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Abstract

Wildfires' increasing frequency and severity pose
significant threats to life, property, and the
environment. Traditional fire detection methods, such
as human observation and satellite monitoring, face
limitations, necessitating advanced, real-time
systems. This paper presents a deep learning-based
approach using VGG16, MobileNet, EfficientNet, and
a custom convolutional neural network
(CustomConvNet) for real-time fire detection.
Utilizing nearly 10,000 images from Kaggle, our
models were trained with data augmentation and
transfer learning. VGG16 achieved a validation
accuracy of 98.64% on large datasets, while
CustomConvNet reached 91.47%. Our models
significantly outperformed traditional methods and
baseline CNNs, underscoring the importance of
diverse datasets and advanced architectures in
enhancing fire detection accuracy and robustness.

1. Introduction

The increasing frequency and severity of wildfires
globally pose significant threats to life, property, and
the environment. In recent years, the state of
California has experienced a fivefold increase in the
annual burned area since 1972, a trend mirrored in
other regions such as Australia and South America​​
[1]. This escalation has been attributed to several
factors, including climate change, drought, fuel
accumulation due to fire suppression policies, and
increased population density near wildlands​​​​ [1] [2].
Consequently, there is an urgent need for advanced,
real-time fire detection systems to mitigate these risks

by enabling faster response times for fire suppression
and evacuation efforts​​[1].

Traditional fire detection methods, such as human
observation and satellite monitoring, have notable
limitations. Human-reported fires often face delays,
while satellite-based systems, although effective in
covering large areas, struggle with resolution and
latency issues​​ [1]. For instance, the Geostationary
Operational Environmental Satellite (GOES) and the
Visible Infrared Imaging Radiometer Suite (VIIRS)
provide valuable data but are constrained by revisit
times that can extend from hours to days [1]​​. These
delays are critical, as early detection is paramount in
reducing the extent of wildfire damage.

Recent advancements in machine learning and
computer vision offer promising solutions to enhance
wildfire detection capabilities. Specifically, deep
learning algorithms applied to video streams from
ground-based cameras have demonstrated significant
potential in identifying fire signatures quickly and
accurately​​​​ [1] [3]. Various studies have explored the
use of convolutional neural networks (CNNs) for fire
and smoke detection, achieving notable
improvements over traditional methods [4]​​. These
systems leverage large datasets and sophisticated
models to detect fires in their incipient stages, often
within minutes of ignition, thereby providing crucial
early warnings​​[1].

Our research addresses the need for a robust,
real-time fire detection system by developing a deep
learning-based approach for analyzing video streams.
This system integrates state-of-the-art machine
learning techniques with high-resolution video data to
detect fire and smoke with minimal latency and high
accuracy. By focusing on the early stages of fire
detection, our system aims to significantly reduce
response times, thereby mitigating the potential
damage caused by wildfires.



The motivation behind our research is twofold: to
enhance the current capabilities of fire detection
systems and to contribute to the broader field of
disaster management and mitigation through
technological innovation. Our system is designed to
outperform existing methods by reducing false
positives and detection delays, making it a reliable
tool for real-time wildfire monitoring.

In this paper, we present the development and
evaluation of our real-time fire detection system. We
begin by providing an overview of the current state of
fire detection research, followed by a detailed
description of our deep learning approach. We then
discuss the empirical results of our system's
performance, highlighting its accuracy and efficiency
compared to traditional methods. Finally, we outline
our contributions to the field and propose future
directions for enhancing wildfire detection
technologies.

2. Related Work

The field of fire detection has seen considerable
advancements, particularly with the integration of
computer vision and machine learning techniques.
Traditional fire detection methods, such as smoke
alarms and satellite monitoring, have limitations in
terms of spatial coverage and detection latency,
which has spurred research into more sophisticated
approaches.
Threshold-based Algorithms: Initial efforts in

automatic fire detection involved threshold-based
algorithms applied to various satellite data sources.
For example, the FIMMA algorithm developed for
the AVHRR system focused on minimizing false
alarms by addressing nighttime detection issues, but
it was limited by its low temporal resolution and
applicability only to forested regions​​. Similarly, the
GOES-AFP algorithm used masking mechanisms to
remove clouds and distinguish water-land complexes,
but it introduced a high number of false alarms due to
its focus on recall​​. The MODIS active fire product
addressed false alarms caused by small forest
clearings and large fires obscured by thick smoke, yet
it also suffered from low temporal frequency​​.
Deep Learning Approaches: Recent

advancements have leveraged deep learning,
particularly convolutional neural networks (CNNs),
to enhance fire detection capabilities. CNNs have

been successfully applied in tasks such as
classification, object detection, and semantic
segmentation, showing significant improvements
over traditional methods​​. For instance, Nguyen et al.
proposed a novel wildfire detection method utilizing
satellite images in an advanced deep learning
architecture for pixel-level fire location, achieving
superior performance over baseline methods with a
94% F1-score and faster detection times​​. This
approach, however, primarily focused on satellite
imagery rather than real-time video feeds.
Video-based Fire Detection: The transition from

image-based to video-based fire detection has been
explored by integrating temporal dynamics using
CNN-RNN architectures. For example, projects
leveraging LSTM layers have shown promise in
handling temporal dependencies, essential for
real-time applications. The combination of CNNs for
spatial feature extraction and RNNs for temporal
sequence processing has been adapted to various
domains, including fire detection​​. Attention
mechanisms, such as the Convolutional Block
Attention Module (CBAM), have been employed to
enhance the focus on relevant regions within frames,
improving the detection of subtle fire indicators​​.
Open-source Alternatives: Our project aims to

address the gap in accessible, effective fire detection
systems for large or open spaces by developing an
open-source solution that surpasses the capabilities of
existing commercial systems like GreenGrid and
FireScout. These proprietary solutions are often
limited in accessibility and adaptability, whereas our
approach leverages publicly available datasets and
advanced deep learning techniques to provide a more
flexible and accurate alternative​​.
Data Augmentation and Transfer Learning: To

improve the generalizability of our model, we employ
data augmentation techniques such as random
cropping, rotation, flipping, and brightness
adjustment. Additionally, transfer learning techniques
are used to leverage pre-trained models, fine-tuning
them on our specific fire detection datasets to retain
pre-existing capabilities while adapting to our task​​.
This approach has been validated in various other
image domains and proves beneficial in enhancing
model performance with limited data.

In summary, while traditional methods have laid
the groundwork for automatic fire detection, recent
advancements in deep learning and video-based



detection have significantly improved the accuracy
and timeliness of these systems. Our work builds on
these advancements by integrating state-of-the-art
machine learning techniques with real-time video
analysis to develop a robust, accessible fire detection
system that addresses the current limitations in the
field.

3. Data

We utilized several datasets sourced from Kaggle,
which provided a comprehensive collection of
labeled images essential for training and validating
our model.

Dataset Sources and Details

1. Forest Fire Image Dataset by Cristian
Cristancho - Contains 238 images of forest
fires, including controlled burns and
wildfires.

2. FIRE Dataset by Phylake: Comprises 2,028
images with annotations for fire and no fire.

3. Test Dataset by Atulya Kumar: A small
collection of 515 images used for testing fire
detection models.

4. Forest Fire Images by Mohnish Sai Prasad:
Contains 5000 images, evenly split between
fire and non-fire categories, used for training
and testing models.

5. Wildfire Detection Image Data by Baris
Dincer: Features 1,900 images specifically
labeled for wildfire detection.

Collectively, these datasets provided nearly 10,000
images, offering a broad spectrum of fire-related
scenarios and environments. This volume of data was
crucial for training a robust model capable of
performing well in various real-world conditions.

To prepare the data for training our deep learning
models, we performed several preprocessing steps:

1. Data Augmentation: Techniques such as
random cropping, rotation, flipping, and
brightness adjustments were applied to
enhance the model's ability to generalize
from the training data.

2. Normalization and Resizing: Images were
resized to uniform dimensions (224x224
pixels) and normalized to standard color
scales (mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) to ensure
consistent input data for the model.

Fig. 1 - Sample frames in our dataset which
correspond to labels of fire (image 2, 4, 5, & 6) or not
fire (image 1 & 3)

We implemented a custom dataset class and data
loader functions to handle these datasets and
preprocess the images: This class validated and
loaded images, applied transformations, and handled
custom labels. Functions were developed to load and
preprocess images, split the data into training,
validation, and test sets, and manage batching for
model training.

4. Methods
Baseline Model: We used a pre-trained VGG16

convolutional neural network (CNN) due to its
proven efficacy in image recognition tasks. The
classifier part of the VGG16 was replaced with a



custom sequential model tailored to our binary
classification task (fire and non-fire). Layers of the
pretrained VGG16 model were frozen to retain
learned features, focusing retraining on the classifier
to adapt to our specific dataset and mission.

Fig. 3 - Performance (training loss, validation loss,
and validation accuracy) of VGG16 network on with
a smaller and larger dataset

Advanced Models: While the baseline model
showed promising results, we further enhanced the
architecture by exploring other CNN models and
incorporating attention mechanisms to improve
detection accuracy.
MobileNet: Known for its efficiency and

lightweight structure, MobileNet is well-suited for
deployment on devices with limited computational
power. We used MobileNet with an inner layer size of
1024, training it with 10 epochs.
EfficientNet: This model scales up both depth and

width of the network efficiently, allowing for better
performance without significantly increasing
computational requirements. We configured
EfficientNet with an inner layer size of 1024 and

trained it for 10 epochs.

Fig. 4 - Performance (training loss, validation loss,
and validation accuracy) of VGG16, MobileNet,
EfficientNet, and CustomConvNet
CustomConvNet: A custom convolutional neural

network designed specifically for our task. This
model includes three convolutional layers with ReLU
activations and max-pooling, followed by fully
connected layers. It was trained for 10 epochs,
showing competitive performance compared to
pre-trained models.

We configured training parameters and the Adam
optimizer through a JSON file, adjusting learning



rates and batch sizes for each model. The models
were trained for a specified number of epochs, with
cross-entropy loss and accuracy tracked to measure
performance. Post-training, models were evaluated
on a validation set to monitor for overfitting, saving
the best model based on validation loss. High
validation accuracy across models demonstrated their
reliability in fire detection, while lower cross-entropy
loss indicated better performance.

5. Experiments
To validate the effectiveness of our deep

learning-based approach for real-time fire detection,
we conducted a series of experiments focusing on
various aspects of our model. These experiments
were designed to evaluate the performance, compare
with existing methods, explore the impact of different
components, and understand the model's behavior.

5.1. Performance Evaluation
We evaluated our model using standard

performance metrics, including accuracy, precision,
recall, and F1-score. The evaluation was conducted
on the test set, comprising diverse fire and non-fire
images.

1. Accuracy: The model achieved an accuracy
of 98.60% on the test set, demonstrating its
high capability to correctly classify fire and
non-fire images.

2. Confusion Matrix: We visualized the
confusion matrix to understand the
distribution of true positives, true negatives,
false positives, and false negatives. The high
number of true positives and true negatives
indicated the model's reliability.

3. Classification Report: The classification
report provided detailed insights into
precision, recall, and F1-score for each
class.

5.2. Comparison with Baseline CNN
To demonstrate the superiority of our approach, we

compared our model's performance with traditional
fire detection methods and a baseline CNN model.
The traditional methods included rule-based and
threshold-based techniques, which showed
significantly lower accuracy and higher false positive
rates. Baseline CNN: The baseline model achieved an
accuracy of 85%, significantly lower than our

fine-tuned VGG16 model, highlighting the benefits
of transfer learning and model fine-tuning.

5.3. Ablation Study
We performed an ablation study to assess the

impact of various components of our system, such as
data augmentation, normalization, and dropout layers.

1. Data Augmentation: Removing data
augmentation resulted in a 3% drop in
accuracy, indicating its importance in
enhancing the model's generalization.

2. Normalization: Without normalization, the
model struggled to converge, and the
accuracy dropped by 5%, underscoring the
necessity of normalization for stable
training.

3. Dropout Layers: Excluding dropout layers
led to overfitting, with a higher training
accuracy but significantly lower validation
accuracy, confirming the role of dropout in
preventing overfitting.

5.4. Hyperparameter Tuning
We experimented with different hyperparameters,

such as learning rate, batch size, and optimizer type,
to find the optimal configuration for our model.

1. Learning Rate: A learning rate of 0.001
provided the best balance between
convergence speed and stability.

2. Batch Size: A batch size of 32 was optimal,
balancing memory usage and model
performance.

3. Optimizers: The Adam optimizer
outperformed SGD, providing faster
convergence and better final accuracy.

5.5. Performance on Different Dataset Sizes
We trained and evaluated our VGG16 model on

both a smaller dataset and a larger dataset to observe
the effect of dataset size on model performance.
Training and Validation Loss Comparison: We

plotted the training and validation loss curves for
both the smaller and larger datasets over multiple
epochs. The comparison reveals several key insights:

1. Smaller Dataset: The training loss rapidly
decreases and stabilizes at a low value,
while the validation loss shows some
fluctuations. Although the validation loss is
generally low, the fluctuations indicate



Fig. 5 - Confusion matrices for the different
models

potential overfitting, suggesting the model
might be learning the nuances of the smaller
dataset too well, which does not generalize
effectively to unseen data.

2. Larger Dataset: The training loss decreases
at a steadier rate, and the validation loss,
although fluctuating, shows a more stable
trend compared to the smaller dataset. The
larger dataset provides more diverse
examples, helping the model generalize
better and reducing the risk of overfitting.

Validation Accuracy Comparison: The validation
accuracy curves for both the smaller and larger
datasets demonstrate the following:

1. Smaller Dataset: The validation accuracy is
relatively high but shows significant
fluctuations across epochs, reflecting the
model's struggle to generalize well due to
limited data diversity. While the high
accuracy might suggest good performance,
the instability indicates that the model's
performance may not be consistent on new,
unseen data.

2. Larger Dataset: The validation accuracy is
more stable and consistently high, indicating
better generalization. The larger dataset
provides the model with a wider range of
fire and non-fire scenarios, enhancing its
ability to correctly classify new images.

5.6. Performance with different models
VGG16 shows balanced performance but with

more false negatives compared to the Custom Model.
This indicates that it may miss more fire instances
compared to the Custom Model but still provides a
reliable performance.

MobileNet has a higher number of false positives
and false negatives compared to the Custom Model
and EfficientNet. This indicates that while it performs
adequately, there is room for improvement in
reducing misclassifications.

EfficientNet also performs well, though it has a
slightly higher number of false negatives compared to
the Custom Model. This suggests that while
EfficientNet is effective, it may occasionally miss
some fire instances.

The Custom Model shows a high number of true
positives and true negatives, with fewer false
positives and false negatives. This indicates a strong



performance in distinguishing fire from non-fire
images.
Training Loss: The training loss curves across all

models show a general trend of decreasing loss over
epochs, indicating effective learning. VGG16 and
CustomConvNet, in particular, show steady decreases
in training loss, reflecting stable training processes.
Validation Loss: The validation loss curves exhibit

some fluctuations, particularly for MobileNet and
EfficientNet. This fluctuation suggests occasional
overfitting or underfitting issues, highlighting areas
for further tuning. VGG16 and CustomConvNet
maintain more stable validation loss trends,
indicating better generalization.
Validation Accuracy: VGG16 achieved the

highest validation accuracy of 98.64% on the larger
dataset, demonstrating its robustness and reliability.
CustomConvNet also performed well with a
validation accuracy of 91.47%. Both MobileNet and
EfficientNet showed commendable validation
accuracies but were slightly lower compared to
VGG16 and CustomConvNet.

The validation accuracy trends emphasize the
importance of model architecture and the need for
extensive, diverse datasets to achieve high
performance.

6. Processing Videos of Wildfires
To assess the real-time performance of our fire

detection model, we conducted experiments using
videos of fire initiation. By extracting frames at
regular intervals from these videos and applying our
model to each frame, we aimed to evaluate the
model's ability to detect fire as it develops.

In our experiments, we observed that the model
consistently detected the presence of fire within a few
frames of its initial appearance. This delay is due to
the fact that, in the early stages, the fire is often small
and not the dominant feature in the frame. As the fire
grows and becomes more prominent, our model's
confidence in detecting it increases.

A notable example of this can be seen in the
analysis of footage from the "Texas Parks &
Wildlife" video, which captures a rapidly growing
fire. The video demonstrates a scenario where the fire
starts small and gradually expands. Initially, the fire
is a minor element within the frame, making it
challenging for the model to identify. However, as the

fire intensifies and occupies a larger portion of the
frame, the model reliably detects it.

In this specific video, frames were extracted every
few seconds and analyzed by our model. The results
showed that although the initial frames did not trigger
a fire detection, subsequent frames did once the fire
had grown sufficiently. This pattern underscores the
model's effectiveness in recognizing fire as it
becomes a more significant visual feature, confirming
its reliability for real-time fire detection tasks.

The following image sequence, taken from the
"Texas Parks & Wildlife" video, illustrates this
process, and the first frame being detected as “fire” is
the one with the black border - a few frames after the
fire started. The fire begins as a small flame and
rapidly spreads, eventually being detected by our
model.

Fig. 6 - Sequence of frames extracted from a video of
a developing fire, with a 2-second interval between
each frame. Our model successfully detected the
presence of fire in the 10th frame, highlighted with a
black border, illustrating the model's capability to
recognize fire as it becomes a more prominent feature
within the frame.

This experiment highlights the importance of using
video analysis to complement still-image datasets in
training and evaluating fire detection models. By
incorporating temporal dynamics and analyzing
frame sequences, our model can achieve robust



performance in real-world applications where fire
may not always be the dominant feature in initial
frames. This capability is crucial for early warning
systems and effective disaster management.

7. Conclusion
Our research focused on developing a deep

learning-based approach for real-time fire detection
using video streams. Through rigorous
experimentation and analysis, several key insights
and results were obtained.
High Accuracy and Robustness: The VGG16

model achieved high accuracy on both smaller and
larger datasets, demonstrating its effectiveness in
detecting fire and non-fire scenarios. The validation
accuracy on the larger dataset reached 98.64%,
indicating the model's robustness and reliability.
Impact of Dataset Size: The comparison between

the smaller and larger datasets highlighted the
importance of dataset size in training deep learning
models. While the smaller dataset resulted in higher
validation accuracy with significant fluctuations, the
larger dataset provided more stable performance and
better generalization, reducing the risk of overfitting.
Effectiveness of Transfer Learning: Utilizing a

pre-trained VGG16 model and fine-tuning it for our
specific task proved to be highly effective. This
approach leveraged the pre-trained model's learned
features, resulting in improved performance
compared to training a model from scratch.
Need for Extensive Data: The experiments

underscored the necessity for extensive and diverse
training data to enhance model performance and
stability. Larger datasets with varied fire and non-fire
scenarios contribute to better generalization and more
consistent results.

8. Future Work
To further advance the field of real-time fire

detection and improve our system, several future
extensions and new applications can be explored.
Real-time Deployment: Implementing the model

in real-time video surveillance systems can provide
early fire warnings, enabling faster response times for
fire suppression and evacuation efforts.
Integration with Satellite Data: Combining

ground-based and satellite data can enhance detection
accuracy and coverage. Integrating various data

sources can provide a comprehensive view of fire
incidents, improving overall monitoring capabilities.
Model Optimization: Reducing the model size

and computational requirements is crucial for
deployment on edge devices. Techniques such as
model quantization, pruning, and knowledge
distillation can be explored to optimize the model for
real-time applications.
Automated Data Augmentation: Developing

automated data augmentation techniques can help
create more diverse and extensive datasets, further
improving model generalization and robustness.
Exploration of Different Architectures:

Investigating other deep learning architectures and
comparing their performance can lead to discovering
more efficient and accurate models for fire detection.
Extending to Other Disaster Scenarios: The

approach can be extended to detect other disaster
scenarios such as floods, earthquakes, and landslides,
contributing to broader disaster management and
mitigation efforts.

Our research contributes to the advancement of fire
detection technologies, offering a reliable tool for
disaster management and mitigation. The insights
gained from this work pave the way for future
innovations and applications in the field, ultimately
aiming to protect lives, property, and the environment
from the devastating effects of wildfires.
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