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Abstract

Estimating demographic information from images of hu-
man faces is a popular and well-studied application of deep
learning techniques. However, as these deep networks see
more real-world use, it is becoming evident that their accu-
racy is biased towards certain demographics. Leveraging
a transfer learning approach with the EfficientNetV2 archi-
tecture, our project evaluates the performance of various
bias reduction techniques, including variance penalization,
loss scaling, hierarchical predictors, and data augmenta-
tion. Using the UTKFace dataset, our methods demon-
strated improvements in fairness for age estimation across
different racial groups, albeit with some trade-offs in over-
all accuracy. The direct variance penalization method was
notably effective, achieving a balanced improvement in fair-
ness and modest accuracy reduction. Future work aims to
expand upon these findings by employing larger, more di-
verse datasets and refining augmentation techniques to fur-
ther enhance model performance and fairness.

1. Introduction

In recent years, deep learning, particularly through the
use of Convolutional Neural Networks (CNNs), has rev-
olutionized facial recognition technology, enabling signif-
icant advancements across many frontiers. Although this
has proven to be extremely valuable in security systems,
marketing, and the search for missing persons or criminal
suspects, such critical areas demands a high level of ac-
curacy and consistency across subjects of different racial
backgrounds. Racial bias in facial detection algorithms re-
mains a significant challenge and can have disastrous con-
sequences, especially when these models are employed in
security or policing applications [1]. One particular in-
stance of this occurred in 2018 when the American Civil
Liberties Union (ACLU) tested Amazon’s Rekognition soft-
ware by running a facial recognition scan of members of
Congress against a database of mugshots. The software in-
correctly matched 28 members, disproportionately identi-

fying people of color as criminals [2]. Project Green Light,
another instance of racial bias in facial recognition technol-
ogy, involved the installation of high-definition surveillance
cameras in predominantly Black neighborhoods in Detroit.
These cameras were linked to real-time facial recognition
systems, resulting in increased surveillance and racial pro-
filing of Black residents [3].

2. Related Work

Recent years have seen a number of proposed systems
for estimation of demographic traits from facial images. In
2012, Karimi et al. [4] developed a method that used clas-
sical computer vision techniques to extract the location of
facial features and inferred the subject’s gender and age
from ratios between the feature locations. Later in the same
decade, the advent of deep convolutional neural networks
and the growing availability of accelerated hardware to train
on led to a multitude of deep learning based approaches to
the gender and age prediction problem [5][6][7]. In 2020,
Abdolrashidi et al. [8] designed an ensemble model consist-
ing of Residual Attentional and ResNet architectures. The
authors also proposed a technique in which the result of the
gender classifier is fed into the age predictor in order to im-
prove its estimation. The next year, Garain et al. [9] pub-
lished an improved Gated Residual Attentional architecture
for the same gender and age problem. This model achieved
impressive age estimation accuracy by splitting the regres-
sion problem into the classification of the decade and re-
gression of the remainder (age % 10). However, novel deep
network architectures are not always necessary to achieve
good performance. Smith and Chen [10] demonstrated that
transfer learning produces competitive age and gender pre-
diction accuracies, even when using a general feature ex-
tracting model that is not pretrained on facial images. Fi-
nally, although bias and fairness are just beginning to gain
attention in the field of deep learning, work has been done
to formalize the problem and begin to develop solutions
[11][12]. In a 2021 paper, Feldman and Peake [13] defined
several metrics for fairness in deep learning and compared
the results of methods to reduce gender bias in a model de-
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signed to predict adult income level.

3. Methods
As our research is more concerned with fairness than

absolute performance, we chose to use a transfer learning-
based architecture similar to the models proposed by Smith
and Chen [10]. This approach had a number of advan-
tages, given the limited time and resources available for
this project. The use of a pre-trained deep network in our
models allowed us to leverage state of the art feature repre-
sentations without the immense engineering effort required
to design a sophisticated convolutional network. Further,
fine-tuning smaller models on top of this larger base model
greatly accelerated our design and training process due to
the fact that only a fraction of our model’s parameters re-
quired optimization. Transfer learning was also an appro-
priate methodology for our research due to the relatively
small size of our dataset. In order to appropriately eval-
uate our model’s performance among different races, we
needed images that were accurately labeled with age, gen-
der and race, which are not publicly available in numbers
much more than a few tens of thousands. A general purpose
feature extractor trained on a large-scale dataset allowed us
to approach state-of-the-art performance without the need
to manually collect any additional data.

We used the EfficientNetV2 model, first proposed by Tan
and Le [14] and trained on ImageNet, as our pre-trained
feature extractor. We chose to use the Medium variant
of the model, with 7 convolutional blocks and 54.1 mil-
lion parameters. The EfficientNetV2 architecture has been
shown to outperform many state-of-the-art networks on Im-
ageNet classification as well as transfer learning tasks while
boasting significantly reduced training time and parame-
ter count. To achieve this, the authors used novel, data-
driven techniques to search the design space for an opti-
mal arrangement of two main convolutional blocks (Fig-
ure 1). EfficientNetV2-M takes 128 x 128 to 380 x 380
RGB images as input and returns scores over the 1000 Im-
ageNet classes. However, we are only using the layers up
to the first fully connected classifying layer and fine-tuning
our own prediction heads, so the pre-trained portion of
EfficientNetV2-M that we used for the following models ef-
fectively produces a 1280-dimensional feature vector as an
output. We used PyTorch [15], Torchvision [16], Matplotlib
[17], and NumPy [18] libraries throughout the project.

3.1. Baseline Model

In order to identify biases and establish a baseline against
which we could gauge the fairness of our proposed meth-
ods, we designed a standard dual-objective gender and age
prediction model based on the work of Smith and Chen [10].
The baseline model consists of separate fully-connected
heads to perform gender classification and age regression.

Figure 1. EfficientNetV2 Convolutional Blocks

Both heads take a 1280-vector of features from the pre-
trained EfficientNetV2 model as input. The gender classifi-
cation head produces two class scores for Male and Female
while the age regressor produces a single output, the esti-
mated age. The gender head consists of two hidden layers
with 256 neurons each, followed by an output layer of size
2 (Figure 2). The age head has two hidden layers of size
2048 followed by an output layer of size 1 (Figure 3). For
both heads, each hidden layer uses ReLU activation and is
followed by a dropout layer in order to regularize the model.

Figure 2. Baseline Gender Head

Figure 3. Baseline Age Head

The two heads were trained independently, using cross-
entropy loss (Equation 1) for the gender classifier and L1
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loss (Equation 2) for the age regressor. Cross-entropy is
the natural choice for classification loss, but we specifically
chose to use L1 loss for the age regressor due to its im-
proved robustness to outliers over methods like MSE loss
(Equation 3) and because Mean Average Error (MAE), an
identical statistic, is commonly used to evaluate the accu-
racy of such an age estimator [9][10].
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3.2. Bias Reduction Methods

Next, we outline four different bias reduction meth-
ods designed to equalize the model’s performance over the
dataset’s five race categories.

3.2.1 Direct Variance Penalization

For our first bias reduction method, we added a term to the
original L1 or MAE loss to directly penalize high variance
in performance over the five protected race classes. This is
straightforward for the age regression task, since the vari-
ance of mean average errors is differentiable with respect to
model outputs (Equation 4). However, because classifica-
tion accuracy is not differentiable, we instead computed the
variance of each race’s cross entropy loss. (Equation 5). In
both losses, v is a hyperparameter used to scale the impact
of the variance term on the overall loss.
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i=1 |ŷi − yi| · 1(racei = r)∑N

i=1 1(racei = r)

(4)

L̂ = − 1

N

N∑
i=1

log
exp(xi,yi

)∑C
c=1 exp(xi,c)

+ v ·
∑4

r=0(Pr − P )2

5
,

Pr =
−1(racei = r) · log exp(xi,yi

)∑C
c=1 exp(xi,c)∑N

i=1 1(racei = r)
(5)

3.2.2 Loss Scaling

For our next method, we weigh the average loss over each
protected race based on predetermined scalars, αr, derived
from the baseline model’s performance for that sample’s
race. Each race’s scaling factor is inversely proportional
to its baseline performance (races for which the baseline
model performs poorly are given more weight in the ad-
justed loss and vice versa). The scaling factors are nor-
malized to the range (0, 1) then passed through the soft-
max function with a moderation hyperparameter, m, used to
control the difference in magnitude of scalars for different
races (Equation 6). Note that here, baseline performance,
Pb, refers to the baseline MAE for the age regressor and the
inverse of classification accuracy for the gender classifier,
since the scaling factors should be larger for races that per-
form worse. The final calculation of adjusted loss is shown
in Equation 7, with Li representing the original sample loss,
either cross-entropy or L1.

αr = softmax(m · Pb,r −minr Pb,r

maxr(Pb,r −minr Pb,r)
) (6)

L̂ =

4∑
r=0

αr ·
∑N

i=1 Li · 1(racei = r)∑N
i=1 1(racei = r)

(7)

3.2.3 Hierarchical Predictor

For the next method, we train individual models for each
race such that each model achieves roughly equal validation
accuracy on its respective race. This is accomplished by
adjusting training parameters like learning rate to produce
models with the same performance as the worst-performing
race from the baseline model. Then, a separate race clas-
sification model is trained and used to estimate a sample
image’s protected class and pass the sample through the ap-
propriate race’s model (Figure 4). In our experiments, we
used a fully-connected race classifier with two hidden lay-
ers of size 512, ReLU activation and dropout, and trained
with cross-entropy loss. At test time, if the race classifier’s
prediction does not have a confidence score above a cer-
tain threshold, the model will predict the ”Others” class,
even if the ”Others” class did not have the highest score.
We found that this adjustment improved the race predictor’s
performance, and thereby improved the performance of the
hierarchical model.

3.2.4 Data Augmentation

Data augmentation is an very common and important tech-
nique in training deep neural networks for image recogni-
tion tasks. We decided so implement this in our code by
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Figure 4. Hierarchical Predictor Architecture

creating new training samples by applying various transfor-
mations to the existing data based on the baseline results.
The main factor we had to keep in mind was the fact that any
augmentations must preserve the integrity of facial features,
e.g. avoiding color jitters transformations as it could distort
skin tones. This helps in creating a more equitable model
that performs consistently across different racial groups and
mitigate any inherent bias in our model. Similarly there are
several transformations like random brightness adjustment,
slight rotations, blurs and distortions can mimic real world
variations making the model more accurate in recognizing
faces even under sub optimal conditions.

Once we load the training dataset, we calculate the cur-
rent distribution of races say {n0, n1, n2, n3, n4}. Given
baseline loss for each race r, represented as Lr, we apply
an exponential function to introduce non-linearity making
the us more sensitive to worse performing classes. The nor-
malized exponential adjustment for race is given as:

êr =
exp

(
Lr

α

)∑4
j=0 exp

(
Lr

α

) (8)

The target augmented dataset is then calculated as:

Tr = max (⌊êr · ν ·N⌋ , nr) (9)

, where α is moderation factor that can be fine tuned in
later stages, N is the total number of points in the original
training distribution and ν is distribution scaling that set the
size of target dataset as multiple of original training dataset.
This method adjusts the representation of each class based
on baseline losses, ensuring that under performing classes

are given the necessary attention during the augmentation
process.

4. Datasets
UTKFace dataset contains approximately 24,000 well-

cropped and aligned human faces, annotated with key de-
mographic attributes including age, gender, and ethnicity.
This data set is suitable for tasks such as age estimation,
gender classification, and facial detection. Specifically, ages
range from 0 to 116 years, providing a broad spectrum for
age estimation tasks, but we only have binary values rep-
resenting the gender of the subject. The ethnicity label has
a categorical value representing the ethnic background of
the subject, with categories including White, Black, Asian,
Indian, and others.

Figure 5. Training set image examples with the age, gender, and
ethnicity labels

The dataset distribution across each labels is shown in
Figure 6. Age histogram shows a a significant variation
across different age groups with the mean around 33 years.
The dataset is relatively balanced in terms of gender, with
52.2% of the images labeled as male and 47.8% labeled as
female which is crucial for training a model that does not
exhibit gender bias. Race distribution is critical for our case
as we want to evaluate the model’s performance across dif-
ferent racial groups and identify and mitigate any underly-
ing biases. For our experiments, we used an 80%/10%/10%
train/validate/test split, leading to just under 20,000 total
training samples.

Figure 6. Training set visualizations of training set distributions
for age, gender, and race.

5. Experiments and Results
In order to compare the performance of these methods

to the baseline model, we used a fairness metric inspired by
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Age Gender Race
count 19041 19041 19041
mean 33.346 0.477 1.274
std 19.926 0.499 1.346
min 1.0 0.0 0.0
25% 23.0 0.0 0.0
50% 29.0 0.0 1.0
75% 45.0 1.0 2.0
max 116.0 1.0 4.0

Table 1. Training dataset statistics for age, gender, and race labels.

Equal Opportunity Difference (EOD) as formally described
by Feldman and Peake [13]. The authors define this metric
for the case of a binary classifier with two protected classes,
Male and Female (Equation 10). EOD measures the dif-
ference in the true positive rates between samples from the
two protected classes. Ideally, the EOD for a perfectly fair
classifier should be 0.

EOD = P (Ŷ = 1|A = male, Y = 1)

− P (Ŷ = 1|A = female, Y = 1) (10)

However, in our case of evaluating fairness across dif-
ferent races, our protected classes are the five racial cate-
gories labeled in the UTKFace dataset. Further, while our
gender classification task is also binary, we need our mod-
ified fairness metric to apply to the age regression task as
well. Given these requirements and the original character-
istics of the EOD metric, we chose to use the standard devi-
ation of performance over the five protected classes, which
we will refer to as Protected Standard Deviation (PSD), as
our fairness metric (Equation 11). For the gender classi-
fication task, ”performance” refers to the ratio of correctly
predicted samples to total samples of a given protected class
(Equation 12). For the age regression task, ”performance”
refers to the Mean Average Error, equivalent to the previ-
ously mentioned L1 loss for a protected class (Equation 13).
PSD is a reasonable extension of EOD, measuring the av-
erage difference in performance between protected classes
with an ideal minimum value of 0.

PSD =

√∑4
r=0(Pr − P )2

5
(11)

Pr =

∑N
i=1 1(ŷi = yi, racei = r)∑N

i=1 1(racei = r)
(12)

Pr =

∑N
i=1 |ŷi − yi| · 1(racei = r)∑N

i=1 1(racei = r)
(13)

An effective bias reduction method should produce
a lower Protected Standard Deviation than the baseline
model, while maintaining a comparable overall accuracy or
MAE across all classes. We evaluated this balance using the
product of the appropriate performance metric (MAE or the
inverse of classifier accuracy) and the PSD. We will refer to
this metric as the Performance-Variance product (PV). Dur-
ing the training process, we chose hyperparameters based
on a model’s validation PV, since it is a good indicator of a
balance of performance and fairness.

5.1. Baseline Results

Both the baseline gender and age head were trained us-
ing the Adam optimizer [19] with a learning rate of 0.001
and a batch size of 64 images. We used a dropout rate of 0.4
for all dropout layers because it led to the best performance
on the validation set. The gender head was trained for 23
epochs and the age head was trained for 31. The baseline
model’s performance on the test set is outlined in Table 2,
organized by UTKFace race category, and includes the pre-
viously described PSD and PV metrics.

Race Gender Accuracy Age MAE (years)
White 0.909 7.894
Black 0.886 7.239
Asian 0.880 5.189
Indian 0.892 5.884
Others 0.872 5.406
Overall 0.896 6.906

PSD 0.012 1.061
PV 0.014 7.325

Table 2. Baseline Model Results

The gender classifier performs rather evenly across the
five protected categories, while the performance of the age
regressor varies more significantly between the class with
the highest MAE, White, and the class with the lowest
MAE, Others. Though less severe in the case of the gen-
der classifier, the baseline model is clearly biased. Figure
7 compares the baseline model’s performance (with MAE
inverted so that a higher value corresponds to better perfor-
mance) to the distribution of races in the training set. Un-
expectedly, there is little correlation between the amount
of training samples and performance. This suggests that
source of the bias could be something more subtle than the
availablility of training data.

5.2. Direct Variance Penalization

For the modified age regressor, we trained for 42 epochs
with the same hyperparameters as the baseline model and
we chose the parameter for this method, v (see Equation 5),
to be 0.7 after finding that this value consistently produced
a low PV product on the validation set while maintaining a
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Figure 7. Baseline Performance vs. Training Distribution

competitive MAE.
The modified gender classifier was trained for 50 epochs

with the same value for v. Table 3 shows the test set results
for both heads trained with the direct variance penalization
method.

Gender Accuracy Age MAE (years)
Overall 0.896 7.796

PSD 0.020 0.712
PV 0.022 5.553

Table 3. Direct Variance Penalization Results

The modified gender classifier has the same overall ac-
curacy as the baseline model with noticeably worse fairness
across the five protected classes, evident in higher PSD and
PV values. This trend will continue through our other bias
minimization methods, which we attribute to the fact that
the performance of the baseline classifier is already rela-
tively uniform and any more sophisticated training process
will only hinder the model.

However, this method significantly improves the fair-
ness of the age regressor. The direct variance penaliza-
tion method reduces the variance in MAE across protected
races from 1.061 to 0.712, an improvement of nearly 33%.
At the same time, the overall MAE is only raised by
less than a year, resulting in a greatly improved PV prod-
uct. Visualizing and comparing the baseline and modi-
fied training processes (Figure 8) confirms that, at the cost
of slightly worse overall performance, the variance penal-
ization method successfully improves the model’s fairness
throughout the training process.

5.3. Loss Scaling

For the loss scaling method, we trained the gender head
for 38 epochs and the age head for 44 epochs with the same
standard hyperparameters as the previous models. This
method involves an additional moderation hyperparameter
m, for which we used a value of 3 for the gender classi-
fier and 5 for the age regressor based on the validation PV
metric. It is logical that the optimal m value is smaller for
the gender head than for the age head, since the baseline

Figure 8. Variance Penalization Training Comparison

gender model already performs well in terms of fairness, so
a less drastic scaling should be required. The loss scaling
method’s results are summarized in Table 4.

Gender Accuracy Age MAE (years)
Overall 0.881 7.024

PSD 0.013 0.832
PV 0.015 5.844

Table 4. Loss Scaling Results

Once again, although the modified gender classifier
showed minor improvements to fairness on the validation
set during training, these results did not generalize to the
test set, where the gender head performs slightly worse than
the baseline. Despite this, the modified age regressor suc-
cessfully achieves a lower PSD than the baseline model
while having only marginally worse overall MAE. Plotting
the MAE and PSD throughout the training process (Fig-
ure 9) reveals that, unlike the direct variance penalization
method, fairness is not learned over time, the PSD instead
reaches a lower value than the baseline in a few epochs, and
then PV improves as overall MAE is improved.

Figure 9. Loss Scaling Training Comparison

Qualitatively, the loss scaling training process seems
to be noisier than that of the direct variance penalization
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method. This is likely due to the re-scaling of the loss func-
tion to favor only one or two race categories.

5.4. Hierarchical Predictor

We trained the hierarchical model’s internal race predic-
tor for 41 epochs with the same standard optimization con-
figuration as previous models. However, we used a higher
dropout rate of 0.6 to combat a worse overfitting than we
noticed with the other models. Table 5 summarizes the race
predictor’s test set accuracy among the five protected race
classes. The model clearly struggles with the Others cate-
gory, leading us to adjust the test-time behavior to automat-
ically predict Other if the predicted race’s confidence score
is too low. The second row of the table shows the improved
performance when using an ”Others” threshold of 0.5.

White Black Asian Indian Others
No Threshold 0.888 0.773 0.637 0.665 0.148

Threshold = 0.5 0.815 0.682 0.569 0.526 0.517
Table 5. Race Predictor Accuracy

Since the baseline age regressor performed the worst for
the White class, we used the baseline model as the White
class’s individual age head and trained the other four class’s
heads so that their race’s validation MAE was about the
same as the White class’s baseline validation MAE. To ac-
complish this, the remaining four class heads only needed
to be trained for a single epoch with the standard optimiza-
tion hyperparameters. The Black head was trained with
a learning rate of 0.0005, the Asian head with 0.000025,
the Indian head with 0.00025, and the Others head with
0.000025. Once all five race-specific age regressors were
trained, we adjusted the race predictor’s threshold parame-
ter so that the full hierarchical model achieved the best val-
idation PV product. We found that a threshold of 0.7 was
optimal.

The individual gender classifiers were trained using a
similar approach. The baseline gender accuracy was worst
for the Others class, so the baseline was used as that class’s
individual head and the other heads were trained to match
the validation accuracy. The White head was trained for
one epoch with a learning rate of 0.0001, the Black head
for 2 epochs with learning rate 0.001, and the Asian and In-
dian heads were both trained for 5 epochs with learning rate
0.001. An ”Others” threshold of 0.6 for the race predictor
led to the lowest validation PV. The results for the hierar-
chical model for both objectives are summarized in Table
6.

Like the previous methods, the hierarchical model shows
no improvement for the gender objective but significantly
improves the fairness of the age regressor at the cost of
a higher overall MAE. This method produces the highest
overall MAE out of the three discussed so far, which is

Gender Accuracy Age MAE (years)
Overall 0.881 8.245

PSD 0.015 0.738
PV 0.017 6.082

Table 6. Hierarchical Predictor Results

not surprising given that this method involves purposefully
training worse predictors for races with good baseline per-
formance. Figure 10 shows the three test images that suf-
fered the largest increase in the predicted age error from
baseline.

Figure 10. Largest Age Errors

5.5. Data Augmentation

We start data augmentation with calculating the target
distribution, Tr, giving us how many more samples are
needed for each race. Then we augment the dataset by ran-
domly sampling and applying transformations to the exist-
ing training samples of that race. For each augmented im-
age, a random transformation was selected from a specific
set, including Horizontal Flip, Vertical Flip, 20 Degrees Ro-
tation, 90 Degrees Rotation, Shear, Gaussian Blur, and Ran-
dom Crop and Resize. These transformations were chosen
to introduce variability while preserving the essential fea-
tures of the facial images.

The focus for this section was the age prediction as
we showed a much higher accuracy variation across race
compared to that for gender classification. For the Effi-
cientnetV2m base model, 256x256 FC gender classifier,
2048x2048 FC age regressor heads, after 31 epochs we
measured a baseline training overall MAE of 6.7 years and
by race MAE as 7.54, 6.41, 5.12, 6.65, 5.47, respectively.

Figure 11 shows the results for augmentation with mod-
eration factor α = 1 and ν = 1.5. However we did not see
much improved accuracy or PV product. This could be due
to the large variations in the transformations applied and
comparatively small augmented dataset.

Following the techniques used in Ref. [10], we decided
to use a simpler augmentation with a random crop from any
of the four corners followed by a horizontal flip. Figure 12
shows an example with the set of possible augmentations
that we used and figure 13 shows these results with mod-
eration factor α = 1 and ν = 3. We observed a positive
impact where we can see that although we achieve a worse
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Figure 11. Race distribution before and after augmentation (α =
1, ν = 1.5) with random transformations. Age regression accu-
racy bias across races remains largely unchanged.

accuracy across different races, we are able to reduce the
training bias. This is reflected through a reduced race accu-
racy standard deviation of 0.81 and consequently a smaller
PV product value of 6.87.

Figure 12. Image augmentation: the original image is randomly
cropped from a corner, resized, and flipped horizontally.

Figure 13. Race distribution before and after augmentation (α =
1, ν = 3) with random corner crop and horizontal flip. Accuracy
decreased, but race accuracy variation and PV product for age re-
gression were reduced.

6. Conclusions and Future Work
Table 7 summarizes the results of our four bias reduction

methods compared to the baseline model.
In terms of the age regression objective, all four pro-

posed methods successfully achieve a lower standard devia-
tion of performance across the five protected race classes in
the UTKFace dataset. Our methods were less successful on
the gender classification objective. We attribute this to the
fact that the baseline model performed quite fairly on the
gender task, so equalization was not necessary and ended
up only creating noisier models with poorer accuracy.

As we expected, our bias reduction methods improved

Baseline
Gender Accuracy Age MAE (years)

Overall 0.896 6.906
PSD 0.012 1.061
PV 0.014 7.325

Variance Penalization
Overall 0.896 7.796

PSD 0.020 0.712
PV 0.022 5.553

Loss Scaling
Overall 0.881 7.024

PSD 0.013 0.832
PV 0.015 5.844

Hierarchical Predictor
Overall 0.881 8.245

PSD 0.015 0.738
PV 0.017 6.082

Data Augmentation
Overall N/A 8.471

PSD N/A 0.810
PV N/A 6.873

Table 7. Compiled Results

on the baseline model’s fairness at the cost of overall accu-
racy. In order to create more equitable performance, pro-
tected classes which the baseline model performs better on
must be brought down to the level of the worst-performing
class.

The Direct Variance Penalization emerges as the most
effective of our four methods for the age regressor, boasting
the lowest test PSD as well as only a modest increase to
overall MAE, leading to the lowest PV product of 5.553.
Based on these results, our fairest dual age/gender predictor
would consist of the baseline gender head and an age head
trained with the variance penalization method.

One of the largest limiting factors that we encountered
over the course of our research was the size of the UTK-
Face dataset. With barely more than 20,000 labeled images,
some of the baseline bias and weaknesses of our proposed
methods could be attributed to the small dataset. In future
work, we would like to take advantage of a larger dataset
with age, gender and race labels if one becomes publicly
available. We would also like to further develop the data
augmentation method with more time and compute. Exper-
imentation with this method was far slower than the other
three because the augmentation prevented us from train-
ing on pre-saved features from the EfficientNetV2 M base
CNN, which saved an enormous amount of compute.
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