Query based Image Synthesizer and multi document summarizer

Prescilla Pragasam
KLA Plus

prescilla.pragasam@kla-tencor.com

Abstract

In the world of process control product design, documen-
tation has become an every increasing entity that Users,
developers, testers spend enormous amount of time in re-
trieving information to clarify their queries. In addition, as
products evolve engineers depend on these process control
tools to perform high quality checks on various algorithms.
Due to stringent deadlines, rigid tool time slots are made
available for engineers that are insufficient and paced at
odd hours.

In this paper, we propose a framework called Generative
Imager and Examiner of documents (GenlE) that is aimed
at effort optimization in terms of document reliance and
process tool dependency. GenlE framework is constructed
with 2 models: a NLP based model to solve the documen-
tation reliance problem and a text to image synthesizer that
aims to minimize process tool utilization. The proposed so-
lution framework is to build a query based chatbot where
user will be able to query and retrieve details regarding
any in-house process control SW related topic or generate
die images for a user query. A Defect Die Images reposi-
tory called KLA-DDI dataset comprising of 3000 defect im-
ages and KLA-QOnA dataset with 100 QnA pairs are created
to feed into this framework. The image generation model
is trained for 1850 epochs to generate defect images that
match the user query. These generated images are validated
for correctness through visual inspection and for perfor-
mance through Human rank and generator/discriminator
loss plots. Our model achieved 63 percent test accuracy.

1. Introduction

In the growing semiconductor industry, the need for new
features, detection algorithms, different types of wafer han-
dling, high resolutions optics paths grows and process con-
trol tools evolve every year. With this, the need to record
these changes in documents gains significance. Time in-
volved in searching these documents to resolve a user query
is humongous. In addition, rigid tool time slots provide
lesser tool time duration for engineers to perform high qual-

Geeta Jakkamsetti
KLA Plus

geeta.jakkamsetti@kla-tencor.com

ity checks for the above stated changes. At times, they
are required to work around the clock to honor the allo-
cated time slots. The above stated problems are aimed to
be solved with GenlE framework comprising of NLP and
Stack-GAN models. While the NLP model aims to resolve
the user difficulty to search various documents with a chat-
bot solution, the Stack GAN model intends to reduce tool
dependencies by generating required defect images for a
user query. The NLP model solution of this framework
converts documents and user queries to respective text em-
bedding. These text embedding are trained by fine-tuned
Llama2 7B chatbot pre-trained model along with Guanaco
+KLA QnA dataset to provide meaningful interpretation.
In addition, the NLP model converts users queries on image
generation into text embedding which are used by Stack-
GAN model in the framework to generate Defect images
images.The details of the NLP model handing user query
on existing documents are provided by the co-author in
the supplementary section. while this paper focuses on the
Stack GAN solution of the framework for image synthesis
conditioned by input query text.

1.1. Problem statement

The semiconductor process control tools undergo so
many changes to cater to the needs of semiconductor
manufacturing. The process tools used in semiconductor
manufacturing detect defects in dies. The Algorithms in
these process control tools is designed to detect different
types of defects for different optics settings. Due the
expensive built of these process control tools, only few
of them are available in house. In the trend of quick time
to market, the need for quick high quality verification
becomes inevitable. To reduce the dependency on tools,
a GenlE framework with stack-GAN is built to generate
die images with desired defects at desired locations. These
images will be used as a input to SW tools for quick verifi-
cation of new and existing algorithms instead of depending
on process control tools.This will provide flexibility to
engineers and reduce the reliance on process tools.

A typical text to image GAN consisting of two blocks - a
generator and a discriminator. This GAN is the basic block

|
n__’»_’ D—' True/False

Figure 1. Block diagram of Text conditioned GAN

for image generation and two of these are stacked to gener-
ate high quality images. The input fed to the generator is
the noise z obtained by random sampling. This noise input
vector to GAN varies every time due to random sampling
. The output synthesised by the generator will initially be
a fake image. This image is fed to the discriminator. The
discriminator discriminates the generated image against
the ground truth reality until the generator synthesizes fake
images that can fool the discriminator. To output the syn-
thesized image as a combination of both image and query
text, the GAN will be fed with an input image along with
conditional text input t. Hence the synthesized image G(z,t)
will now be a function of both input image z and input text t.

1.2. Inputs and outputs

The inputs and outputs for the image generation model
are the input noise image z and text embedding. Defect
images collected from process control tools are classified,
captioned, pre-processed, resized and organised into train
and test images. These real images belong to six classes
namely - small particle, large particle, clusters, chippings,
scratch, peelings. These images which are processed by
stack-GAN comprises of two GANs: Stagel GAN and
Stage I GAN. The input and output flow of each block of
Stack-GAN are explained in this section.

Conditioning Augmentation network

NLP model receives input {user query} and outputs {text
embedding vector}. Conditioned Augmentation Network
(CAN) processes {text embedding} to {text conditioning
variable}

Stage I GAN

Stage I generator processes two inputs: {noise image, text
conditioning variable}, and synthesises a low resolution
{stage 1 defect image}.stage I discriminator gets three
inputs: {stage I generated image, real image, text embed-
ding}, evaluates and returns probabilities {0,1} for real and
fake images based on its evaluation.

Stage I GAN
Stage II generator gets two inputs {Stage I defect image,

text conditioning variable}and generates a high resolution
{stage II defect image}. Stage 2 discriminator processes
three inputs: {Stage 2 generated image, real image, text
embedding}, validates low resolution image and outputs
probabilities of real and fake images{0,1}.

2. Related Work

Ever since GAN was published by Goodfellow, et al in
2014,[4] many image generation variations like DC-GAN,
Stack-GAN, Attn-GAN were proposed and experimented.
For the above stated problem, the advantages, disadvan-
tages, approaches of the different GANs are discussed.
Additionally, why conditioned stack-GAN solution is
chosen as a solution is validated in this section.

cGAN

In the same year 2014, Mirza, et, al[/] proposed con-
ditioned version of GAN where both the generator and
discriminator were conditioned through class label y. The
model described how cGAN learns models with multi
modal inputs. The generated images were conditioned by
class labels. The discriminator evaluated the generated
image based on real image and the class labels. This paved
way for more and more multi modal image generation
model especially the text to image Models. The primitive
c¢GAN handled class labels and tags. They were not robust
enough to handle large sentences. A similar kind of cGAN
with convolutional layers was applied in facial recognition
for human- robot interaction by Deng, et al [2]]. This model
used facial expression class labels with respective images
as inputs to generate images of specific facial expression.
This model in fact used the same generator twice and
three discriminators to evaluate and provide feedback on
generated images.

DC-GAN

Alec Radford et al [8]proposed a modified GAN called
DC-GAN that replaced multi-layer perceptrons of vanilla
GAN with deep conditional layers. The pooling layers
in GAN were replaced with strided convolutional layers
(discriminator) and fractional strided convolutional layers
(generator). Batch norm layers were used in both gen-
erators and discriminators. Fully connected layers were
removed. Generator ReLU layers were replaced with Tanh
activation layers but discriminator still retained ReLU
layers for activation. This network with deep convolutional
GAN provided improved accuracy and reduced error rate
compared to previous models. This model however had
modal collapse problems and images generated were of
lower resolution.

A modified DC-GAN with conditioned text inputs were
experimented by Reed et al [10] where text encoders

encoded text descriptions to text embedding. These text
embedding were concatenated with images and fed to both
generators and discriminators of GAN. The outputs of both
generator and discriminator of this DC-GAN were con-
trolled and conditioned by text embedding as demonstrated
in Figure 1. While Reed’s model provided the advantage
of getting accurate synthesized real images through text
conditioning, those images were not of intended high
resolution. There was room for improvement in terms of
high resolution image generation and handing different
types of texts. In another research work performed by
Reed et al [9], performance of GANs from raw text are
experimented with different text encoders. Text- based
CNNs, CNN- RNN, LSTM text coders were evaluated. Of
these CNN-RNN based model had higher accuracy in their
experiments. Several algorithms for test embedding are
being experimented every day.

Stack-GAN

The images produced by text conditioned DC- GAN were
of better accuracy than the basic DC-GAN , but still the
images produced were of lower resolution. To mitigate
this problem, Zhang, et al [12] proposed stack-GAN where
DC-GANs were stacked together. The Stack-GAN has
two stages of 2 GANs - Stage I GAN and Stage II GAN.
Stage 1 generator produced low resolution images with
lesser accuracy while stage 2 generator processed these
low resolution from stage 1 and produced high resolution
image of size 256X256. Discriminators of both Stage 1
and Stage 2 GANs were fed with text embedding to ensure
the generated images were matching the text information.
In the follow up research of the stack-GAN, Zhang, et al
[13] came up with version 2 of stack-GAN called stack-
GAN++ for conditional and non conditional generative
tasks. Stack-GAN ++ comprised of multiple generators
and discriminators arranged in a tree like fashion. Images
of different scales for the same scene were generated from
each of these GAN branches.Stack-GAN++ results showed
no collapsed mode. The stack-GAN++ work comprised
of various features like Conditioning Augmentation and
Color Consistency regulation, which had led to further
improvement in image generation. Stack-GANs were
used for variety of applications. Jain, et al [S]has applied
stack GAN to process user query to text embedding that
are fed to GAN to generate fashion clothing images. A
variation of stack- GAN called Perception-GAN was
introduced by Garg, et al [3]] that aims in improving the
quality of the initial image generated by stack-GAN. This
method employs introduction of captioner loss in lower
dimensional vector of real and generated images to ensure
most of the perceptual aspects of the image are captured in
stage I image generation itself.

Attn-GAN

Attn-GAN proposed by Xu, et al [11] emphasizes the
importance of applying attention mechanism to each
word/sentence in an input text sequence. The solution used
2 kinds of models: A LSTM model as text encoder that en-
coded incoming sequence into word/sentence features and
3 stage GANS that processed encoded sentence embedding
and noise inputs to generate images. The word features
retrieved by attention model were fed to the subsequent
generator stages (from stage 2 onwards) to generate fine
grain images in each stages.

This paper explores the application of stack-GAN,
augmented by transformer based text encoding that gen-
erates high resolution images for an input query. The aim
is to generate defect die images for user query similar to
the state of the art text to image generation stage-GAN
models. The only variation is our experiments is that its
carried out with text embedding performed by transform-
ers in an attempt to advance the state of the art performance.

3. Methods

The solution approach uses GenlE framework which
consists of a Llama?2 and Stack-GAN module. The Llama2
model details are included in co-author’s paper. This pa-
per focuses on the text conditioned image generation model
of the framework. The Stack-GAN module has two GANs
stacked together. These GANs are made of fully connected
convolutional and transpose convolutional layers. The value
function used to optimize is given by Equation 1, where
pdata(x) denotes the true data distribution and pz(z) denotes
the noise distribution.

mén max V(D,G) = Eypdata(z)[logD(z)]

(1

The above equation for GAN is modified to handle the text
input as a conditional input.

3.1. Stack-GAN Architecture

Our solution framework GenlE consists of 2 models: a
NLP model that uses sentence transformers to convert user
queries to text embedding and Stack GAN model.

NLP model

The user query is processed by NLP model that uses
sentence transformer and converts them to key word
captions that specify defect type and defect location ex:
{Large particle, center}. These captions are converted to
text embedding. The text embedding are converted to text
conditioning variable by Conditioning Augmentation
Network (CAN). The CAN consists of fully connected
layer to generate o and ogfor the Gaussian distribution

Conditioning
Augmentation

Stage 1 GAN

Embedding ‘
vector

(64X64) fake image

Input Text
Large particle in
center of the die

S

and embedding

Word to Vector

+
Random
Noise

Generator
Generates
RGB image of
size

[2

—

Discriminator
Outputs

] probabilities
ﬁ_—p {0}- fake image
s | {1}- real image

(64X64) real image

64 X 64

(256 X256)
Generator jep- iill =g Discriminator
2 | - Outputs
Generates i B0 P
RGB image of _ probabilities
size ; —| {0}- fake image
256 X 256 : - {1}- real image
[=5 ol
(256 X256)

Stage 2 GAN

Figure 2. Block diagram of Stack GAN.

N(p-0(t),00(t)). "TCV ¢q are then sampled from the
Gaussian distribution. Leaky ReLU layers normalises text
embedding and converts them to Text Conditioning
Variable (TCV). These text conditioning variables are fed
to both Stage I/stage II generators and discriminators for
conditioned image generation and validation.

Stage-I GAN

Stage I-GAN consists of a discriminator and a generator.
The generator receives input noise and Text Conditioning
Variable (TCV). The input noise z is generated through
random sampling for every image generation. The input
noise z and TCV ¢ are concatenated and passed through
several convolutional layers each followed by a batch
normalization layer. Tanh activation is used in generator.
Low resolution image of size (64x64x3) is generated by
the stage I generator Gy.Generator uses Binary Cross
Entrophy (BCE) loss for generator loss computation..
Stage I discriminator Dy receives stage I generated low
resolution image, TCV of size (384) and real image for
evaluation as depicted in Figure 2. The input image and
TCV are convoluted, flattened and activated by sigmoid to
generate probabilities for real and fake image. Batch
normalization is used after every convolutional layer as a
regularizer. The discriminator is denoted by Dy.

For the real image Iy, input noise z, text embedding t, TCV
cp, the generator loss and discriminator loss are given by
Equation (2) and Equation (3)

Lp, = E(1,,t)~pdatallogDo(lo,t)]

2
+Ez~pz,t~pdata [lOg(l - DO(GO(Z7 Co), t))] ()

LGD - Ezwpz,thdata [log(l - D()(GO(Z7 CO)7 t))] (3)

Stage I GAN
The stage II generator G receives the low resolution

generated image s from stage I generator along with the
TCV t and synthesizes high resolution image (256x256x3).
It concatenates input image and TCV, downsamples
concatenated output, passes through residual block,
upsamples the image to an image of size (256x256x3). The
stage II discriminator evaluates the high resolution stage 11
generated image against the TCV and real images to be
real or fake.. It learns the generated combinations - {real
image, fake text}, {real image, real text} and {fake image,
fake text}. The output of discriminator is true when it finds
the correct image and correct text combination. This
correct image synthesized by generator is sent as output.
When the discriminator does not find correct image and
correct text, it’s output is false and generator regenerates
image until the discriminator is unable to distinguish
generated image/text against real image/ text. The
generator and discriminator loss of stage-1 GAN are given
by Equation (4) and (5)

Lp = E(14) ~ pdatallogD(I,t)]+

Esy ~ pGost ~ pdatallog(l — D(G(s0,), 1))+
+

ADKL(N (po(t), o0(£))||N(0, 1))

“)

Lg = Egy ~ pGy,t ~ Pdatalog(l — D(G(so, ¢),t))]+
ADKL(N (u(t),o(t))[IN(0,1))
&)

3.2. Algorithm

The GAN plays the min max game as specified in Equation
(1) where the generator generates fake images till
discriminator gets fooled and discriminator validates the
generated image to be real or fake. The details of the algo

implemented in stack-GAN is summarised in Algorithm 1.
The sample images I, batch size of nyqtcp, and TCV ¢q are
fed to the stage I generator G. The generated image from
Stage I GAN is denoted by Sy. The gradients with respect
to discriminator loss 0L p, /0Dy and generator loss
adLg, /090G are computed and learning step is updated by
adam optimizer. s,- in the algorithm section is the score for
{real image, right text}, s,, is the score for {real image,
wrong text} and s is the score for {wrong image, right
text}

The stage I GAN uses the same algo and CAN module but
stage I generated image s is used as input in place of
noise image z. Stage II discriminator uses learning rate of
0.0002. Batch normalization is implemented after every
convolutional layers in generator and discriminator as a in
built regulariser. Adam optimizers are leveraged for
learning step update and to prevent exploding and
vanishing gradients. Binary cross entropy loss is computed
for discriminator and generator in both GANs. Both Stage
I and stage II Adversarial losses are computed. 1850 epoch
for batch size of 64 were run on in house GPU.

Algorithm 1 Text conditioned Stack-GAN Stage-1 GAN

hyper parameters : epochs = 1850, zg4im =

500, batch — size = 64, lryo = 0.0002,lrqy =

0.0002, 51 = 0.5,52 = 0.99

Input: sample images [, batch-size nyqtchn, text

embedding t, noise image z

Output: generated images Sy, probabilities{0,1}

1. Text encoder generates text description from query

2. CAN generates TCV ¢y

3. Npatch=[Nsampie/batch-size]

for e in (epochs): do

for i in npqicp, do
Generated — imageSo<Go(z,1)
Compute s.<Dg(Iy,t) > real image,right text
Compute s.<Dq(Iy, t')> real image,wrong text
Compute sp<Dg(Sp, t) > fake image, right text
Compute Lp, = 0.5 (s, + sy + (s7)/2)
Update — discriminator : Dy — adLp,/0Dg
Compute — generatorloss : Lg,
updategenerator : Go — adLg,/0Gy
Compute adversarial loss
end for
end for

The existing code base for Stack- GAN by [1]AarohiSingla
is modified and used for KLA-DDI dataset. The input sizes
of images are modified from (100x100) to (500X500) and
text embedding based TCV are modified from 1024 to 384
to process KLA-DDI dataset. 3000 defect images are used
for experiments. The code base is modified to include code
for computing loss plots, generating text embedding and

Defect Type \ Train/Test dataset

Small particle 400/100
Large particle 400/100
Scratch 400/100
Peeling 400/100
Clusters 400/100
Chippings 400/100

Table 1. Compilation of Data set

pickling filenames and classcodes. The batch size, learning
rate of 0.0002 is used in both discriminator and generator
for training KLA-DDI dataset. The 1850 epochs were used
for training.

4. Dataset

KLA Defect Die Image (KLA-DDI) data set is created and
used for this experiments. Defect images of six different
defect classes like small particle/large particle/ clusters/
chippings/ scratch/ peelings at different locations like
middle/ top left/ top right/ bottom left/All
over/center/top/bottom/left/Right/bottom right are
collected from in-house process control tools. These
images are pre-processed, labelled and made ready for
training.

4.1. Image Pre-processing

3000 images are collected from process control tools by
running many inspection scans on patterned wafers. Every
inspection scan setting is fine-tuned with appropriate
defect detection algorithms to grab the required die defect
images for each classes. The collected defect images are
reviewed individually to categorise them to each of the six
defect classes as in table 1 and to caption each of them
with two parameters - defect class and defect position on
the die Example: {large particle, center}. These images are
resized to size (500x500) and captioned with appropriate
text to convey the class and defect position. These resized
images with respective class names and captions are stores
to KLA-DDI dataset for future use.Pixel normalization is
performed on images by subtracting and dividing them by
127.5 to have the inputs normalized to range [-1,1] before
passing on to the Conv layers in GAN.

4.2. Text Pre-processing

The query from the end user are converted to captions and
in-turn into text embedding by the NLP model. The text
embedding are converted to text conditioning variable by
Conditioning augmentation network. In CAN, the text are
also normalised by computing mean and standard deviation
and applying them. The defect images are fed along with
TCV and real images to train our model. The filenames

-AEENER

Class | Small particle Large particle Scratch Clusters Peelings Chippings

Caption | {small particle, bottom] | {large particle, center} | {Scratch, center} {clusters, all over) | {Peelings,all over) | (Chippings, top right)

Figure 3. Sample images from KLLA-DDI dataset

and classnames are converted to pickle files to serialize
them and preserve them in order, throughout the model so
that the discriminator retrieves correct class name and
image files for generator image evaluation.

4.3. Sample images

Sample images for each class and respective captions are
listed as in Figure 3. An example for each of the defect
class: Small particle, large particle, scratch, clusters,
peelings and chippings are mapped to respective captions
and displayed for understanding. code base.

5. Experiments

In order to validate our designed model, KLA in-house
GPU machine is used. SW code is written using python
tensorflow libraries. The defect images in KLA-DDI
datatset has key features such as die patterns, defect
shadows, scratch lines and group of small defects. For our
experiments, KLA-DDI dataset created for this project is
used. With our experiments, various qualitative and
quantitative metrics are derived and discussed. 3000 defect
images, 400 images in each class are categorised as
training images and the model is trained. 100 images in
each class is reserved for testing. During test, user queries
were sent and based on the embedding received, the
images are generated. The images generated during test
mostly retained spatial features and defect information as
expected. Our objective in running the following
experiments were to validate if the model captures key
defect features like particle, scratch, etc.. during
training.The hyper-parameters like learning
rate(generator:0.0002 and discriminator:0.0002), batch
size(64), no of epochs(1850) are modified and
experimented for this goal. The learning rate of 0.001 was
used initially. The training process was fast and learning
failed to capture few key details during training. So, the
learning rate of 0.0002 is used in both generator and
discriminator of both stage I and Stage II GANs which
yielded images with better spacial information. Adam
optimizer is used in order to keep exploding gradient and
vanishing gradient problems in check. Also, initially batch
size of 32 and epoch of 500 was used for training. with
these values, learning is not capturing all intended features.
so the number of epoch is increased by 250 and batch size

Metric Data set GAN-INT-CLS GAWWN Stack GAN
cus 2.81+.03 1.99+.04 1.37+.02

Oxford 1.87+.03 / 1.13+.03

Human Rank coco 1.89+.04 / 1.11+.03
KLA-DDI 1.33+.02

Figure 4. Human Rank

is retained at 64 for every subsequent runs. The loss
curves(in section 5.2) were observed for every runs and
finally concluded that epoch of 1250 is sufficient for this
model and data set.

5.1. Performance metrics

The qualitative metrics define the quality of generated
images. Visual inspection is used as qualitative metrics in
our experiment results. The quantitative metrics are
numerical/graphical measure of the performance of the
model. Human rank, loss curves results are discussed as
part of quantitative metrics.

Qualitative metrics

Visual interpretation

In evaluating any Computer vision models, visual
inspection and interpretation becomes an essential, cost
efficient and intuitive method of evaluating a model’s
performance.[6] By looking at generated defect images and
performing a visual check against real defect images and
class names, the clarity of the defect image, defect position
and defect type, defect relevance to class names are
evaluated for the input query. Blurred image, incorrect
defect position, incorrect defect types are easy to identify
through visual inspection. This visual inspection results
will serve as input to compute Human rank metric.
Visually analysing the images for true/false positives and
true/false negatives are easy.

Quantitative metrics

Human rank

To access if the generated images are truly conditioned by
the input, Human rank adopted by Zhang, et al [12]] is
leveraged. Human rank is an evaluation metrics for GANs
where humans validate the images by comparing them
with real images. After validating the generated images,
Humans rank the images in terms of realism and image
quality. The rankings for our experiments is between 1 to
5. Human evaluation is important in computer vision tasks
as it gives us insights on how good the generated image
matches with human perception.

Loss curves
Loss curves are graphical representation of a model’s
performance over time.It provides insights of how the

Class captions

Real image

Initial Epoch
Stage | GAN
image

Stage 1l GAN
Image

Small particle {Small particle, center}

Large particle {Large particle, center}

Peeling {Peeling, Right}

o
-
s

Figure 5. Visual representation of generated defect images of 3 classes.

Generator loss

0 0 S0 750 1000 1250 1500 1750

Figure 6. Generator loss of Stage-II GAN

model’s generated images are close to reality. In general,
we expect the losses to be high during initial training phase
and as time rolls on, losses starts decreasing. By observing
the graphs, the user identifies where to stop training.
Discriminator and generator loss plots of both Stage I and
Stage Il GANS are discussed.

For the six defect classes, qualitative and quantitative
metric results are discussed. Both human and system
generated metrics are considered for evaluation.

5.2. Results and discussion

The visual interpretation shows the images that were
obtained during initial epochs in GAN I and later epoch in
GAN II. As we can see in the images, during initial epoch,
the spatial features are being learnt by GAN I and later as
models learning advances, we see clearer images

Discnminator loss

kL]

FLE

201
15 |
104
05 |
P -
0 /0 s00 7s0

100 1250 1500 1750

Figure 7. Discriminator loss of Stage-II GAN

pertaining to user query are generated. The table shows the
initial and final images generated for three classes.
Random captions from test set (100 images and
corresponding captions) were chosen and passed to the
model for image synthesis. We see from Stage 1 initial
epoch results that defect information is attended by the
model and is learnt by the model. For the given defect
classes, we see the spatial features are learnt by the model
in stage I and stage 2 synthesis a finer high resolution
image similar to stage [image.

To compute Human rank, 50 random captions for each
class are selected and 10 Defect images are generated for
those captions. Those images are provided to 12 users and
are evaluated by them against the captions. The ranks
provided by users for 5 images in each class are collected
and averaged across each class to arrive Human rank. The

computed Human rank is almost same as the state of the art
models as depicted in Figure4. For further
experimentation, users are given set of real defect images
and generated defect images and are asked to pick the
images corresponding to the defect class codes. For this
exercise, 10 images from each class are generated and
provided to users for image selection. It was observed that
nearly 6 out of 10 times, users chose the images generated
by our model. Considering visual perception, this model
has achieved 63 percent accuracy.

The stack-GAN is trained for 1850 epochs to analyse the
training of KLA-DDI dataset by the model. The generator
loss computed during this training presented in Figure 5.
The loss oscillates initially at high frequency for initial
epochs as discriminator validates the fake images produced
by the generator. The variation in loss values are very
frequent during initial epoch and as time progresses and
when epoch 1250 is reached, too much variation in losses
are not seen. Our model reduces generator loss, stabilizes
and converges as expected.

The discriminator losses starts with a very high loss and
time progresses, the discriminator loss decreases and
fluctuates very mildly. After epoch 250, spike in losses
occur in the interval of 500 epochs. When epoch 1250 is
reached, spikes get suppressed and oscillates at around 32
to 38 percent. At about 1250 epoch, we see both the
discriminator and generator losses are converging to
minimal values and not much variance in losses are seen
beyond this point. It indicates training to be stopped at
1250 epoch.

6. Conclusion and future work

In this paper, we used a solution framework of GenlIE that
employs NLP and Stack-GAN to experiment on KLA DDI
image dataset. We generated images that are conditioned
by user query to solve our tool time challenges. Various
qualitative and quantitative results are summarised to
display the model’s performance. We succesfully
generated images for six defect classes. We observe the
model is able to successfully learn the defect features. Our
future work will be focused on generating more number of
realistic images for a user query and to improve accuracy.
We aim to focus on improving the model to handle more
number of defect classes and to produce higher resolution
images as this will solve the engineer’s problem of tool
dependency.

7. Appendices

The layers used in CAN, Stage 1 GAN and Stage 2 GAN
are summarised in supplementary files for reference. It
lists the number of layers, parameters in each layer and
output shape of tensor from each layer. An example of the

Layer (type) Output Shape Param # Connected to
input_48 (Inputlayer) [(None, 384)] °
dense_24 (Dense) (None, 256) 98560 input_as[e][e]
leaky_re_lu_55 (LeakyRelU) (None, 256) o dense_24[0][0]
Tambda_12 (Lambda) (None, 128) ° Teaky_re_lu_55[0][@]
input_49 (Inputlayer) [(None, 500)] °
concatenate_9 (Concatenate) (None, 628) ° lambda_12[0][0]
input_4s[e][e]
dense_25 (Dense) (None, 16384) 10289152 concatenate_9[0][0]
re_lu_71 (RelU) (None, 16384) ° dense_25[0][0]
reshape_4 (Reshape) (None, 4, 4, 1024) @ re_lu_71[0][0]

up_sampling2d_28 (UpSampling2D) (None, 8, 8, 1024) © reshape_4[0][0]

conv2d_117 (Conv2D) (None, 8, 8, 512) 4718592 up_sampling2d_28[@][@]
batch_normalization_102 (BatchN (None, 8, 8, 512) 2048 conv2d_117[6][0]
re_lu_72 (RelU) (None, 8, 8, 512) @ batch_normalization_102[0][0]

up_sampling2d_29 (UpSampling2D) (None, 16, 16, 512) © re_lu_72[e](e]

conv2d_118 (Conv2D) (None, 16, 16, 256) 1179648 up_sampling2d_29[0][0]

batch_normalization_103 (BatchN (None, 16, 16, 256) 1024 conv2d_118[@][0]

re_lu_73 (RelU) (None, 16, 16, 256) © batch_normalization_103[0][0]

up_sampling2d_3@ (UpSampling2D) (None, 32, 32, 256) © re_lu_73[e][e]

conv2d_119 (Conv2D) (None, 32, 32, 128) 294912 up_sampling2d_3e[e][0]

batch_normalization_104 (BatchN (None, 32, 32, 128) 512 conv2d_119[@][0]

re_lu_74 (RelU) (None, 32, 32, 128) @ batch_normalization_104[0][6]

up_sampling2d_31 (UpSampling2D) (None, 64, 64, 128) © re_lu_74[0][0]

conv2d_120 (Conv2D) (None, 64, 64, 64) 73728 up_sampling2d_31[0][@]

batch_normalization_105 (BatchN (None, 64, 64, 64) 256 conv2d_120[e][0]

re_1u_75 (RelU) (None, 64, 64, 64) © batch_normalization_105[0][e]
conv2d_121 (Conv2D) (None, 64, 64, 3) 1728 re_lu_75[0][0]
activation_12 (Activation) (None, 64, 64, 3) @ conv2d_121[@][@]

Total params: 16,660,160
Trainable params: 16,658,240
Non-trainable params: 1,920

Figure 8. Layers of Stage I generator

Stagel generator’s layer information is added for quick
reference here.

8. Contributions and acknowledgements

We sincerely thank Stanford professors, Teaching
Assistants, lecturers who has enabled us build this project
by imparting knowledge through lectures, ed discussions
and discussions. We thank our project guide who has
provided feedback and encouragement through project
milestone evaluation. We sincerely thank KLA for
providing us in house GPU machine to train and test our
algorithms. We thank our colleagues who helped perform
visual inspection and rank the images generated by this
model. Geeta Jakkamsetti belonging to CS224N course
class is the co-author of this paper. She has been
instrumental in converting user queries into text embedding
using transformer model and query based document
summarization. We thank AarohiSingla for making the
stack-GAN code base public. This code base was tailored
for the stack-GAN module of our GenlE framework.

References

[1] AarohiSingla. Stackgan.

https://github.com/AarohiSingla/StackGAN

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

J. Deng, G. Pang, Z. Zhang, Z. Pang, H. Yang, and G. Yang.
cgan based facial expression recognition for human-robot
interaction. IEEE Access, 7:9848-9859, 2019.

K. Garg, A. K. Singh, D. Herremans, and B. Lall.
Perceptiongan: real-world image construction from
provided text through perceptual understanding. In 2020
Joint 9th International Conference on Informatics,
Electronics & Vision (ICIEV) and 2020 4th International
Conference on Imaging, Vision & Pattern Recognition
(icIVPR), pages 1-7. IEEE, 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

A. Jain, D. Modi, R. Jikadra, and S. Chachra. Text to image
generation of fashion clothing. In 2019 6th International
Conference on Computing for Sustainable Global
Development (INDIACom), pages 355-358. IEEE, 2019.

D. Meena, H. Katragadda, K. Narva, A. Rajesh, and

J. Sheela. Text-conditioned image synthesis using tac-gan:
A unique approach to text-to-image synthesis. In 2023 2nd
International Conference on Automation, Computing and
Renewable Systems (ICACRS), pages 454-462. IEEE, 2023.
M. Mirza and S. Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

A. Radford, L. Metz, and S. Chintala. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

S. Reed, Z. Akata, H. Lee, and B. Schiele. Learning deep
representations of fine-grained visual descriptions. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 49-58, 2016.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and
H. Lee. Generative adversarial text to image synthesis. In
International conference on machine learning, pages
1060-1069. PMLR, 2016.

T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang,
and X. He. Attngan: Fine-grained text to image generation
with attentional generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1316-1324, 2018.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and
D. N. Metaxas. Stackgan: Text to photo-realistic image
synthesis with stacked generative adversarial networks. In
Proceedings of the IEEE international conference on
computer vision, pages 5907-5915, 2017.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and
D. N. Metaxas. Stackgan++: Realistic image synthesis with
stacked generative adversarial networks. IEEE transactions
on pattern analysis and machine intelligence,
41(8):1947-1962, 2018.

