
Real-Time Pokémon Card Detection from Tournament
Footage

Edwin Pua
Department of Computer Science

Stanford University
puaedwin@stanford.edu

Abstract

Match footage for Pokémon tournaments is blurry and hard to follow for average
viewers unfamiliar with the cards. This paper outlines techniques dataset augmen-
tation to improve an object detection model’s ability to detect classes of Pokémon
cards in real time, as well as their limitations. This includes established techniques
such as random rotations or copy-paste augmentation, as well as novel techniques
such as mosaic backgrounds or polygon clipping.

1 Introduction

The most popular use of Pokémon Trading Cards is for collecting, but they have another use - battling.
Pokémon Trading Cards are used to play a tabletop game that simulates Pokémon battles.

However, there are two primary barriers that prevent people from getting into the sport. One is the set
of twenty minute rules required to learn how to play, which is a surprisingly high activation cost. The
other is how difficult it is to be excited as a spectator of the Pokémon Card Game.

Figure 1: Example of tournament footage of the Pokémon Trading Card Game (TCG).

For instance, consider Figure 1. In order to capture the whole playing field, the camera needs to be a
certain distance above the match. However, because the Pokémon and text on the cards are illegible
from this distance, the only way to follow what is happening is if you know what all the cards do
in advance. Most normal spectators will not understand what is happening, which might turn away
potential Pokémon trainers.

To alleviate this, the goal is to make a computer vision model that can detect which cards are on
screen. When a viewer hovers over a particular card, the plan is to show a zoomed-in, high quality
version of the card so an online spectator can easily read what a card does.

To be more specific, given a URL or MP4 recording of Pokémon TCG tournament footage, is it
possible to generate real-time, frame-by-frame segmentation masks of each Pokémon card as output?

Stanford CS224N Natural Language Processing with Deep Learning



That way, when a user uses the mouse to hover over a card, and the cursor coordinates coincide with
one of the coordinates of a segmentation mask, we can use the detected card class of that segmentation
mask to retrieve the correct zoomed in image of the corresponding card.

2 Related Works

In the past, there have been similar works on card detection. For instance, Snyder developed a
poker card detector without using a neural network, via corner detection and template matching. [1]
However, these heuristics are not robust, since they assume close-up, clean images and no perspective
distortion of the cards. Another poker card detector was made by Chen et al. using a "sandglass
block", or encoder-bottleneck-decoder network architecture, which works even when each card takes
up only 0.7% of the screen. However, these poker cards are not occluded by any objects like cards
in the Pokémon card game are (e.g. dice, tokens, etc.), and there are only 52 classes of poker cards,
compared to the thousands of classes of Pokémon cards. [2]

Generalizing to overall object detection, perhaps one of the most seminal papers is the YOLO paper
by Redmon et al. [3] This model specializes in single-shot, real-time object detection, which is
perfect for my use case. Given that I can easily finetune a YOLO model on my specific task, I feel
confident in choosing YOLO as my weapon of choice.

Given that there exists only one of each Pokémon card, data augmentation will be very important for
generating datasets. For this reason, I plan to implement many established augmentation techniques,
such as random, noise, flip, rotation, etc. posited by Yang et al. [4] Another technique is copy-
paste augmentation and scale jittering, as presented by Ghiasi et al. [5] I could also implement
the techniques proposed by Roh and Chung, [6] which uses a diffusion model to counteract video
degradation such as motion blur, camera defocus, and partial occlusion.

Some other related works that I will discuss in further detail later include a paper by Li et al. [7]
which emphasized the importance of distribution focal loss, as well as various polygon clipping
algorithms, such as Sutherman-Hodgman algorithm, [8] Weiler-Atherton algorithm, [9] and the Vatti
clipping algorithm, [10] all of which can aid me in creating segmentation masks.

3 Dataset

First, I web scraped 460x640 resolution images of every tournament-legal Pokémon card from
LimitlessTCG. Unlike most vision problems, Pokémon card detection has very little issues with
deformation or intraclass variation - in other words, a given Pokémon card will always look the same.

Figure 2: Examples of web scraped cards, Bidoof (left) and Bibarel (right).

However, during tournament footage, there are a few reasons why two identical cards would have
different pixel values. One is the lighting that a card is subjected to. Another is any potential

2



occlusions that are covering the card, like dice or tokens. Yet another is the presence of any
holographic or foil effects on the cards.

Because the image and shape of a particular card class is relatively static, and the only changes to that
image are the aforementioned lighting, occlusions, etc., this means that it is possible to artificially
generate a dataset. My techniques for dataset generation are expanded upon in Section 4: Methods.

Although artificially generated data would serve as my training set, I created a validation set directly
from actual tournament footage - this way, validation metrics can accurately showcase how well the
model would perform in the real world. To do so, I took 37 screenshots from a tournament live stream,
hand-annotated their segmentation masks using a labeling software called CVAT, and converted those
segmentation masks into a YOLOv8-readable format using a labelling software called Roboflow to
create the labels.

Figure 3: Rather than training the model on all several thousand tournament legal Pokémon cards, I
decided to start with a small sample of ten cards. These cards are, from top to bottom, left to right:

Radiant Greninja (ASR_046_R_EN_LG), Bibarel (BRS_121_R_EN_LG), Bidoof
(CRZ_111_R_EN_LG), Comfey (LOR_079_R_EN_LG), Giratina (LOR_130_R_EN_LG), Frigibax
(PAL_057_R_EN_LG), Baxcalibur (PAL_060_R_EN_LG), Chien-Pao (PAL_261_R_EN_LG), Iron
Bundle (PAR_056_R_EN_LG), and Shuppet (SVI_087_R_EN_LG). Since there are many different

Pokémon cards with the same name (e.g. there are multiple cards with the Bidoof Pokémon), I
assigned a unique ID to each card as class names when training the model - these are in parentheses.

4 Methods

A large pretrained vision model can easily be fine tuned to detect Pokémon cards - this means that
card detection itself is not the issue. The primary challenge with card detection is twofold: firstly, new
Pokémon cards come out about every three months, meaning the model will have to be constantly
updated with new classes. Secondly, annotating every current and future piece of tournament footage
with segmentation masks is not feasible - many of these tournament streams last eight to ten hours.
Additionally, cards that are less powerful may not show up in tournaments very often, so if only
tournament footage is used as training data, this could lead to class imbalance and therefore high
distribution focal loss. [7]

Thus, the principal goal is to experiment with artificial dataset augmentation - specifically, given a set
of cards, is it possible to artificially generate a dataset using these cards, such that when the model
is trained on this dataset, the model can extrapolate what it learns to real tournament footage? Not
only would artificial dataset generation make it easy to create new training data as cards release, but
this kind of dataset could also be automatically labeled with segmentation masks, since we could

3



memorize the locations that the cards were pasted and create masks that way, rather than annotate
each image by hand. To illustrate, the following methods section explores the different datasets I
created and why.

4.1 Architecture

To start, I chose YOLOv8’s pretrained segmentation model to generate my segmentation masks,
which was pretrained on the 2017 COCO dataset. I chose YOLO by Redmon et al. [3] because their
pretrained model would be easy to use, immediately adaptable to my task, more effective than starting
with a random initialization of weights, and already optimized for real-time segmentation.

I trained this model on each of my custom datasets using YOLOv8’s default hyperparameters, which
uses AdamW as the optimizer, learning rate α of 0.01, weight decay of 0.0005, momentum β1 of
0.937, and dropout of 0. Although this baseline model is trained on images, YOLOv8 easily allows
such models to be used on MP4s and video recordings.

Since this project is primarily about experimenting with data generation heuristics rather than model
architectures, I chose to test the subsequent artificial datasets on only this model. In future work, I
plan to perform grid or random hyperparameter search to determine the most optimal learning rate,
weight decay, etc.

4.2 Dataset Generation

To start, I created a preliminary dataset of cards pasted directly on a white canvas to serve as a
baseline.

Figure 4: Cards on a 1920x1080 blank canvas.

The next dataset I created uses the simple augmentation heuristics presented by Yang et al. on each
card [4] These include random noise, random black occlusions, random blur using a Gaussian kernel,
random alteration of hue, random alteration of saturation, random alteration of brightness, random
chance to flip the image, and random rotation. I also incorporated copy-paste augmentation and scale
jittering as presented by Ghiasi et al., where each image is resized and pasted onto a gray background.

Figure 5: Preprocessed cards on a 1920x1080 blank canvas (left) and their corresponding,
automatically generated segmentation masks (right).

4



After I trained on the previous dataset, I noticed that the model was struggling to segment the shapes
of the cards. For example, if an image contained a card that was partially occluded by a hand, the
segmentation mask would correctly cover the card, but also bleed into the hand, unable to identify the
card’s boundaries. Additionally, the model would also incorrectly detect card sleeves or the backs of
cards to be a specific class of Pokémon, decreasing precision.

This was the motivation behind my next dataset. Instead of a white canvas as the background for the
cards, I created collages of fake Pokémon cards to use as backgrounds. I used fake Pokémon cards
because I wanted to teach the model that not every rectangular or card-shaped object is a detected
Pokémon card. Fake Pokémon cards were produced by taking real Pokémon cards and replacing the
art with some other Pokémon related artwork. The fake Pokémon cards were also preprocessed with
the previous dataset’s augmentation techniques.

These mosaic backgrounds would hopefully better teach the model what a card’s edges look like,
since it is now more difficult to determine where a card starts and stops, which gives the model more
difficult training examples to learn from.

Figure 6: Preprocessed cards on a 1920x1080 mosaic canvas (left) and their corresponding,
automatically generated segmentation masks (right). These mosaics was created by pasting randomly

chosen, preprocessed, fake Pokémon cards at various locations on a white canvas.

After training on the collage dataset, I noticed that holographic cards were not being detected by the
model. Holographic cards are rare Pokémon cards that emit shiny, prismatic patterns depending on
the viewer’s viewpoint angle. To account for this, I simulated the holographic effect as best as I could
by increasing the card’s contrast and increasing the brightness of slanted subsections of the card, and
then added many simulated holographic cards to my dataset.

Figure 7: Simulated holographic card (left) versus real holographic card (right)

5



Finally, I noticed that some cards that were clearly visible, but partially occluded by a hand or another
card, were sometimes not being detected by the model at all. To alleviate this, I constructed one final
dataset that consisted of real cards partially occluded by fake cards. The challenge here is to obtain the
segmentation mask of only the region of the real card that is visible. To do this, I can employ one of
many polygon clipping algorithms, such as the Sutherman-Hodgman algorithm, [8] Weiler-Atherton
algorithm, [9] or the Vatti clipping algorithm, [10] all of which can take in the coordinates of two
overlapping segmentation masks as input, one top and one bottom, and output the coordinates of the
visible portion of the bottom segmentation mask. I decided to use the Sutherman-Hodgman algorithm
due to ease of implementation.

Figure 8: Real Pokémon card partially occluded by a fake Pokémon card (left) and its corresponding,
automatically generated segmentation mask (right). The Sutherman-Hodgman algorithm takes in the

coordinates of the bottom segmentation mask [(x1, y1), (x2, y2), (x3, y3),(x4, y4)] and the top
segmentation mask [(x5, y5), (x6, y6), (x7, y7),(x8, y8)], and outputs the coordinates of the

segmentation mask for the visible portion of the bottom segmentation mask. In this case, those
coordinates are of the format [(x1, y1), (x9, y9), (x5, y5), (x10, y10), (x2, y2)], a pentagon.

5 Experiments, Results, and Discussion

For each generated dataset, I created 1000 training images and ran the aforementioned YOLOv8
network architecture for 10 epochs and observed which augmentations performed the best. To
compare the effectiveness of each model, the primary metric I used was mean average precision (with
IoU thresholds ranging between 0.5 and 0.95). I also looked at the precision and recall for both the
bounding box and the segmentation mask.

Box Precision Box Recall Box mAP50-95 Mask Precision Mask Recall Mask mAP50-95
No Preprocessing 0.00598 0.279 0.0437 0.00602 0.283 0.0423
Preprocessing 0.316 0.112 0.146 0.316 0.112 0.151
Preprocessing + Mosaic Background 0.709 0.357 0.379 0.704 0.351 0.371
Preprocessing + Mosaic Background + Holographic 0.604 0.253 0.276 0.604 0.253 0.256
Preprocessing + Mosaic Background + Mask Clipping .809 0.352 0.432 0.811 0.352 0.441

5.1 No Preprocessing

We see that the initial mAP for segmentation masks with no preprocessing is abysmal at 0.0423.
This is corroborated by the predicted segmentation masks. We can see in Figure 9 that many cards
go undetected, and those that are detected are merged. Notice how the model mimics the bounding
boxes of the training set - perfectly upright.

6



Figure 9: Detection using No Preprocessing model. The model classifies three cards as one. There
are several false negatives.

5.2 Preprocessing

Preprocessing leads to a considerable increase in mAP from 0.0423 to 0.151. This is because
preprocessing enabled the model to now detect rotated cards, cards that are blurry, or cards with
considerable noise. However, we can see that the model still struggles with segmentation, failing
to understand the boundaries between cards. It also falsely detects the backs of cards to be classes.
This is the motivation behind including mosaic backgrounds - it trains the model on images that are
difficult to segment, and also introduces fake cards that reduces the models false positive rate.

Figure 10: Detection using Preprocessing model. Notice how a card sleeve is erroneously detected a
Pokémon, and two cards are detected as one.

7



5.3 Preprocessing + Mosaic Background

Figure 11: Detection using Preprocessing + Mosaic model. Features several accurate detections and
classifications.

The mosaic background causes the mAP to jump from 0.151 to 0.371. Notice how the backs of the
cards are no longer being picked up by the model. However, we can see that holographic cards are
sometimes not being picked up, such as the Radiant Greninja on the right side. This is the motivation
behind an additional preprocessing step that simulates the holographic effect on cards.

5.4 Preprocessing + Mosaic Background + Holographic

This holographic preprocessing leads to a decrease in mAP to 0.371 to 0.256. The reason seems
clear - as seen by Figure 7 my simulation of holographic isn’t quite realistic enough, which makes
my training set less representative of the real world. To remedy this, I would need to create a more
accurate holographic filter, or model the cards in a 3D software and use the software’s lighting engine.

5.5 Preprocessing + Mosaic Background + Mask Clipping

Figure 12: Detection using Preprocessing + Mosaic + Mask Clipping model.

8



Mask clipping also causes the mAP to jump from 0.371 to 0.441. We can see how in Figure 12, the
segmentation mask of Radiant Greninja on the left side is very accurate, and not running into the
hand. However, we can see that the Holographic Giratina is not being detected on the right side, as
well as the two more occluded Frigibax on the left side, indicating that all of these data augmentation
techniques provide a partial, but not full, representation of real world Pokémon cards.

6 Conclusion

Although these techniques of preprocessing, mosaic backgrounds, and polygon clipping can be shown
to increase YOLOv8’s performance at detecting Pokémon cards, they still are relatively lackluster -
mAP is still below 0.5, and many false positives and false negatives can be found in the outputs of
all the models, regardless of training set. Thus, more powerful data augmentation techniques are
necessary before a consumer-ready Pokémon card detector can be made.

For future work, the next step would be to upgrade to three dimensions, increasing complexity by
modeling the cards, mosaics, and scenarios in Blender and create automatic segmentation masks by
configuring different scenes, angles, and lighting. These would produce training sets that are more
representative of real world Pokémon cards.

References
[1] Snyder, Daniel. 2019. Playing Card Detection and Identification.
web.stanford.edu/class/ee368/Project_Winter_1819/Reports/snyder.pdf

[2] Q. Chen, E. Rigall, X. Wang, H. Fan and J. Dong, "Poker Watcher: Playing Card Detection Based
on EfficientDet and Sandglass Block," 2020 11th International Conference on Awareness Science
and Technology (iCAST), Qingdao, China, 2020, pp. 1-6, doi: 10.1109/iCAST51195.2020.9319468.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 779–788, 2016.

[4] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen. Image data augmentation for deep
learning: A survey. 2023.

[5] Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.-Y., Cubuk, E. D., Le, Q. V., and Zoph, B. Simple
copy-paste is a strong data augmentation method for instance segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918– 2928, 2021a.

[6] S.-D. Roh and K. Chung. Diffusionvid: Denoising object boxes with spatio–temporal conditioning
for video object detection. IEEE Access, PP:1–1, 01 2023.

[7] Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., & Yang, J. (2020). Generalized
Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. arXiv
preprint arXiv:2006.04388.

[8] Ivan Sutherland, Gary W. Hodgman: Reentrant Polygon Clipping. Communications of the ACM,
vol. 17, pp. 32–42, 1974

[9] Weiler, Kevin and Atherton, Peter. "Hidden Surface Removal using Polygon Area Sorting",
Computer Graphics, 11(2):214-222, 1977.

[10] Bala R. Vatti. "A generic solution to polygon clipping", Communications of the ACM, Vol 35,
Issue 7 (July 1992) pp. 56–63.

9


	Introduction
	Related Works
	Dataset
	Methods
	Architecture
	Dataset Generation

	Experiments, Results, and Discussion
	No Preprocessing
	Preprocessing
	Preprocessing + Mosaic Background
	Preprocessing + Mosaic Background + Holographic
	Preprocessing + Mosaic Background + Mask Clipping

	Conclusion

