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Abstract

In recent years, generative models have become more
advanced, and the line between AI-generated and human-
generated images has slowly blurred. This has raised con-
cern within artists, who argue about how this rise affects
the value and work of real artists. In this project, we plan
to train a model that detects whether an artwork is AI- or
human-generated. We use the AI-ArtBench dataset, which
contains images of real and AI-generated artworks across
ten different art styles. We compare the performance of
deeper CNNs and finetuning pretrained models using our
dataset with our baseline models of simple MLP and shal-
low CNN networks. Our models all outperformed the base-
line models, with the best model achieving an accuracy of
67.89% in this classification task on 20 labels (either AI or
human, differentiating across 10 art styles). While our mod-
els have made mistakes in differentiating across the ten art
styles, we found that they were able to differentiate between
real vs. AI quite well, with accuracies for this binary task
reaching 96.47%.

1. Introduction
As generative models like DALL-E become more ad-

vanced, AI-generated images have permeated popular cul-
ture and entertainment, from movies like Civil War and Late
Night With the Devil using AI-generated movie posters and
title cards in their film, respectively. [13] Sites like child-
book.ai use AI to create illustrations for children’s books.
With text-to-image models and prompts, these generative
models have been used to produce images of artworks mim-
icking the style of real-life, human-made artworks. [18]
Artists argue that the rise of AI art depreciates the value
of art and the work of real-life artists. [14]

In this project, we hope to create a model that verifies the
authenticity of a painting. We will train a model that eval-
uates and differentiates whether an artwork is generated by
AI or a specific artist. It will be trained on a combination
of the works of artists from the 14th to the 21st century and
works generated by AI in ten distinct artistic styles. The ten

artistic styles we will explore are Art Nouveau, Baroque,
Expressionism, Impressionism, Post impressionism, Real-
ism, Renaissance, Romanticism, Surrealism, and Ukiyo-e.

Our model would take in an artwork image of size 32x32.
This is a classification task, where the output would be one
of the 20 possible labels (either AI or human, differentiat-
ing across 10 art styles for each category). The format of
each label is [human|ai] [art style]. We do art
style differentiation because we recognize how users usu-
ally specify an art style when trying to recreate an artwork
using AI. We also wanted to assess whether there are spe-
cific art styles that AI models currently recreate well and
how well the models can differentiate from different art
styles.

In this project, we will pass our dataset into simple MLP
and shallow CNNs as our baselines. We also input our
dataset into deeper CNNs with more convolutional blocks
and fully-connected layers that we implement. Lastly, We
will also finetune on pretrained models, such as ResNet,
GoogLeNet, and EfficientNet, using our dataset.

2. Literature Review
Recent technological developments have led to the rise

of AI art. One of these advancements is Neural Style Trans-
fer (NST). NSTs employ CNNs to mimic famous painting
styles in real images. [6] This demonstrates the ability of AI
models to differentiate between different art styles and to
generate artworks given a specific prompted style. Genera-
tive Adversarial Networks (GANs) [4] have also contributed
to AI-art. By employing a generator and discriminator ar-
chitecture, GANs are able to produce more convincing im-
ages that mimic an artwork, such as a painting. [3] More
recently, OpenAI’s Dall-E has introduced a text-to-image
generation model, allowing users to write prompts for im-
ages to generate. [12] Users can then ask the model to gen-
erate an artwork following a specific style. As technologi-
cal advancements increase the quality of these AI-generated
artworks, artists express concerns over ownership, copy-
right, and ethical issues of such image generation. [3]

Humans are not as good at differentiating between real
and state-of-the-art AI-generated images. [11] In a study

1



conducted by Lu et al., they tested each participant to clas-
sify 100 randomized images as real or not. Images con-
tain diverse subjects, from people, animals, plants, to land-
scapes. They found that participants, on average, only got
61.3% of the questions right (with a misclassification rate
of 38.7%), demonstrating the ability of SOTA AI-generated
images to deceive a general audience. [11] They also
observed that participants misclassified real images as AI
33.1% of the time. A similar study that evaluates how well
people classify AI-generated and human-generated paint-
ings, social media images, news photos, and anime corrob-
orate this finding. [9] Lu et al. writes that this shows how
increasing realism in AI images ”erode people’s trust in ac-
curate information”. Lastly, they found that people excelled
in identifying AI-generated images of people, but struggled
in AI-generated images of objects the most. [11]

AI models, on the other hand, may provide more in-
sight. [11] CIFAKE [2] by Bird et al. is a dataset designed
for identification of AI-generated synthetic images. They
trained and tested on the CIFAR-10 dataset, consisting of
60,000 32x32 RGB images of real subjects (airplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship, and truck). [8]
They use a stable diffusion model to generate synthetically
equivalent images to the CIFAR-10 dataset, with 6,000 im-
ages for the ten classes. Each image is generated from the
prompt ’a photograph of [subject]’ with slight variations.
They then used a Convolutional Neural Network to perform
a binary classification task (either Real or Fake) on these
images. Their best model achieves an accuracy of 92.98%.
What they observed is that there is a different distribution of
features for real and AI images. They found that classify-
ing real images involved looking at majority of the image,
whereas classifying AI images involved looking at select
parts of the image that are considered ”visual glitches” that
depart them from reality. Such examples could be unread-
able text, anatomical errors, or lack of certain details. This
signifies how, despite the convincing nature of AI images,
there are still visual gaps that will allow the model to differ-
entiate them from real images.

GenImage expands on CIFAKE by creating a million-
scale benchmark dataset of real and AI images using cur-
rent state-of-the-art Diffusion and GAN models. [19] They
generated 1.3 million fake images on the 1000 class labels
found in ImageNet. They performed two tasks on their
dataset – cross-generator image classification and degraded
image classification, achieving best accuracies of 70.3%
and 82.2%, respectively. This demonstrates how different
image generator models lead to different and distinct visual
features, introducing difficulty in creating an all-in-one AI
detector for images.

They found that a pre-trained ResNet-50 model fine-
tuned on the GenImage dataset is able to generalize to other
image content, such as AI-face and AI-art detection, with

best model accuracies of 99.0% and 95.0%, respectively.
This demonstrates the effectiveness of transfer learning on
image classification tasks. Models that have demonstrated
effectiveness for image classification tasks include ResNet
[5], EfficientNet [17], and GoogLeNet. [15]. This also
shows the potential of improving these accuracies by train-
ing on dataset that is more domain-specific. We would ex-
plore how these pre-trained models would perform if trained
on an art-specific datasets.

Such domain-specific datasets include ARIA (Adversar-
ial AI-Art) [9] and ArtBench. [10] The ARIA dataset in-
cludes 140K images in five categories: paintings, social
media images, news photos, disaster scenes, and anime pic-
tures. [9] ArtBench is a class-balanced, annotated, and stan-
dardized dataset for benchmarking artwork generation. [10]
It includes 60,000 real artworks across 10 distinct art styles,
spanning from the 14th to the 21st century. They found that
generative models finetuned on their dataset was more ef-
fective at creating AI artworks of landscape, cityscape, and
marina artworks compared to creating portraits. Since Art-
Bench is more specific to paintings, we will incorporate the
ArtBench dataset into the dataset we will be using.

3. Dataset
We are using the AI-ArtBench dataset on Kaggle.1 This

dataset contains 180,000+ artwork images. Around 2
3 of the

dataset (120,000) are AI-generated artworks using Latent
Diffusion and Stable Diffusion. The AI-generated artworks
are in 10 artistic styles, separately generated using Latent
Diffusion and Stable Diffusion. These AI-generated works
are 256x256 and 768x768 in resolution, respectively.

Around 1
3 of the dataset (60,000) are real human-made

artworks taken from the ArtBench-10 dataset, which is a
dataset that contains artworks from the same 10 artistic
styles as the AI-generated ones. These human-made works
are 256x256 in resolution.

The training set contains 155,015 artworks (50,000 hu-
man + 105,015 AI), while the test set contains 30,000 art-
works (10,000 human + 20,000 AI).

3.1. Pre-processing Methods

To start, we pruned the amount of AI-images in the train-
ing set to achieve a better balance between the human-made
and AI-made artworks (so AI-artworks are not overrepre-
sented in our training data). We pruned it such that there are
a total of 5,000 artworks for each artistic movement in the
training set – with 2,500 generated using Latent Diffusion
and 2,500 using Stable Diffusion. (There are 5,000 human-
made artworks for each art style) In the end, our training
set contained 100,000 artworks, with a balance of human-
made and AI-made artworks. We then took 10,000 images

1https://www.kaggle.com/datasets/ravidussilva/
real-ai-art
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from the training set as the validation set. (90-10 split) We
also resized each AI-image generated using Stable Diffu-
sion in both the training and testing set to be 256x256 pixels
to match the other images.

We then extract the label for each image by parsing the
filename and directories. We labeled each AI artwork with
’AI’, while we labeled each human-made artwork with the
name of the artist. We transform each image so they are
all of the same 32x32 size and then feed this into Pytorch’s
ImageFolder to get the dataset. We then feed this dataset to
the Pytorch DataLoader to get batch data. In the end, we
had 20 labels for this classification task.

4. Approach & Methods
4.1. Baseline Models

For our baseline models, we implemented two ap-
proaches: a simple Multilayer Perceptron (MLP) model,
and a simple Convolutional Neural Network (CNN) model.

Simple MLP Model Our first baseline model is a simple
MLP model. It first flattens the input to a size of 32 ∗ 32 ∗ 3.
We then pass it to a fully connected layer with 128 units. We
pass the output to a ReLU activation layer before passing it
to a final fully connected layer that has 20 units, one for
each classification label.

Simple CNN Model Our second baseline model is a
shallow four-layer CNN network. We first pass a batch of
32x32 images into a 2D Convolutional Layer with 32 fil-
ters, a padding of 2 pixels, and a 5x5 kernel size. We pass
the output into a ReLU activation function. We then pass
this into a Max Pooling layer with a 2x2 kernel size and a
stride value of 2. We pass it into another 2D Convolutional
Layer with 16 filters, a padding of 1 pixel, and a 3x3 kernel
size. We then flatten this and pass it to a fully connected
layer that has 20 units.

4.2. Proposed Model

We also created two, more complex CNNs.
Model #1 Our first model consists of two convolu-

tional blocks, a flattening layer, a fully connected block, and
a last linear layer to generate an output. This has a total of
16 layers. The first convolutional block consists of passing
a 32x32 image into a 2D Convolutional layer with 32 filters,
a padding of 2 pixels, and a 5x5 kernel size. We then take
this output and pass it onto a 2D BatchNorm Layer with 32
features and an ϵ = 1e − 5 for numerical stability. We ap-
ply a dropout layer with a dropout probability of 0.15. We
apply a ReLU activation to the output, before passing it to
a 2D MaxPool layer with a kernel size of 2x2. The second
convolutional block follows this structure, but the 2D Con-
volutional layer has 16 filters, a padding of 1 pixel, and a
3x3 kernel size. and the 2D BatchNorm layer has 16 fea-
tures. After the two convolutional blocks, we pass the out-

put to a flattening layer. We pass it to our fully connected
block, which first starts by passing it to a linear layer with
128 neurons or outputted features. We then pass this onto
a 1D BatchNorm layer, before applying dropout and ReLU
activation. The final step of this architecture is passing it to
a linear layer that outputs of the 20 possible classes for this
task.

Model #2 The second model is similar to the first
model, but is deeper and more complex. This model con-
sists of (in order) three convolutional blocks, a flattening
layer, two fully connected blocks, and a last linear layer to
generate an output. This has a total of 25 layers. The first
two convolutional blocks are the same as Model 1’s. The
third convolutional block consists of a 2D Convolutional
layer with 8 filters, a padding of 2 pixels, and a 3x3 kernel
size. We then take this output and pass it onto a 2D Batch-
Norm Layer with 8 features and an ϵ = 1e−5 for numerical
stability. Similarly, we apply dropout with a probability of
0.15 and ReLU activation before applying a 2D MaxPool
layer with a 2x2 kernel size. The first fully connected block
consists of a linear layer with 128 neurons, a 1D BatchNorm
layer with 128 features, dropout, and ReLU activation. The
following, second fully connected block consists of a lin-
ear layer with 64 output neurons, a 1D BatchNorm layer,
dropout, and ReLU. Similarly, we pass the output to a lin-
ear layer to output a label.

4.3. Transfer Learning

We also incorporated Transfer Learning by fine-tuning
pre-trained models. To do this, we replace the last fully-
connected layer of the model so that the output matches the
number of classes in our dataset (20 labels). We do not
freeze any layers, but rather we train all layers using the
existing pre-trained weights as the starting point.

ResNet Given that this is an image classification task
and the findings observed in GenImage [19], we finetune on
a pretrained ResNet model using our dataset. ResNet mod-
els work well for image classification tasks. They introduce
a residual block that allows for training deeper networks
by mitigating the vanishing gradient problem. [5] Residual
blocks introduce skip connections that allows to fit a resid-
ual mapping (H(x) = F (x) + x) instead of directly trying
to fit a specific mapping (H(x)).

The ResNet architecture first starts with a convolutional
layer with 64 filters, kernel size of 7x7, and a stride of 2 pix-
els. After passing this to a normalization layer and ReLU
activation function, we apply a pooling layer. The ResNet
architecture stacks then stacks residual blocks, with each
residual block containing two 3x3 convolutional layers. At
the end, we then apply an average pooling layer and flat-
tening layer. We only have one fully connected layer at the
end, which is used to generate an output. [5]

We will evaluate on two ResNet models: ResNet-18, a
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Figure 1. Model 2’s architecture. It consists of three convolutional
blocks, a flattening layer, two fully connected blocks, and a last
linera layer to generate an output. Model 1 is similar, but with only
the first two convolutional block, and only one fully connected
block before the final linear layer.

shallower, less complex model, and ResNet-50, a 50-layer
model. While both employ residual blocks and the gen-
eral architecture above, ResNet-50 also utilizes bottleneck
layers (three convolutional layers: 1x1 conv with 64 filters,
3x3 conv, and 1x1 conv with 256 filters) that helps with
reducing the computational complexity of deeper models.
Reducing the dimensions periodically (and then returning
to the previous state) allows the model to learn with fewer
parameters compared to just keeping a 3x3 convolutional
block throughout, which becomes useful for more complex

models. ResNet-18 does not have bottleneck layers due to
its more shallow nature.

GoogLeNet We use a deep CNN pre-trained model
called GoogLeNet. [15] This model is known for its deep,
but computationally efficient, network. It consists of 22 lay-
ers, but with only 5 million parameters. It is able to do so
through ”inception modules.” Given a previous layer, incep-
tion modules apply parallel filter operations with multiple
convolutional receptive field sizes (1x1, 3x3, and 5x5) and
a MaxPool layer with kernel size of 3x3. For computational
efficiency, they employ dimension reduction using bottle-
neck layers of 1x1 convolutional layers before passing it to
the 3x3 and 5x5 convolutional layers. They pass the output
of the pooling operation to a bottleneck layer for efficiency.
They then concatenate all the outputs before passing it onto
the next block.

The overall architecture of GoogLeNet starts with a
”stem network” with a 7x7 convolutional layer with stride
2, a MaxPool layer with kernel size 3x3 and stride 2, a 1x1
convolutional layer, a 3x3 convolutional layer, and another
MaxPool layer with kernel size 3x3 and stride 2. We then
stack the inception modules on top of each other. After the
last inception module, we pass the output to a global aver-
age pooling layer with kernel size of 7x7, a fully connected
layer, and finally apply the softmax function to generate the
final output. [15]

EfficientNet Another CNN architecture that works
well for image classification tasks is EfficientNet. [16]
EfficientNet introduced model scaling. Model scaling in-
volved scaling all dimensions–depth (number of layers),
width (number of channels), resolution (input image size)–
of the model uniformly by a fixed compound coefficient.
This is useful because if resolution increases, then having
a deeper network and higher number of channels will al-
low us to learn more from this increased resolution image.
EfficientNet employed neural architecture search to create
these models. These models also employ inverted bottle-
neck convolutional layers (MBConv). MBConv layers use
a 1x1 convolutional layer to expand the input (rather than
reduce it), then a depthwise 3x3 convolutional layer, and a
1x1 convolutional layer to reduce it again. The model has
achieved state-of-the-art accuracy on CIFAR-100. [16]

4.4. Training Configuration

Each experiment was run for 10 epochs with a learn-
ing rate of 0.001. We employ an exponential learning rate
scheduler that updates the learning rate each epoch:

lr = lr0 exp(−γ · epoch)

with a hyperparameter γ that dictates how much to decay
our learning rate. We start with the larger learning rate to
make larger jumps towards the solution in the beginning, but
decrease it in further epochs so we don’t oscillate towards
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the optimal solution. This leads to a more stable learning
process.

We used an SGD optimizer with Nesterov momentum
and a momentum γ value of 0.9. We use this optimizer
because this works well for CNNs and outperforms Adam
when employing Nesterov momentum. Momentum takes
into account the previous gradients by keeping a running
average. This helps smooth out the SGD updates, prevent
oscillations, and help the model converge faster. With mo-
mentum, the update then becomes:

vt+1 = γvt + η∇L(θt − γvt)

θt+1 = θt − vt+1

We use 64 as our batch size. We found that this num-
ber provides a good balance of computational and training
efficiency compared to smaller batch sizes and improved
generalization compared to larger batch sizes. [7]

Cross entropy loss served as our loss function because it
generalizes well for multi-label image classification tasks.
The loss is calculated as:

L(y, ŷ) = −
C∑
i=1

yi log(ŷi)

We then took our best model, and ran it for 20 epochs
under the same hyperparameters. Each experiment was run
on an NVIDIA T4 GPU.

We use accuracy as the evaluation metric. We thought
that this is an appropriate metric given that the dataset is
balanced on the amount of images per category. We eval-
uate on two metrics of accuracy. The first one is accuracy
on a 20-label classification task, where the model predicts
whether the art work is human or AI-generated AND the
style that it was trying to follow. We also employ a more
generalized accuracy, where we ignore the art style and only
check whether the model outputs a given artwork as AI- or
human-generated. Since labels follow [human or ai] [art
style], we only check whether the first part of the output
label for this binary task accuracy.

5. Results & Discussion

5.1. Results

Using the experiment configuration detailed above, we
have achieved the following results, as shown in Table 1.
We also have achieved the following average loss values
across all batches per epoch, as shown in Figure 2.

Model 20-Label Task 2-Label Task
Train Test Test

Simple MLP 35.40% 33.33% 68.08%
Shallow CNN 59.83% 47.16% 73.62%

Model #1 57.12% 53.77% 92.90%
Model #2 45.17% 42.68% 77.96%

EfficientNet 69.69% 63.94% 95.24%
GoogLeNet 69.70% 63.84% 94.93%
ResNet-18 87.51% 62.03% 93.77%
ResNet-50 93.52% 63.65% 94.39%

ResNet-50 (20) 99.42% 67.89% 96.47%

Table 1. The results of the models on the 20-label classification
task (human or AI + the style of the work) and the binary task
(human vs. AI, disregarding the art style). The last model was ran
for 20 epochs.

Figure 2. Average loss of each batch per epoch across all models.

5.2. Discussion

5.2.1 Quantitative Analysis

In the 20-label classification task, we can see that all our
models outperform our baseline MLP and CNN models in
the test sets. In the deeper CNNs that we implemented,
we found that the more shallow network with one less con-
volutional block and fully connected block performed bet-
ter than the more complex network. However, these mod-
els performed worse than the finetuned pre-trained models.
These pre-trained models achieved the best results. We then
took one of the best performing models and trained it for
more epochs and found that the accuracy increased even
more.

We can see that the baseline models often started with
the highest loss values, while the pre-trained models often
started with the lowest. We see that our baseline models
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Figure 3. Confusion matrix of our best-performing model, ResNet-50 ran on 20 epochs, on the 20-label classification task. (L) Confusion
matrix on the same model predictions, but only evaluating on classifying each label for each art category as human or AI and disregarding
the art style in the prediction (binary classification task). (R)

decrease in loss values the slowest, indicating slower learn-
ing. Our own implemented CNNs (Model 1, 2) showed
some small fluctuation in the loss values. We can also see
that the pre-trained models have a faster decline in loss val-
ues, indicating faster learning. This indicates how leverag-
ing pre-trained weights to initialize our model can help with
making our training faster and more accurate compared to
learning the weights by scratch. However, we should also
be wary of overfitting, given the low initial loss values and
their faster loss decrease rate. As we can see from Table 1,
the ResNet models have a tendency to overfit to the train-
ing data, with training accuracies reaching close to around
90%. When trained under more epochs, ResNet-50 almost
perfectly overfit to the training data with a training accuracy
of 99.42%.

While employing transfer learning by fine-tuning on pre-
trained models outperformed our own models, the pre-
trained models demonstrated different performance. For ex-
ample, the ResNet models showed faster convergence com-
pared to the GoogLeNet and EfficientNet. However, the
ResNet models tended to overfit more to the training data,
compared to GoogLeNet and EfficientNet. This might be
due to ResNet’s deeper architecture. For example, ResNet-
50 is 50-layers deep, compared to GoogLeNet which is only
22-layers deep. It also might be the lack of enough regu-
larization techniques, whereas GoogLeNet and EfficientNet
employs the Inception architecture and compound scaling
that can help with increasing generalization. Nevertheless,
their overall performance on the test set are similar on both

tasks.
Now, we will analyze the output of our best perform-

ing model, the ResNet-50 trained under 20 epochs, using a
normalized confusion matrix (Figure 3). We found that the
model was better at classifying AI-made artworks to its spe-
cific art categories than human-made artworks. This may
signify how artworks produced by an AI model in a specific
style mostly follow a similar pattern, demonstrating its lim-
itations in mimicking real artworks. Human-made artworks
are often classified as another art style. This makes sense,
given how each art style can develop from one another and
therefore contain connections and similarities.

Interestingly, it was never able to correctly classify
human romanticism and human expressionism.
However, it usually classifies artworks belonging to this cat-
egory with other art styles within the human category. This
further exemplifies the model’s shortcomings in differenti-
ating between different art styles created by humans.

Despite the model’s occasional failures in distinguish-
ing between the different art styles, we found that it often
outputs the correct creator. As seen in the right matrix of
Figure 3, our best performing model was able to categorize
each of the 20 labels by their creator extremely well, with
accuracies reaching greater than 90%.

This is not only exclusive to our best model. In Table
1, we can see that most of the models are able to catego-
rize a given artwork as human or AI over 90% of the time.
Our best model outperforms the results in GenImage [19],
with our model getting an accuracy of 96.47% on this binary
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Figure 4. Examples of correctly classified artworks on the 20-label
task (human or AI and the art style).

task over their 95.0% accuracy. This indicates that there are
clear, learnable features that distinguish AI-generated art-
works over human-generated ones. It also shows how we
can improve on this task by using a more domain-specific
dataset.

5.2.2 Qualitative Analysis

Figure 4 shows examples of correctly classified artworks
on their creation type and art label. First, it is interesting
to note how AI models are able to mimic and differentiate
the general style of a specific art movement to some extent.
For example, a Renaissance portrait is vastly different from
an Ukiyo-e portrait. We can also see a surreal landscape is
different from a baroque landscape.

Here, we can see that there are certain features that
differentiate AI-generated artworks from human-generated
artworks that helps the model distinguish between the two.
For example, AI models are unable to capture faces well, as
we can see from the AI-generated Renaissance and Ukiyo-e
artworks. Even though they capture the distinct style, they
are unable to get the detail of the facial features and pro-
portions right. Other signifiers of AI vs. human for a spe-
cific art style is the quality of text. AI-generated artworks
with text often have illegible text, both in English and non-
English characters.

Sometimes generative AI models are not able to fully
capture the style of a specific art movement, allowing our
model to distinguish its AI nature. For example, the hu-
man and AI surrealist artworks are not very similar. Surreal-
ism usually employs real objects and subjects, but placed in
ways that don’t obey physical laws. [1] For example, in the
human surrealist artwork, there is a boat on top of a plant.
While the AI-generated one still follows some of the bizarre
elements of surrealism, it does not contain any clear object,
subject, or even defined lines and edges. These AI gen-
erated surrealist artworks may have been grouped together
because of these qualities that aim to mimic surrealism, but

Figure 5. Human-made post-impressionism artworks that were
mislabeled as human-made impressionism.

Figure 6. Examples of artworks that were mislabeled in their cre-
ation type (AI being classified as human, and vice versa).

fail to do so.
While the model performs well on the binary task of

AI vs human, it can sometimes misclassify an artwork to
its correct style, even if the predicted creator is correct.
As we can see in Figure 5, the images above were clas-
sified as human-made impressionism artworks, despite be-
ing human-made post-impressionism artworks. Looking at
the training examples for human impressionism, we can see
the similarities between the two movements. For example,
these training examples paint faces and landscapes simi-
larly. The composition and subject matter are also some-
what similar. Historically, the connections between the two
makes sense, given how post-impressionism follows im-
pressionism. However, this demonstrates the model’s short-
coming on distinguishing between different art styles.

More dangerously, sometimes the model misclassifies an
AI artwork as human and a human artwork as AI (Figure
6). While an unclear, deformed face may be characteristic
of an AI artwork, as we’ve discussed in Figure 4, it may
be the nature or style of a human artist. The first example
shows Adolphe Joseph Thomas Monticelli’s work, which
usually features big strokes and unclear faces. This could
potentially be the reason why it was misclassified as AI. We
also have touched upon how surrealist artworks often em-
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ploy clear edges and defined objects. Looking at the last
example in Figure 6, we can see how this AI-generated art-
work has these defined lines and perceivable objects (such
as the eyes), which could be the reason why it was classified
as human-generated instead.

6. Conclusion & Future Work

In this project, we investigated if we can build a model
that can classify two labels: whether it was made by a hu-
man or an AI and the art style that the artwork belongs
to. We pursued this task because we wanted to see how
well generative AI models capture specific art movements
and if there are specific characteristics that distinguish AI-
made art from human-made art. To do this, we use the AI-
ArtBench dataset on Kaggle that has a combination of AI-
and human-made artworks across ten different art styles.
We have 20 labels, with 10 art styles for both human-made
and AI-made categories. We then evaluated on our own
CNNs and on pre-trained models fine-tuned on this spe-
cific dataset. While we found that both of these methods
outperform our baseline, we found that fine-tuning on pre-
trained models performed the best, compared to building
our models from scratch. In the original 20-class task, our
best model was able to correctly classify the type of origin
(human or AI) and the art style 67.89% of the time at the
test set. In our analysis, we found that the models some-
times struggled in classifying the art style of a given art-
work, specifically for human-made artworks. Nevertheless,
all the models was able to distinguish an AI-generated art-
work from a human-generated artwork (disregarding the art
style), generating accuracies over 90% in this binary task.

Ways to expand this project could be expanding the
dataset to incorporate other art styles. We can also exper-
iment with deeper, more complex models, such as incor-
porating vision transformers. Given more computational
resources, we can also see how training for longer could
affect performance. We can also attempt to solve the over-
fitting problem to the ResNet models by employing more
regularization techniques. For example, we could introduce
data augmentation on the artworks or freeze more layers in
these pre-trained models.

As the rise of AI image generation becomes more no-
ticeable, artists have expressed their concern over how AI
can disrupt and depreciate their livelihood and their craft.
With our AI models being able to distinguish between AI-
generated artworks and human-generated artworks quite
well, our project demonstrates that there exists a striking
difference between the two.

7. Contributions & Acknowledgements

I worked on and completed this project alone. Thank you
for the CS 231N staff for the great quarter!
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