pixel.

The original EchoNet-Dynamic paper used
pixel-wise binary cross entropy with logits loss
(torch.nn.functional.binary cross entropy with logits),

Figure 1. The expert left ventricle segmentations are represented
in the EchoNet-Dynamic dataset as paired coordinates, tracing out
the area of the ventricle as seen above. (Image from [11])

which is a cross-entropy loss specifically utilized when
there are only two possible classes. This loss incorporates
a sigmoid function σ(x) = (1 + e−x)−1 before calculating
the cross entropy loss to transform logits into probabilities.

For the DINOv2 model, the original tutorial utilized a
generic cross entropy loss (torch.nn.CrossEntropyLoss),
so we tested both this loss and the binary cross entropy
with logits loss to see which one would result in better
performance.

In our trials with SAM, we did not calculate loss as we
only ran zero-shot prediction. To quantify the quality of
our generated masks, we used Dice score with the labeled
data.

Lastly, as qualitative verification, we evaluated a sam-
ple of segmentation masks by projecting them on top of the
echocardiogram videos. This is important to allow us to
visualize how our algorithms are performing as well as to
identify and understand any frequent areas of confusion.

4. Dataset and Preprocessing
We utilized the publicially available Echonet-Dynamic

dataset [11] to train and evaluate all models. The dataset
contains a total of 10,030 videos which are split into train,
validation, and test splits of 7,465, 1,277 and 1,288 videos.

Each video in the EchoNet dataset has two labeled
frames: one at systole (when the heart is most contracted)
and one at diastole (when the heart is most relaxed). These
frames are annotated with (human) expert left ventricle
segmentations. These segmentations are represented in the
dataset as a series of coordinates as seen in Figure 1. The



Figure 2. (Representative data). A frame extracted from an
echocardiogram (left) with a provided left ventricle segmentation
mask overlaid (right) for training.

Figure 3. Dice scores for all videos in the test set. Videos with
Dice score below 0.7 are highlighted in red.

Figure 4. A representative echocardiogram frame with overlaid left
ventricle segmentation mask on the right.

first ordered pair of coordinates represents the long axis
of the left ventricle, while the other pairs represent evenly
spaced estimations of the shorter, more horizontal axis.

We slightly modified a script found in [13] to extract
these labeled frames and create LV mask tensors for training
purposes, which produced the image and mask pairs shown
in Figure 2. The images and masks were each 112 × 112
pixels and normalization was applied prior to training.

5. Results

5.1. Baseline

Training the EchoNet-Dynamic model for 50 epochs
took about 17 hours (≈ 20 minutes per epoch). The best
loss during training was 0.035, achieved during epoch 26,
computed as a pixel-wise cross entropy loss.

We then evaluated the trained baseline model on the
validation and test sets. The average Dice score over all
videos was 0.909 for the validation set and 0.914 for the
test set. We visualized the Dice scores for the videos in the
test set (Figure 3) and noticed that almost all videos were
segmented very well with only a few outliers below a Dice
score of 0.7.

Lastly, we visualized the segmentations for a random
sample of 50 videos from the test set. As seen in the repre-
sentative example image in Figure 4, the segmentation was
very accurate in most cases.

5.2. DINOv2

As a baseline, we first tested how DINOv2 would seg-
ment echocardiogram images if given absolutely no addi-
tional training beyond the pretrained backbone. To do this,
we used the Semantic Segmentation Demo Lab available
online. We found that individual cardiac chambers were not
recognized as different objects or features and thus segmen-
tation of the left ventricle could not be automated from just
the pretrained backbone (Figure 5). That is, zero-shot learn-
ing did not seem to be effective for this use case.

We then moved to training a linear classifier on top
of the pretrained DINOv2 backbone loaded from the
Transformers python package. All experiments were run
using the AdamW optimizer [6] and a learning rate of
5 × 10−5. We began our experiments by using the loss
function (cross entropy) and batch size (2) demonstrated in
the tutorial, but used Dice score as our evalutation metric as
mentioned above instead of intersection over union (IOU)

Figure 5. Initial segmentation without linear probing demonstrates
that DINOv2 recognizes the basic echocardiogram shape but is
unable to segment individual cardiac features.



Figure 6. Experimental results for DINOv2 with batch size 2. (A). Loss curve computed as binary cross entropy loss with logits over 3000
training iterations. (B). Mean Dice score (averaged every 50 training iterations).

Figure 7. Example segmentation of a validation example using the
DINOv2 model + linear classifier trained with batch size 2.

to be consistent with the baseline EchoNet model. With
this initial experiment, we found that the loss function
originally decreased which seemed to show that the model
was learning, but the instead of increasing towards 1,
the Dice score also decreased until it approached zero,
which led us to hypothesize that our loss function was not
properly capturing the information important for learning.

Because of this, we next attempted training the linear
classifier with the binary cross entropy with logits loss in-
stead since that is what the original paper used. Our results
are visualized in Figure 6. We found that after an initial
sharp decrease in loss, the loss was mostly stagnant and
the mean Dice score increased very slowly, never reaching
above 0.15. Furthermore, visualizing the predicted mask
on a test example (Figure 7) showed that the model was un-
able to properly understand the location of the left ventricle.

With these failed results in mind, we decided to test
if a larger batch size would improve the segmentation

quality. We retrained the linear classifier on top of the
DinoV2 backbone using a batch size 32. Although we did
not have enough time to fully train the model with this
larger batch size (since each iteration was much slower,
taking about 50 seconds for one iteration), we noticed that
the Dice score increased much more quickly after only a
few iterations and increased above 0.15 after less than 20
iterations, which seemed more promising than the batch
size 2 results (Figure 8). However, when we visualized
the actual segmentation (Figure 9), we noticed that the LV
segmentation was still horrible and that in this case the
model was essentially predicting the entire image to be the
LV.

Overall, we were unable to acheive any correct segmen-
tations using linear probing with the DINOv2 pretrained
backbone. However, we learned that the batch size 32 re-
sults may look more promising in terms of Dice score (al-
though still not good), so if we had enough time to train for
multiple epochs on the full training set (which we estimate
would take >6 hours per epoch), there is a possibility that
we would be able to achieve more accurate segmentations.

5.3. Segment Anything

We first tried running SAM with just a single point as
input. This one-point input proved to be rather ineffective.
In Figure 10, we can see the three masks that SAM outputs;
these three masks each have an associated score. While
there is a mode which only outputs a single mask, the
authors of SAM suggest using this three-output mode and
picking the highest score for the best results. In these three
masks, we can see that the first one appears to best segment
the left ventricle. However, the highest score segmentation
is the last mask, which instead segments the entire heart.



Figure 8. Experimental results for DINOv2 with batch size 32 over 85 iterations. (A). Loss curve computed as binary cross entropy loss
with logits over 3000 training iterations. (B). Mean Dice score (averaged every 10 training iterations).

Figure 9. Example segmentation of a validation example using the
DINOv2 model + linear classifier trained with batch size 32.

We ran the one-point model on the entire test set and cal-
culated the Dice scores which are shown in Figure 12(A).
The mean of these scores was 0.395. We can see from
this distribution that while many of the masks have a
score above 0.8, the majority are clustered below 0.4.
Interestingly, there appears to be a distinct gap between
these two regions. This is likely due to the model seg-
menting either the entire heart (as in the bottom image of
Figure 10) resulting in the lower scores, or segmenting the
left ventricle (as in one of the top two images of Figure 10)
resulting in the higher scores.

We then ran SAM on a ”two-point” input. In Figure 11,
we can see an example of the three outputted masks.
Note that the green star on the images corresponds to the
”foreground” point while the two red stars correspond to
the ”background” points. While the masks appear to be
similar to the one-point input masks, if we look at the

scores, we notice that the highest score is now in fact the
middle image. While this isn’t perfect, it is much better
than the entire heart.

The Dice scores are plotted in Figure 12(B). The mean
is shown in red and has a value of 0.584. Note here that
there is a significant number of points clustered towards the
top; this suggests that a greater proportion of segmentations
result in a mask like one of the first two in Figure 11. There
are, however, still many masks that are covering the entire
heart.

6. Discussion
Although we were able to replicate the baseline and

achieve similar results (Dice > 0.9) compared to the orig-
inal paper [11], neither of the general image segmentation
models that we attempted to apply to this task were able to
learn comparable or better segmentations.

For the DINOv2 model, we identify two potential rea-
sons why the segmentation performance was significantly
worse than the baseline. One potential reason would be
that we were using suboptimal hyperparameters, including
batch size, learning rate, and so on, or a suboptimal opti-
mizer. Because running each experiment took several hours
of training before we could start to get an understanding
of whether it seemed to be working, it was not feasible to
find a good combination of hyperparameters in the time
that we had for this project. For example, we did test
different batch sizes and losses, but we were unable to
experiment with different learning rates and optimizers.
This hypothesis may be supported by the fact that batch
size 32 resulted in more promising loss and Dice score
curves compared to batch size 2, even though the predicted
segmentation continued to look bad.



Figure 10. The three generated masks for one-point input. Note
that while the first mask appears to be the best, it does not have the
highest score.

Another potential reason for failure of this model could
be that the backbone would need to be finetuned on medical
image-specific datasets instead of the general image dataset
that it was trained on (ImageNet-22k according to [10]).
Although the original DINOv2 paper noted that finetuning
did not tend to help the performance significantly, this
was for evaluating the performance on unseen datasets
such as CityScapes and PascalVOC, neither of which are
medical image datasets. However, finetuning the entire
model (which contains >1 billion parameters) would be
extremely computationally expensive so it would probably
not be feasible with our available resources.

Figure 11. The three generated masks for two-point input. Note
that while the first mask appears to be the best, it once again does
not have the highest score.

The difficulty in using SAM lies in the ambiguity of
segmentation. With just a single point as a prompt, there
is nothing to indicate to the model what we are interesting
in segmenting. It is likely the distinct edges that resulted
from rotating the echocardiagram videos which result in
the full heart mask having the highest score. When we
prompted SAM with more points, we see that it can no
longer accept the bottom portion of the image as part of the
mask. However, the sharp edges at the top are not excluded
and thus result in the highest score.

The more points we prompt the model with, the better the



Figure 12. Dice scores of SAM masks vs labeled data for 2552 frame test split (A). Dice scores of one-point inputs with mean line (Dice
= 0.395) plotted. (B). Dice scores of two-point inputs with mean line (Dice = 0.584) plotted.

segmentation would be. However, this would mostly defeat
the purpose of using the model since manual segmentation
only involves selecting a handful of points anyway. In fact,
the method of using points as prompts makes this ill-suited
for our left ventricle segmentation task, as we want this to
be fast and completely automatic. The task of figuring out
which section of the image to choose is the real technical
challenge here and is one that SAM does not accomplish;
selecting a specific dark region of the image can be done
with much less powerful tools (and indeed the superior per-
formance of the baseline model validate this point). SAM
is perhaps better suited for identifying several non-trivially
distinct objects.

6.1. Future Work

Future work to continue this project of automated or
semi-automated left ventricle segmentation could follow
three main pathways.

First, if we had additional time and computing resources
we could re-attempt some of the experiments that we
mentioned above to see if we could achieve improvements.
For DINOv2, as mentioned above, this could include either
additional hyperparameter tuning, experimenting with
different optimizers or loss functions, or finetuning the
backbone instead of only training a linear classifier. For
SAM, we could attempt to use more abstract inputs as
the paper claims is possible (for example, text prompt for
”large dark region in the top”). This would allow for the
system to become fully automatic.

Furthermore, an interesting and compelling next step
could be testing the performance of additional preexisting

models. One such model is YOLOv8 from Ultralytics.
YOLOv8 is based on the principles of the original YOLO
which performed object detection and classification in one
network. This iteration of YOLO also has the ability to
do image segmentation with good speed, which means
that if YOLOv8 was able to segment the LV accurately,
it could open up the possibility of real-time automatic LV
segmentation.

Lastly, we could explore an entirely different direction
in future work. So far, contrastive learning as mentioned
in [13] seems particularly promising. Previous models have
achieved comparable Dice scores to the original EchoNet
paper using supervised training on only 5% of the full train-
ing set. If we had additional time, we could attempt to ex-
pand along this avenue by investigating the effects of addi-
tional augmentations or other improvements to the current
contrastive learning models.

6.2. Conclusion

Overall, we evaluated the performance of two pretrained
image segmentation models on a novel task of LV segmen-
tation. Although these models were not able to segment
as accurately as the baseline, the performance of Meta’s
Segment Anything (SAM) was relatively promising and
could potentially lead to future semi-automated segmenta-
tion with only two required input points. Considering the
huge number of echocardiograms performed yearly, addi-
tional future work to develop accurate and fast LV segmen-
tation models is warranted to improve the quality of cardiac
care.
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