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Abstract

In this paper, we explore a method to refine residual
mappings with an attention map. We achieve this by par-
ing a classification and attention branch together. Our
attention branch generates an attention map using a self-
supervised Vision Transformer and learns attention map-
pings that match the shape of features on the classification
branch. These attention maps are then used to mask the
residuals in the classification branch. We find that this pro-
cess allows our models to achieve higher classification ac-
curacy than standard residual networks.

1. Introduction
Image recognition is a core discipline in the field of ma-

chine learning and has been successfully adopted by in-
dustries ranging from farming to medicine. Until recently,
convolutional neural networks (CNNs) have dominated the
field due to their intrinsic ability to learn local features and
generalize to unseen images. As humans, there are impor-
tant features that we look for in order to identify animals.
We would check for its overall silhouette, the shape of its
eyes, how many legs it has, whether it has wings, etc. A
CNN does not have this intuition, and must rely on lin-
ear convolutions and non-linear activation functions to learn
features for local pixel neighborhoods. However, some im-
portant features may be far from each other and will not be
captured within the receptive field of a single convolution.
Take for example a 200x200 image of an animal. Important
features may be over 100 pixels away from each other e.g.
the ears and tail of the animal. If we take multiple layers of
standard 5x5 convolutions with stride 1, it would take over
23 layers before the receptive field could cover both of those
features. With 2x2 max pooling every third layer, it would
still take 9 layers before the receptive field reaches over 100
pixels. (117 pixels to be exact)

Another aspect of visual processing that ML models do
not inherently have is the ability to pay attention to the fore-
ground of an image and ignore the background. If we are
given an image of an object we have never seen before, we

can easily separate it from the background and learn what
the object should look like. This is because our brains have
been ”training” from birth and have the ability to quickly
identify relevant and irrelevant information. In ML mod-
els, self-attention can solve this, and recent development
in self-attention has shown that image recognition using
self-attention can lead to better classification results than
CNNs. Though originally used for natural language pro-
cessing, the advent of transformers in 2017 have allowed
for breakthroughs in image recognition accuracy on stan-
dard computer vision datasets. Vision transformers can be
argued to be more general than an MLP and can learn the
global context of an image, since each iteration updates the
learnable embedding using attention over all image patches.

Our paper is inspired by these recent developments, and
aims to combine CNN based architectures with recent de-
velopments in self-attention. Transformers been proven to
have higher classification accuracy than all state of the art
CNN models, but in exchange require more training data.
The authors of An Image is Worth 16x16 words explain that
this is due to pure-transformer classifiers lacking the induc-
tive biases of CNNs. [3] Thus, our model will follow the
hybrid architecture in order to reap the locality advantages
of CNNs as well as the attention benefits of Transformers.

The input to our model will be a single image, which will
be sent to a classification branch and an attention branch.
Both branches are modeled after ResNets. Our goal is to use
attention maps from the attention branch to generate bet-
ter residual mappings for the classification branch. Details
about model structure will be explained later in this work.

2. Related Work

2.1. Convolutional Neural Networks

Inspired by previous works on neocognitrons, the first
paper on modern CNN architecture was published in 1989.
Since then, there have been developments improving each
aspect of the CNN. New optimizers helped weights to con-
verge better, new activation functions allowed for less van-
ishing gradients, and new architectures helped models be-
come more accurate than ever.
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These models all relied on convolutions and non-linear
activations as a means of learning relations between pixels
and classifying images. Such learned relations are able to
provide state-of-the-art classification accuracy, and research
by Zhuang Liu et al. [8] has shown that CNNs can still out-
perform vision transformers in the modern day while being
more simple and efficient.

2.2. Self-attention in Image Recognition

Self-attention has been shown to be a powerful tool for
image recognition and has been used in varying degrees to
augment the efficacy of CNNs. We will examine some suc-
cessful models, beginning with ones involving minimal use
of attention, all the way to those completely based on atten-
tion.

CNN classification accuracy can be increased through at-
tention, while minimal modification to the general architec-
ture. This has allowed such models to continue exploiting
the benefits of local connectivity. One such design is Woo
et al.’s Convolutional Block Attention Module. [11] This
block uses spatial and channel wise attention to modify the
outputted features of a convolutional layer without chang-
ing the size, and can thus be added to any model without
changing the architecture. Wang et al.’s [10] residual atten-
tion network uses attention modules to mask the output of
layers, and can also be built directly on any conventional
CNN architecture.

Deeper application of attention leads us to models where
the convolution step is completely replaced by attention in
a standard CNN architecture. Zhao et al. explore a patch-
wise self-attention block that is more powerful than convo-
lutions. [12] These patches are over local neighborhoods
similar to how a convolution kernel only takes in a small
patch during each pass.

Finally, there are models that classify images using
transformer models as proposed by Vaswani et al. [9].
The first application of this is Dosovitskiy et al.’s Vision
Transformer. [3] Their model splits an image into equally
sized non-overlapping patches before applying appropriate
transformations and feeding it into a standard Transformer
model.

Our work aims to explore a field somewhere in the mid-
dle.

2.3. Self-Supervised Learning

In self-supervised learning, a single image is augmented
twice with different augmentation schemes. These two im-
ages are sent into two networks with identical architec-
tures, with the goal of generating similar features. The
goal of self-supervised learning is to minimize the differ-
ence between features, which ideally creates robust fea-
tures. Once the self-supervised training is complete, the
student branch can be discarded and the teacher branch can

be used for downstream tasks. Variations on the standard
self-supervised contrastive learning paradigm, such as self-
DIstillation with NO supervision (DINO) [2], demonstrate
the efficacy of self-supervised pretraining.

3. Methods

We will begin with an overview of our model, then go ex-
plain the relevant details of each piece, before finally putting
together the entire model.

Given an input image x, we generate attention mask xa.
Our model has two branches, once for learning classifica-
tion and one for applying attention maps onto the classifica-
tion branch. From now on, we will refer to the classification
branch as Bc and the attention branch as Ba. Image x is
used as input to branch Bc and its corresponding attention
map xa is used as input to branch Ba.

3.1. Vision Transformer

We first provide an overview of the mechanisms behind
the Vision Transformer that are relevant to our model. For
further implementation or algorithmic details, please refer
to Dosovitskiy et al. [3]. Attention is a key feature of the Vi-
sion Transformer, and the original Transformer model used
for NLP is almost completely unmodified for computer vi-
sion applications.

Attention is computed on a given query Q, key K, value
V , and dimension dk using the following equation:

Attention = softmax

(
QKT

√
dk

)
V (1)

Using these ideas, the Vision Transformer first tokenizes
images to allow for input to a standard Transformer archi-
tecture. An image x ∈ RH×W×C is split into discrete,
square, non-overlapping patches of size P . All patches are
then flattened into shape P 2 · C, linearly embedded, and
concatenated with learnable positional encodings. These
patch vectors are prepended with a learnable class embed-
ding, which we will refer to as [CLS] in order to main-
tain consistency with the works we are using. The vectors
are then fed into a standard Transformer encoder, where
each transformer block consists of multiheaded attention
followed by a two layer MLP.

In each step information from all vectors are aggregated
into the [CLS] token. This token is what we will be using
to generate attention map xa. More details on how our at-
tention map is created will be discussed in Section 5, since
there are various ways we could genereate our map.

3.2. DINO (self-DIstillation with NO supervision)

We also provide an overview of the self-supervised
learning paradigms that are relevant to our model.
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The knowledge distillation self-learning paradigm con-
sists of a student gs and teacher gt model. These models
take an input x and output a probability P given by:

P (x)(i) =
exp(g(x)(i)/τ)∑
j exp(g(x

(j))/τ)
(2)

where τ is a temperature that is controls the sharpness
of the probability distribution. [6] The cross entropy be-
tween the probabilities of models gs and gt are then min-
imized through training. DINO follows this process, but
where it differs from traditional knowledge distillation is
that the teacher network is built from past iterations of a
student network.

DINO uses Vision Transformers as the backbone for the
student and teacher networks. Self-supervised training was
performed with unlabled ImageNet-1K data, and the cross
entropy loss between teacher and student networks was
minimized like in standard self-supervised learning. The
model was trained end to end, including the fully connected
layer at the end for classification. This resulted in a teacher
network that could generate strong features and that could
achieve state-of-the-art accuracy when fine-tuned on down-
stream tasks such as image classification. In our case, we
simply discard the classifier and final MLP layer since we
only need the [CLS] token.

For our model, we use a ViT backbone with patch size
8 × 8 pretrained by Caron et al. [2], so please refer to
their paper for further implementation details such as update
rules for the teacher network during training. This backbone
is not fine-tuned on our datasets, because intuitively, the ob-
ject in the image does not need to be known in order to pay
attention to it. For example, if a human receives an image of
something they do not recognize, they will still know where
they should look and what parts are background that can be
ignored.

3.3. Classification and Attention Stems

The classification and attention branches start with a
stem block, where we downsample the images by 4x. A
typically ResNet accomplishes this downsampling using a
7 × 7 convolution with stride 2 and a 2 × 2 max pooling
layer. However, evidence has shown that taking macro de-
sign rules from Transformers and applying them to CNN
architectures leads to an increase in classification accuracy.
[8]. Thus, our downsampling is performed using a 4 × 4
convolution layer and stride 4 to mimic the patches taken by
a Vision Transformer. Figure 1 shows the full stem blocks.

3.4. Classification and Attention Branches

Branch Bc consists of a modified ResNet basic block
architecture, where the residuals added after each block
are first modified by the corresponding soft attention map
learned from branch Ba. We will refer to these residuals as

F(x) to maintain consistency with the original ResNet pa-
per, [5] and will refer to any blocks in this branch as a clas-
sification block. The convolution strides follow the same
striding pattern as a standard ResNet8 model.

x

4× 4 conv

Batch Norm

ReLU

...

xa

4× 4 conv

Sigmoid

...

Figure 1. The classification stem block for branch Bc (left) and the
attention stem block for branch Ba (right). For clearness, layers
on branch Bc will always be shown in pink and layers on branch
Ba will always be shown in teal.

...

3× 3 conv

Batch Norm

ReLU

3× 3 conv

Batch Norm

ReLU

...

...

3× 3 conv

3× 3 conv

Sigmoid

...

Figure 2. One block of branch Bc (left) and branch Ba (right)
without any residual connections. These blocks are the building
blocks for our network, and residual connections between blocks
will be shown in Figure ??

Branch Ba is also made up of blocks, which we will re-
fer to as attention blocks. Branch Ba runs parallel to branch
Bc and consists of blocks that aim to learn new attention
maps with the same dimensions as the features in branch
Bc. To do this, each attention block consists of two convo-
lutional layers followed by a sigmoid layer to normalize all
weights between 0 and 1. This will allow the output of the
attention block to serve as a mask for the features from the
corresponding classification block. Details on the layers in
each block are shown in Figure 3.
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3.5. Model Architecture

Our model takes in a 224 × 224 image x. Using self-
supervised ViT features as described above, we generate
an attention map xa. Image x is passed to branch Bc and
the corresponding attention map xa is passed to branch Ba.
The attention map after each block is the same size as the
features outputted from the corresponding block in branch
Bc. This map is used to mask the features.

The strength of the mask is determined by hyperparam-
eter a, where 0 <= a <= 1. A hyperparameter of a = 0
means that no mask will be applied, and the model will be
equivalent to a standard ResNet model. A hyperparame-
ter of a = 1 means that the mask will be applied with full
strength. More formally, the masked residuals are calcu-
lated as:

F(x(i),x(i−1)
a ) = [x(i−1) ⊙ x(i−1)

a · a] + [x(i) · a] (3)

where ⊙ represents the Hadamard product, x(i) repre-
sents the features outputted from block i, and x

(i)
a represents

the attention map outputted from block i.
To enhance the feature x(i), we simply add the masked

residual with the feature:

x(i) = F(x(i),x(i)
a ) + x(i) (4)

Figure ?? provides a visual for how features and resid-
uals are updated. The blocks are arranged following a
ResNet8 architecture. After all of the blocks, we have an
adaptive average pooling layer and a fully connected layer.
The output of the fully connected layer is a score vector of
size C, where C is the number of classes in the dataset. The
loss used for training and backpropogation is cross entropy
loss as given by the following equation:

L = −log

(
exp(yi)∑C
j ̸=i exp(yj)

)
(5)

where yi is the score of the correct class in the output
vector, and yj are the scores for all other classes.

4. Data
Due to training limitations, we will use the CIFAR-10

and CIFAR-100 [7] datasets as benchmarks for our model.
This way, our classification accuracy can be compared to
various other computer vision models in order to determine
the efficacy of our methods.

Each dataset is already split into 50000 training samples
and 10000 test samples. We further split the training sam-
ples into 45000 training samples and 5000 validation sam-
ples, with an equal amount of validation samples for each
class. The resolution of each sample is 32× 32

For better model generalization, we perform data aug-
mentation on our training set. We pad each image with
4 pixels on each side, and randomly crop a 32 × 32 area.
We also perform random flipping. Finally, we use a rela-
tively new augmentation method that has proven efficacy:
random erasing [13]. The exact method we decided on in-
volves erasing a rectangle between 2% to 33% of the image
area and filling it with random noise. This erasing is per-
formed with a 20% chance, since emperical evidence has
shown that 20% is a good minimum to have in order to in-
crease model performance.

Finally, after all augmentation is performed, we scale
each image up to 224 × 224 using bicubic interpolation.
This is to support training on deeper ResNet models that
downsample continuously throughout each residual block.

5. Experiments
5.1. Hyperparameter Tuning

The learning rate and weight decay hyperparameters
were first turned with a random search, then refined using a
dense grid search. We do this because certain hyperparam-
eters will have a greater effect on the model accuracy, and
selecting random groups of hyperparameters will allow for
better coverage. [1] As mentioned previously, our AdamW
optimizer and AdamW hyperparameters were manually se-
lected following experimental results from Liu et al. [8]. All
weights are initialized using a Kaiming normal distribution.
[4]

Hyperparameter value

Optimizer AdamW
Epochs 100
γ(lr) 0.2

λ (Weight decay) 5e-4
β1 (AdamW hyperparam) 0.9
β2 (AdamW hyperparam) 0.999

Table 1. Model hyperparameters used for tuning hyperparameter a

We also experiemented to find optimal batch sizes for
each dataset, keeping the other hyperparameters static. Op-
timal batch sizes are reported in Table 3

Dataset Batch size

CIFAR-10 32
CIFAR-100 128

Table 2. Batch sizes used for each dataset

Once these hyperparameters were found, we began to
tune our custom hyperparameter a, which controls the
strength of the attention map applied onto residuals. The
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x
(1)
a

⊕ ⊕ ...

F F F

x(1)
⊕ ⊕ ...

Figure 3. The overall model architecture, and the residual connections between blocks in branch Bc and Ba. All arrows represent identity
mappings from the node at the start of the arrow to the node being pointed to by the arrow. To maintain consistency with Figure 3, pink
blocks represent classification blocks and teal blocks represent attention blocks. Note that this diagram does not show x(0) and xa(0)
and the respective stem blocks that they are passed through. It also does not show the final pooling and fully connected layers. Only the
classification and attention blocks and residual connections are shown.

rest of our discussion will focus on the effects of this hy-
perparameter, keeping all other ones locked to the values in
Table 1.

5.2. Generating Attention Masks

The first step is to generate an attention map xa for input
to branch Ba. This is done using a Vision Transformer self-
supervised with ImageNet-1k. [2]. An input x is split into
8× 8 patches, linearly embedded with learned weights and
position encodings, and sent through a Transformer encoder
with 12 attention heads. Then, we take the self-attention
with the [CLS] token as the query in the final attention layer
in the Transformer, right before the final MLP and classifi-
cation layers. The equations for self-attention can be found
in Equation 1

Since there are 12 attention heads, we obtain 12 different
attention maps from querying the [CLS] token. Each of
these attention weights tends to different parts of the image.
However, since we only have one attention branch in our
network, these weights are all aggregated into one attention
map that will serve as xa. An examples of this aggregated
attention map generated input x can be found in Figure 4.

Figure 4. Image x and its corresponding attention map xa gener-
ated using a self-supervised ViT

5.3. Hyperparameter a

Our datasets are relatively simple, so we are only looking
at the top-1 accuracy for different values of a. We found that
higher values of a helped to increase accuracy compared
to a traditional ResNet8. Values of a at the upper end did
not make as much of a difference as compared to the lower
end, but still resulted in increased training. Results for top-1
accuracy for each dataset are reported in Table ??

Top-1 Accuracy (%)
a CIFAR-10 CIFAR-100

0 83.3 41.1
0.5 86.6 42.9
1 87.0 43.4

Table 3. Top-1 classification accuracy on CIFAR-10 and CIFAR-
100 for mask strength a

The top-1 accuracy for a = 0 is equivalent to a stan-
dard ResNet8 being run with our data augmentation and
training scheme. ResNet8 has been shown to have up to
86% top-1 accuracy on CIFAR-10, though, meaning that
our data augmentation and hyperparameters were not opti-
mal. If we were to reach 86% top-1 accuracy for CIFAR-10
using a = 0, we can assume that setting a > 0 would beat
that accuracy. Similar evidence is seen with CIFAR-100;
increasing a also increases the top-1 accuracy, but our base
model with a = 0 does not reach the accuracy of the best
CIFAR-100 ResNet.

We believe that the reason for this lower accuracy, de-
spite applying new methods such as using transformer op-
timizers and patch-based convolutions[8], is that CIFAR-10
and CIFAR-100 are not meant to be trained on a model with
input size 224×224. In fact, the originial authors of ResNet
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explained in their paper that a different network structure
should be used for smaller 32 × 32 images. [5] As men-
tioned before, we added a stem block to take in larger input
sizes with the goal of training the same model on bigger
datasets. Unfortunately due to time constraints we were not
able to do so, and also most likely lowered our classification
accuracy for CIFAR-10 and CIFAR-100.

Surprisingly, we did not run into too much trouble with
overfitting. Before beginning our experiments, we feared
that our model was too complex for small datasets like
CIFAR-10 and CIFAR-100, and that we would end up with
too-complex weights that would not generalize well.

Additionally, training converges faster with higher val-
ues of a. Unfortunately we do not have full data on this
due to time, but a loss and validation accuracy graph will
be shown in the poster and presentation. We believe this
is simply due to the fact that we are essentially perform-
ing model pre-training and transfer learning. Though only
applied to the residual mappings instead of the entire clas-
sifier, previous work has shown that residual mappings im-
prove model classification accuracy. Thus, it makes sense
that ”pre-training” the residual mappings will lead to better
classification accuracy and faster convergence.

Given our results, we confidently conclude that our
model architecture outperforms a standard ResNet. How-
ever, it does not beat state-of-the-art (SOTA) models. If
scaled to larger ResNet models that are close to SOTA, it
is possible that enhancing residual mappings with attention
will reach SOTA accuracy.

6. Conclusion and Future Work
Our experiments show that enhancing residual mappings

using attention leads to better classification accuracy. How-
ever, our results as of now do not surpass state-of-the-art
models, so applications of this model are limited to very
niche situations. For example, if someone is working on a
classifier without much data and needs a simple ML model,
our model can be applied to that situation. This is because
our model offers higher accuracy than base ResNet archi-
tectures, and the attention mapping can be taken from off-
the-shelf models and do not require fine tuning. However,
if training resources are unlimited and training data is abun-
dant, larger models will be more effective at classification.

Given more time, we would like to explore some other
datasets first. The reason images were scaled to 224 × 224
is because we had originally planned to train on datasets
such as ImageNet, where images are larger, contain more
information, and have more classes. We would like to see
if our accuracy improvements still apply on larger datasets.
Also, the ViT used for attention maps was self-supervised
using ImageNet, so it could potentially lead to even greater
accuracy improvements when compared to applications that
the ViT is not fine-tuned for. Additionally, with these big-

ger datasets, we wanted to make new classification and at-
tention blocks similar to the bottleneck blocks in ResNets.
This would allow us to create deeper networks.

Finally, I would like to explore training a model like this
end-to-end, rather than taking a backbone for generating at-
tention maps. Ideally, this would lead to even better maps
being generated, and thus giving even better classification
accuracy.

7. Contributions and Acknowledgements
You might have noticed that everything is written using
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and I only wrote my paper this way to sound more profes-
sional. This journey of trying to create my own architecture
has taught me a lot about computer vision. Shoutout to my
course instructors Fei-Fei Li and Ehsan Adeli, and also to
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