
Poker Game State Detection

Jack Hung, Luke Moberly, Michael Souliman
Stanford University

450 Jane Stanford Way
{jjhung66, lmoberly, msoul}@stanford.edu

Abstract

We address the challenge of live poker game state de-
tection, creating a (partially) automated poker agent ca-
pable of analyzing in-person games and making game-
theory optimal moves. Our solution includes card detec-
tion, move detection and chip counting, game state track-
ing, and GTO move suggestion. For card detection, we
fine-tuned a YOLOv8 model achieving 99%+ accuracy, and
used Grounding SAM with a CNN-based classifier as an al-
ternate method that proved to work better in practice than
the YOLO model. Our system processes a live video feed to
detect community cards and player moves, feeding this data
into a game state tracker that utilizes a GTO solver for op-
timal move suggestions. For player action recognition, de-
fined action boxes track player moves with GroundingDINO
and a linear classifier for chip detection. Our move recom-
mendation system, based on Pavel Tumik’s GTO framework,
uses extensive simulations to calculate expected values for
different moves, guiding our poker agent to make optimal
decisions in live games. Future work could include person-
alizing GTO strategies for individual players based on their
action history, though this was beyond our current scope.
Our project ultimately integrates vision systems and game
theory for real-time poker state detection and automated
decision-making.

1. Introduction
We attempt to solve the problem of live poker game state

detection. The goal of this project was to create a fully auto-
mated poker agent, capable of reading a live game and mak-
ing a game-theory optimal move. Automated poker bots
do exist for online games, but the majority of high-stakes
games are still played in casinos. Thus, an automated agent
needs to be able to analyze an in-person game. We built an
automated system that takes a live stream of a poker table
and is able to detect the game state, including what round
of betting the game is in, what the moves of other players
are, and what the community cards are. Using this system,

we are able to make a game-theory optimal move for an
automated player in a live poker game.

The problem was broken into five parts: card detection
and identification, chip counting, move detection and player
attribution, game state tracking, and GTO move suggestion.
For card detection and identification, we use a fine-tuned
YOLOv8 model on an augmented card dataset. In testing,
it was able to achieve 99%+ accuracy, however, in prac-
tice it often misread some cards and made the game state
incorrect. To mitigate this, we had an alternate method that
used Grounded SAM to segment out cards on the table and a
CNN-based classifier to identify the cards themselves. This
method was slower but worked better in practice. We used
GroundingDino and a simple linear classifier to understand
the game state of each player for a given round: whether the
player folded, bet, and the size of the bet they have made.

To use the system, the action box for each player was
defined (the area on the table in which they place their
cards during folds or place chips during bets), as well as the
area for the community cards (the shared cards during each
hand). Frames from the live video feed were parsed into
player action boxes and the community card area, which
were then fed into their corresponding systems. The com-
munity card bounding box was fed into our card detector,
which detected and identified any cards present. Frames
for each player’s action box were fed into GroundingDINO,
segmented, and then used the detected objects to infer what
move had been made. If there are cards in the action box,
the classifier logs a fold, and if there are chips, the classifier
will log a bet with its size (based on the chip identification
system).

The information from these two vision systems was then
fed into our game state tracking system, which utilizes a
GTO poker agent to suggest the optimal move when it is
the user’s turn. Using an existing GTO solver as a frame-
work for our GTO strategy [10], we ran 100 million simu-
lations of poker games with different combinations of hole
cards (the cards each player is dealt), community cards, and
player bets. The agent uses these simulated hands to calcu-
late the expected value of different moves during each round

1

of betting. Our hero then chooses the move with the high-
est expected value. Play continues until all players but one
fold or a showdown occurs after the fourth and final round
of betting. At this point, our hero simply starts a new game.
The game state tracker resets information about hole and
community cards, pot size, and player actions, but persists
information about each player’s stack size.

Future work could include using a player’s action history
to create individual GTO strategies for each other player
at the table. However, because this was primarily a vision
project, such work was out of our scope.

2. Related Works

The main task within the vision component of our agent
is object detection. For us to create our agent, we need to
detect the current state of the game by recognizing not only
the cards we currently have, but how much each player has
bet along with the move they have made for that round.

Looking at the task of object detection, we use the
YOLO architecture [7] for our card recognition system.
While other object recognition systems use an R-CNN [2],
which uses a selective search algorithm to identify regions
to run through a classification CNN, YOLO frames object
detection as a regression problem that allows it to run the
image through a CNN once, meaning that YOLO works
very fast and can run in real-time on a stream of video up to
45 FPS. This works well for our use case as we can contin-
ually check frames as we receive them from the stream to
check which actions players take and understand what the
optimal move to make is in real-time. Additionally, because
of the potential to have inaccurate readings of the cards, we
sampled 100+ frames and ran the fine-tuned YOLO model
of each frame, choosing the classes that were most fre-
quently detected. This increased the accuracy for card iden-
tification.

In order to augment our object detection system, we also
utilize GroundingDINO [3], which is a transformer-based
object detection model capable of identifying and framing
specific items from an image based on user prompts. The
GroundingDINO model demonstrates great baseline perfor-
mance in detecting a wide range of objects including poker
chips and cards key to our project, however it is not trained
to identify specific values of cards and chips. Therefore, we
believe that GroundingDINO has its best potential in help-
ing our system quickly lock in on key objects which we can
further process in detail.

A related system, GroundedSAM [8], builds off the func-
tionality of GroundingDINO and is capable of directly seg-
menting the detected object from the background. The
model can be used to process detected objects for classi-
fication tasks down the line.

3. Methods

3.1. Player Action Recognition

We use a top-down view of the poker table as the in-
put to our system. To process the actions of each player
on the board, we use areas of the board that we define
as ”player action boxes”. We set these action boxes dur-
ing the set-up of our system by drawing bounding boxes
around where each player can make their move. This in-
cludes adding poker chips to that area if they want to call
or raise, or putting their playing cards face down in the area
to signify that they have folded. After defining the player
action boxes, we then draw a single bounding box around
where the community cards are/will be.

To process the current state of a player (their bet/action),
we first run Grounding DINO on their action box with the
prompt: ”a set of poker chips and playing cards on a table”.
This returns a set of labels of objects from the prompt it
has identified along with the coordinates for their bounding
boxes. If the object label is ”poker chips”, we then run a lin-
ear classifier on the poker chip to get its color and therefore
its value in the bet. If the object label is ”playing cards”, we
assume that the player folded that round. If nothing is de-
tected in the player’s action box, we assume that they have
not played yet. This limits our state space to a player calling
(matching the previous player’s bet), folding (ending their
round), or raising (betting more than the previous player).

We chose to use a linear classifier for the task of
chip color detection because of its speed compared to an-
other type of neural method or using another classification
method such as k-NN. We attempted to use a method such
as averaging the pixel values in the image and seeing what
color it was closest to, but this method did not work well in
practice. The linear classifier had the architecture shown in
figure 1. We used an SDG optimizer with a learning rate of
1e-3 and momentum of 0.9.

One limitation of this method is that players cannot stack
their chips and must lay them out flat, which is a rule the
dealer can impose in a standard poker game. One exten-
sion of this project for future iterations is that we can take
images of stacks of poker chips and train a model to iden-
tify the number of chips in the image (potentially looking at
the stripe patterns to extrapolate the height of each chip and
from there comparing it to the height of the stack to get its
value).

3.2. Table Card Recognition

3.2.1 YOLOv8

We chose to use YOLOv8 for card recognition and identi-
fication for its speed. The biggest concern we had for card
identification was a misread card, as a mistaken read of the
community cards would significantly impact the accuracy

2

Figure 1: Linear Layer Architecture for Chip Value
Recognition

of the GTO agent, rendering it practically useless. As such,
we needed an accurate identification model. However, we
also wanted to take the running average of card reads over
multiple frames. Rather than taking one frame of the ta-
ble and passing it through GroundingDINO when our game
tracking system identified the start of a new round, and us-
ing that as the source of truth for the community cards, we
wanted to pass dozens of frames through a faster model and
take the running average of what it thought were the cards
on the table. In this way, even if one frame was poorly read,
we had a more accurate read of the cards on the table.

We fine-tuned the YOLOv8 model on a dataset of play-
ing card images overlaid on randomly generated, noisy
background images [9]. More information on the dataset
is available in section 4.1. We used an AdamW optimizer,
1E-3 learning rate, weight decay = 0.0005, β1 = 0.937,
β2 = 0.999, and 10 epochs.

After a round of betting is complete and the cards are
dealt, we take 100 consecutive frames (∼3.5 seconds) and
pass the bounding boxes for the community cards section
through the fine-tuned YOLO model. YOLO identified the
two corners of the cards that have both the rank and the
suit, rather than identifying the card as a whole. Based on
the number of cards that should be on the table (known by
the game state), we take the top predictions from YOLO.

One problem we faced with our method of training on
YOLO was the low granularity during actual gametime.
During testing, we got near-perfect results on images that
were similar in size and resolution to the training images.
However, during the game, the camera must be farther away
to fit the entire table in frame. As such, the cards in the
bounding box are lower resolution and sometimes caused
issue with YOLO (as the suit or rank in the corner of the

card was sometimes blurry). In particular, 6s and 9s were
often confused, as can be seen in image 7. This led us to try
an alternative approach.

3.2.2 Grounded SAM + ResNet

An alternative approach we implemented to the YOLOv8
model was to use GroundingDINO to detect and frame com-
munity cards, which are then passed to GroundedSAM to
segment out the images of the cards. The cards are then
passed into a ResNet classifier to identify the type of card
(Figure 2).

Here, we used transfer learning on the ResNet 152 model
initialized with the ImageNet-1K V2 weights [5] available
from PyTorch. We modified the fully connected output
layer to output logits corresponding to each of the 52 card
classes, then trained the model without freezing layers on
the card classification dataset [4] over 18 epochs. We used
the SGD optimizer with momentum = 0.9 and learning rate
= 1E-3.

Unlike with the YOLOv8 approach, we do not average
results from multiple frames when using GroundedSAM
+ ResNet, as this process is much slower. However, we
believed that the ResNet could classify playing cards with
much higher accuracy in a real-life scenario since Ground-
edSAM pre-processes images of the detected cards and
therefore give the model much more ideal inputs unlike with
YOLOv8 alone.

Figure 2: Diagram of GroundedSAM + ResNet Card
Detection Pipeline

3.3. Game State Tracking

We initially developed a game state system that allowed
for players to check on post-flop rounds of betting by con-
tinuously checking the action boxes of all players. If the
action classifier had detected a move from player 3, then
our game state could infer that players 1 and 2 had checked.
However, continuously processing the action boxes of all
players, especially in larger 6 or 9-handed games, was too

3

inefficient. Thus, we assumed for this project that players
would either bet or fold each turn, without the option to
check. This simplified the game state system immensely,
enabling our action classifier to only run on the action box
of the player whose turn it is. This system runs until the
player with the highest bet is reached again (as the round of
betting starts once all players fold or match the highest bet).

3.4. Move Recommendations

Our move recommendation agent was based on work by
Pavel Tumik [10]. Pavel created a framework to simulate
millions of games based on random combinations of hole
cards and community cards. We ran 100 million simulations
to create a dataset that included the frequency of specific
hands, their success rates across different betting rounds,
and the likelihood of it being the winning hand. The poker
agent takes these probabilities for any given hand, uses the
pot size, player positions, and the possible opponent hand
ranges, and calculates the expected value of three possible
moves by the hero (fold, call, or min raise). An example
from a round is shown below. The hero is on the button in
the final round of betting, has pocket aces, is facing a $10
bet from a previous player into a $130 pot. The GTO agent
suggests a call.

Figure 3: GTO Move Suggestion for Hero

There are three shortcomings to this system. First, it
doesn’t take into account bluffing probabilities. There has
been considerable work on determining the likelihood of a
move being a bluff using either facial recognition [1] or bet
sizing analysis [6], which significantly impacts the expected
value of moves our hero can take. We did not consider
bluff detection to be in-scope for this project, as statistical
analysis of moves would take away from our work on the
vision component, and deception detection is an unsolved
hard problem. Second, the GTO agent only calculates the
expected value of folding, calling, or raising by twice the
highest existing bet (the min raise). Other poker strategies

suggest doubling the pot in certain situations, raising 3 or
4-fold the highest existing bet, etc... Thus, our poker agent
is limited in the types of moves it can suggest, which may
cause it to miss out on the truly optimal move. Third, it
doesn’t update player ranges based on how they play. Play-
ers are typically classified as ”tight,” ”loose,” or ”balanced,”
which reflects how often they will play a round. For exam-
ple, a ”loose” player is more likely to play bad hands. The
GTO system uses a pre-defined range for each player posi-
tion.

4. Dataset
4.1. Card Detection & Classification

We fine-tuned the pretrained YOLOv8 model with a
dataset of playing cards. The dataset [9] is a collection of
card images that are placed into a variety of synthetically
generated backgrounds. The images contain multiple cards
and the bounding boxes of the card corners (containing both
the suit and the rank). The images are augmented such that
the playing cards are placed at various overlapping angles
and rotated.

One shortcoming of the dataset was the specific scale
of the cards relative to the image. During live prediction,
the model will not be able to accurately detect or identify
cards if the cards are too small or large relative to the over-
all frame/image. This was discussed in section 3.2.1. The
predicted labels and confidence of 16 examples are shown
in figure 4.

Figure 4: Sample prediction on card dataset

We also performed transfer learning on a pretrained
ResNet V1.5 model with a second playing cards dataset.
The dataset [4] consists of fully segmented, unobscured
playing cards of varying designs and image quality.

Notably, all of the images in the dataset represent front-
facing, unobscured playing cards, which means the ResNet

4

trained on this dataset will likely perform worse if the im-
ages captured in real-time are less ideal (Figure 5). How-
ever, since we use Grounded SAM to segment the exact
image of the card before classifying it with ResNet, we be-
lieved that this would not pose a big problem for our exper-
iments.

Figure 5: Cards from the classification dataset, demonstrat-
ing different designs and image quality

4.2. Poker Chip Images

For our use case, we not only needed to identify if a
player made a bet, but if they did how much they bet. To
do so, we trained a linear classifier as described in section
3.1 to categorize the color of the chip. To give each color
a value, we have the dealer input the values of each chip
when initializing the model when they are also drawing the
bounding boxes around each player’s action space.

To generate the dataset we used to train the linear classi-
fier for poker chip color detection, we used Grounding Dino
on a live feed of the poker table to extract images of just the
poker chips. Once we had images of just the poker chips,
we built a simple UI used to label the images into one of the
four color classes and hand-labeled the image colors, along
with downsampling the resolution to 50 pixels by 50 pix-
els to limit the number of parameters learned with the first
linear layer. To attribute value to poker chips identified in
a player’s action space, we used the color of the poker chip
as that was the most defining feature of the poker chip that
distinguished it from other chips. You can see an example
of what these images look like in figure 6.

One limitation of this method is that we only had im-
ages of one set of poker chips from this method (as we
only had one poker set at the time of dataset generation).
This means that our classifier performs poorly on other sets
of poker chips, which may have a different design that our
classifier hasn’t learned. To mitigate this, we could repeat

Figure 6: Sample images from poker chip dataset

the process above with several different sets of poker chips
(which would also give us a large class space as we could
deal with more colors). We could also scrape images online
for poker chips that would help diversify our dataset, but
for our use case in this project our method worked well. Al-
though our classifier was overfit on our set of poker chips,
it achieves 100% test accuracy on pictures of poker chips
from our set that it has not seen before so it still works well
for our project’s use case.

5. Results & Discussion

5.1. Demo

You can find a video of our end-to-end system running
here. A transcript of what is happening in the video can be
found in the appendix.

5.2. Card Detection

5.2.1 YOLOv8

The Base YOLO model did fairly well detecting the bound-
ing box of playing cards (the box loss wasn’t too signif-
icantly improved upon by the fine-tuned model, at least in
comparison to the classification loss), but did poorly at clas-
sifying the suit and rank of the cards. The fine-tuned model,
trained for 10 epochs with an AdamW optimizer, signifi-
cantly improved the card identification capabilities of the
model. This is shown in Table 1. The confusion matrix for
each of the 52 playing cards is shown in Figure 7.

Box Loss CLS Loss Recall Precision
Base YOLO 1.4712 3.8849 0.28579 0.56042
Fine-Tuned 1.1535 0.65933 0.99656 0.99599

Table 1: Base vs Fine-Tuned YOLOv8 Model

5

https://youtu.be/I_0dFndqVGk

Figure 7: Confusion Matrix for True vs Predicted Card
Identifications

5.2.2 ResNet Card Classification

The base ResNet V1.5 model had poor performance in card
classification, achieving 8.28% baseline test accuracy on a
generalized dataset of many cards with different designs.
However, the transfer learned ResNeT V1.5 model trained
for 18 epochs with stochastic gradient descent achieved a
classification test accuracy of 80.67% on the same dataset.
From the training graph, it is clear that further optimiza-
tions can be made through hyperparameter tuning to de-
crease the overfitting which occurs late in the training (Fig-
ure 8). We decided the results here were sufficient for our
use case since the ResNet was trained on a dataset with
much more varied and sometimes convoluted card designs
and image quality, and therefore our model would be ex-
pressive enough in practice (Figure 9).

Additionally, while we do not have a quantitative score,
initial experimentation has demonstrated that the ResNet
model, which is trained on images of unobscured cards,
is incapable of classifying cards that are partially covered
(Figure 10), a key flaw compared to the YOLO model.

Figure 8: Training and Validation Classification
Accuracies Over Time

Figure 9: Example of a Four of Diamonds design in the
test set that is more difficult to qualify

Figure 10: Segmented, partially obscured Jack of Spades,
which the classifier identifies as a Two of Spades

5.3. Player Action Detection

5.3.1 Grounding Dino for Segmentation

Looking at the performance of Grounding Dino qualita-
tively, we saw good performance at segmenting out the
poker chips and cards in the image under ideal circum-
stances. Examples of what GroundingDino was able to seg-
ment out are shown in figure 11. As seen in the image, all
poker chips and cards were able properly segmented, allow-
ing us to correctly update the action for each player.

Figure 11: Grounding Dino run on images of poker chips
and playing cards

Grounding Dino performed well for our use case given
some prompt engineering and fine-tuning for thresholds, but
still had some notable failure cases. One of these failure
cases was having the poker chips touch each other, which

6

would cause Grounding Dino to segment them all into one
image and not individual chips. Another notable failure
case was Grounding Dino not segmenting out all of the
poker chips, but we learned that this was mainly caused by
the player action boxes being drawn too large, meaning that
the poker chips took up less of the image which made them
harder to segment.

5.3.2 Chip Identification

Despite the limitations in our dataset mentioned in section
4.2, we were able to achieve 100% accuracy on the test set
with our linear model. Training and validation metrics for
each epoch can be found in figure 12.

Figure 12: Loss and other metrics when training the chip
linear classifier

6. Conclusion
By synthesizing the outputs of several systems includ-

ing card detection, move detection, player attribution, game
state tracking, and a GTO player, we have built a partially
automated game state detection system for poker that is able
to automate decision-making for a player. Utilizing transfer
learning, we fine-tuned a YOLOv8 model for card detec-
tion, which did not work the best in practice so we pivoted

to a pipeline that used Grounding SAM to segment the cards
from the image and a fine-tuned ResNet to classify them.
We also used GroundingDINO with a linear classifier for
player action recognition. This made it such that we were
able to minimize latency when processing the camera input
and updating our game state.

The highest-performing algorithms in our system were
the Grounding SAM paired with a ResNet for card detec-
tion, and GroundingDINO paired with the linear classifier
for mode detection. The YOLOv8 model demonstrated high
accuracy (and more importantly speed) in card detection
on the dataset, but in practice performed worse than the
Grounding SAM method.

Looking forward, several areas could be explored to fur-
ther enhance our system. Incorporating individual player
strategies by personalizing GTO suggestions based on his-
torical data could significantly improve decision-making.
Additionally, integrating bluff detection using facial recog-
nition or bet sizing analysis would add a deeper level of
strategy and realism. Expanding the training dataset to
include diverse images of different poker chips and cards
would improve the system’s adaptability and robustness.
These improvements would refine decision-making and in-
crease the system’s applicability, building on the solid foun-
dation established by our current work.

References
[1] J. Feinland, J. Barkovitch, D. Lee, A. Kaforey, and U. A.

Ciftci. Poker bluff detection dataset based on facial analysis.
In International conference on image analysis and process-
ing, pages 400–410. Springer, 2022. 4

[2] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic
segmentation. CoRR, abs/1311.2524, 2013. 2

[3] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li,
J. Yang, H. Su, J. Zhu, and L. Zhang. Grounding dino: Mar-
rying dino with grounded pre-training for open-set object de-
tection, 2023. 2

[4] G. Piosenka. Cards image dataset-classification. https:
//www.kaggle.com/datasets/gpiosenka/
cards-image-datasetclassification/data.
visited on 2024-06-3. 3, 4

[5] PyTorch. ImageNet V2 Pre-trained Weights for
ResNet-152. https://pytorch.org/vision/
stable/models.html#torchvision.models.
resnet152, 2022. 3

[6] R. Ranca. Identifying features for bluff detection in no-limit
texas hold’em. In Workshops at the Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013. 4

[7] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.
You only look once: Unified, real-time object detection.
CoRR, abs/1506.02640, 2015. 2

[8] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen,
X. Huang, Y. Chen, F. Yan, Z. Zeng, H. Zhang, F. Li, J. Yang,
H. Li, Q. Jiang, and L. Zhang. Grounded sam: Assembling
open-world models for diverse visual tasks, 2024. 2

7

https://www.kaggle.com/datasets/gpiosenka/cards-image-datasetclassification/data
https://www.kaggle.com/datasets/gpiosenka/cards-image-datasetclassification/data
https://www.kaggle.com/datasets/gpiosenka/cards-image-datasetclassification/data
https://pytorch.org/vision/stable/models.html##torchvision.models.resnet152
https://pytorch.org/vision/stable/models.html##torchvision.models.resnet152
https://pytorch.org/vision/stable/models.html##torchvision.models.resnet152

[9] A. Startups. Playing cards dataset. https://universe.
roboflow.com/augmented-startups/
playing-cards-ow27d, aug 2023. visited on
2024-05-16. 3, 4

[10] P. Tumik. Poker ml. 1, 4

7. Appendix
7.1. Demo Transcription

In the demo video, we start by saying where the auto-
mated agent is in the game (placing the hero on them, mean-
ing they have the big blind and player 0 is the first to make
a move). We then draw the bounding boxes around each
player (pressing d to delete the previous bounding box) and
the community cards. We then input the cards the player
has manually, which were the 2 of hearts and 10 of hearts.

We then wait for player 0 to make their move, which
is a bet of 2 green chips, or $2, and then wait for player
1 to make their move, which is a raise of 2 blue chips, or
$10. We then placed the community cards down and waited
for the card detector to read them, which gave us that the
community cards were the 2 of spades, 10 of spades, and 7
of diamonds.

It was then our agent’s move, which it recommended that
betting $1 had the highest expected value, so that was the
move that it made. It then repeated the process of waiting
for players 0 and 1 to make a move, where player 0 raised
to 2 blue chips, or $10, and player 1 raised to 2 red chips, or
$20. From there, it was the agent’s move again where the
GTO player said the move with the highest EV was to call
the last bet for $20, so that is what our player did.

We then placed the next community card, which was the
10 of diamonds. It was then player 0’s move, where they bet
2 red chips, or $20, and then player 1’s move, where they
folded and placed their cards in their action box. This made
it so that their card bool was now true to signify that they
folded.

From there, our GTO player suggested that calling player
0’s bet was the best move, so we called their $20 bet. Then
the last community card was shown, which was the 10 of
clubs, giving our agent 4 of a kind and winning.

8. Contributions
Luke fine-tuned the YOLOv8 model. He also wrote the

scripts used to track the game state and run the GTO player.
He also worked on the engineering infrastructure used to
process the video feed from OpenCV.

Jack worked on card detection using Grounded SAM.
He also finetuned the ResNet classifier used in that model,
along with contributing to the game state tracking script.

Michael worked on move detection, including using
Grounding Dino to segment the player action boxes. He
also trained the linear classifier used for poker chip identi-
fication. He contributed the boilerplate code to process the
images with OpenCV.

All GitHub repos used are included in our references sec-
tion.

8

 https://universe.roboflow.com/augmented-startups/playing-cards-ow27d
 https://universe.roboflow.com/augmented-startups/playing-cards-ow27d
 https://universe.roboflow.com/augmented-startups/playing-cards-ow27d

