
Related Task Self-Supervised Learning for Rock Climbing Route Rating

Jack Hlavka
Stanford University

jhlavka@stanford.edu

Ethan Harianto
Stanford University

eharianto@stanford.edu

Abstract

Rock climbing is an increasingly popular activity, lead-
ing to indoor gyms creating their own routes. The grading
of these routes on a scale from V0 to V17 is a controver-
sial and subjective process. Further, no large dataset ex-
ists to learn this problem. This paper proposes a method of
using self-supervised learning on related tasks in adjacent
labeled datasets to learn representations to allow training
with fewer examples. This method is based on previous
research that found that self-supervised learning on hard
tasks related to the target task leads to better results. Using
this method, a YOLOv5 object detection model was trained
on a dataset of climbing holds, and then given a new re-
gression head to predict the grade of a climbing route. With
just 52 training examples, this model reached a test MSE
of 1.47, comparable to a beginner or intermediate human
climber given the same information. This method is a pow-
erful way to learn problems with limited data through re-
lated tasks on similar datasets.

1. Introduction
Rock climbing has grown increasingly popular in the

last few decades, especially in indoor gyms, eliminating
the barrier of traveling to remote locations. While outdoor
climbing routes are typically graded by the person making
the first ascent, then verified by others who climb it after,
this grading system is quite subjective requiring multiple
attempts and climbers to bring a level of objectivity to the
given grade [4]. Indoor climbing is even more subjective,
as often the only person who has input on the grade is the
route setter, someone who does not have the ability to ap-
proach the route from an uninformed climber’s perspective
due to their creation of the route. Therefore, there is often
a significant difference in difficulty between routes of the
same grade and especially, inconsistency between grades at
different locations.

Grading is very subtle, and for a human, generally re-
quires climbing the route. The difficulty is highly dependent
on the exact angles at which it’s possible to apply force and

the various body positions that the holds force the climber
into. It is quite possible for the same set of physical holds to
be used to construct two routes of extremely different diffi-
culty, just based on their arrangement. For example, a hold
that has a good grip on one side but is smooth on the other
could make the route much easier if oriented to take advan-
tage of its good side but help very little if rotated just ninety
degrees.

This paper will focus on bouldering routes, which are
climbed without ropes and are no more than about 15 feet
high. In indoor gyms, these routes are usually distinguished
by their color, such that a route is an isolated group of holds
all of the same color. The grading of these routes is usually
done using the Vermin scale, in which routes are graded
from V0, the easiest route, to V17, the currently hardest
climbed route. While generally, routes are only integer val-
ues, some gyms have ’slash grades’ (e.g. V6/7) or ’plus
grades’ (e.g. V5+ or V4-). Most indoor climbing facilities
have no routes above V10, with the majority of the routes
in the V3 to V6 range, the range of an intermediate climber.

Figure 1. An example V0 in white with large, easy-to-grab holds
(left) and an example V8 in green, with very few, far-apart, and
small holds (right)

To attempt to standardize and simplify the grading pro-
cess, this paper attempts to create an automated grading sys-
tem. The input to this algorithm is an image of a complete
climbing route. We then use a CNN to output a Vermin
scale grade. This is treated as a regression problem, as V

1



grades are in theory continuous, and are presented in a lim-
ited number of forms to reduce complexity and represent
the difference in difficulty that people with different body
types experience. For example, the algorithm may take in
a given image and output the value 3.2, which would, for
gym purposes, be considered a V3.

This is a difficult problem due to the importance of hold
type and orientation, as well as subtle relationships between
different holds that affect whole-body movements. A suc-
cessful model must be able to understand not just what parts
of the image are holds, but also develop some understanding
of how holds relate to each other. One such understanding
might be that a very small hold is very hard to use for a
handhold but perfectly acceptable as a foothold. A much
more nuanced understanding will be necessary for an accu-
rate model.

As only limited data is available for this task, the focus
will be improving results over a simple CNN. The primary
method tested will be self-supervised learning to pre-train
models using a domain-specific task to improve model un-
derstanding.

2. Related Work
Self-supervised learning is a well-researched area of

computer vision, with consistent results showing that it can
boost the results of pre-trained models. Zhai et. al. found
that self-supervised learning on ImageNet resulted in com-
petitive results using the labels of just 1% of the dataset.
They also attempted self-supervised semi-supervised learn-
ing, where labels for each image were predicted, and then
used for supervised training on the entire dataset. This
approach reached a state-of-the-art top-5 accuracy of over
91% using a fraction of 10% of the data [19].

Newell et. al. examined the utility gained by self-
supervised learning. They quantified each scenario by how
many labeled examples are ’saved’ by pre-training, repre-
senting the budget saved while labeling. They determined
that utility is highest in the low data scenario, finding di-
minishing returns as the labeled dataset grows. Further,
they determined that while large models perform worse
than smaller ones in low data scenarios, pre-training allows
larger models to become better than smaller models [15].

El-Nouby et. al. compared pre-training on an unrelated
dataset, as in the common paradigm of using a model pre-
trained on ImageNet, and self-supervised learning on the
target dataset, finding that the self-supervised learning of-
fers superior results on some datasets. This result is signifi-
cant as these datasets outperform ImageNet for pre-training
despite being much smaller and not using labels [5].

Finally, Ericcson et. al. compared 40 state-of-the-
art models with both self-supervised learning and transfer
learning techniques from ImageNet. They determined that
self-supervised learning has generally surpassed generic

pre-trained transfer learning, indicating that learning repre-
sentations closer related to the target task are more valuable
than having the extremely large ImageNet dataset [6].

Some authors tested the effect of the closeness of the tar-
get dataset to the pre-training dataset. Goyal et. al. tested
the possibility of self-supervised pre-training using images
unrelated to the target task. While they achieved compa-
rable results by pre-training on random images, doing so
required a total of one billion images in the pre-training
dataset, which would be quite unfeasible to use [7].

Xu et. al. tested domain adaptation between the self-
supervised and supervised tasks, determining that further
work in optimizing the training algorithm was needed for
comparable results when the domain was different [18].
Similarly, Bucci et. al. studied self-supervised learning of
different datasets in different domains, achieving fairly sig-
nificant results even when the target was different from the
self-supervised datasets [2].

Finally, Guillaumin et. al. tested self-supervised pre-
training on a related task. While attempting an image clas-
sification task, they pre-train with tags associated with the
images. Even though many of the tags are unrelated to the
image classes, pre-training still produced a sizeable positive
effect on the classification accuracy, though it failed to have
an effect on some classes [9]. This previous research con-
curs that pre-training is more effective when the task it is
learning is as close as possible to the target task.

Goyal et. al. tested different self-supervised learning
tasks and found that self-supervised learning becomes more
effective when the self-supervised task is harder. They ar-
gue that common tasks like orientation classification are too
easy to achieve optimal results and that, with harder tasks,
better accuracy on the supervised task would be achieved
[8].

Zoph et. al. tried a combination of pre-training and
self-supervised training. They determine that whenever pre-
training on a generic dataset is useful, fine-tuning a pre-
trained model on the self-supervised task and then tuning
that model on the supervised task results in even better re-
sults [20]. This is a significant result, as it indicates that
even when self-supervised training is useful, it can still be
correct to use a pre-trained model for the self-supervised
task.

This previous research indicates that self-supervised
learning is a powerful technique able to surpass pretraining,
even in the general case. Further, self-supervised learning
is successful even when the self-supervised dataset is un-
related to the target dataset. However, when the datasets
are more related, the success rises, indicating that self-
supervised learning should match the target task if possible.
Self-supervised learning is also more effective when the
self-supervised task is harder, suggesting that a task match-
ing the target task rather than just, for example, detecting ro-

2



tation, is more effective. Finally, even in the case when self-
supervised learning is superior to pretraining, doing both is
better than doing either individually. These results suggest
that an effective use of self-supervised learning would use
a similar dataset to the target dataset, use a task that is both
difficult and contains elements of the target task, and would
use a pretrained model to begin self-supervised learning.

3. Data
The algorithm in this paper utilizes two datasets, one tar-

get dataset and one self-supervised learning dataset. The
target dataset is a collection of images of complete boulder-
ing routes. As no such dataset exists online, this dataset
was hand-collected and hand-labelled. With permission,
pictures were taken of bouldering routes at the Stanford
Climbing Gym, a relatively small gym with a high den-
sity of routes. Images were taken of all wall space in the
gym, to cover every possible route. Images were cropped
to show each route individually and then resized to the ap-
propriate sizes for the model inputs. While this may appear
to distort absolute distances in the images, all routes have
the same starting and ending heights, meaning the resizing
preserves distance relatively well, and is not worse than the
effect caused by taking photos from different distances from
the wall.

There were a total of 88 images of routes collected, en-
compassing all of the routes in the gym. To augment this
extremely small dataset, each image was flipped horizon-
tally and recolored in two new ways, resulting in a total
of 528 images in the dataset. Further augmentations are
not possible as all other orientations and image adjustments
fundamentally change the identity of the route. Horizontal
reflections don’t do this as any route should be equally dif-
ficult as its symmetric counterpart, as humans are generally
symmetrical.

Each route is associated with a grade, the ground truth
label, which for the Stanford Climbing Gym is an integer
between 0 and 8 inclusive. These grades were assigned by
a team of route setters of different genders and body types,
which, at least in theory, should remove some of the subjec-
tivity of grading.

As this dataset is quite small, a 60-20-20 train-val-test
split was used, with all versions of an image in the same
split to avoid data leakage. This resulted in splits of size
312-108-108, meaning that the train split contained aug-
mentations of 52 routes, and the val and test splits contained
augmentations of 18 routes each.

The self-supervised learning dataset is the Blackcreed
Climbing Holds and Volumes Dataset [1]. This is an object
detection dataset, composed of images of climbing holds.
Some images are of single holds, some are of sets of holds
not attached to anything, and some are of entire routes.
There are a wide variety of images in the dataset, from local

Figure 2. Two examples images from the dataset, one unmodified
(left) and one color shifted (right)

gyms to images of international-level competition routes.
Each image is resized to 640x640 pixels for processing.
This resizing presents no issue as the distances between
holds is not important and an image of a distorted hold is
indistinguishable from an image of a hold shaped to be elon-
gated or compressed.

There are a total of 4301 images in the dataset. Each
image is augmented in three ways, through a combina-
tion of flips, rotations, and recoloring. In this case, ver-
tical flips and rotations are acceptable as the overall iden-
tity of the route has no bearing on identifying holds. The
dataset comes with a recommended 3876-277-148 train-
val-test split, which was used for this project.

For each image that contains one or more climbing holds,
bounding boxes were identified for each hold. These boxes
are minimally sized to encompass the entire hold, and many
of them overlap each other. Each box is assigned a class,
though the only classes in the dataset are 0 and 1, which
have no separate meanings. As such, all holds were unified
into a single class for the purposes of this algorithm.

Figure 3. Two example images from the Blackcreed Climbing
Holds Dataset with bounding boxes displayed. The colors of the
bounding boxes represent different classes, though these classes
are arbitrarily and inconsistently assigned.

3



4. Methods
4.1. Baseline Models

The baseline models in this paper are CNNs trained di-
rectly on the target dataset. This is the most straightforward
method for a regression task on a dataset. These CNNs use
mean squared error, which is the following loss function.

ℓ =
1

N

N∑
i=1

(yi − ŷi)
2

The architecture of such a CNN is a series of convolu-
tional layers with normalization and pooling layers inter-
spersed, then a head with a series of fully connected layers,
the last of which has only a single output node, which has
value ŷi.

The model architecture used is the ResNet architecture
[11]. ResNet is a classical architecture in which the resid-
ual of the previous layer is repeatedly predicted, reducing
the prediction error at each step. This architecture was state
of the art when first developed and remains a powerful ar-
chitecture.

For baseline results, we test both a ResNet trained from
scratch on the target dataset as well as a ResNet pre-trained
on the ImageNet image classification dataset. The latter
receives a new set of fully connected layers to train from
scratch, but every other layer remains from the pre-trained
version to take advantage of learned features from the much
larger dataset.

4.2. Proposed Methods

As no climbing route dataset existed before this project,
and the ability to create such a dataset was limited by the
fact that no gym has sufficient numbers of routes, the tar-
get dataset is extremely small. Even with augmentation, the
training set has just over 300 images. This would already
pose a significant challenge in training a CNN without over-
fitting. Complicating this already challenging task, climb-
ing routes mostly only depends on the holds of the route;
the wall and anything above, below, or to the side of the
route has very little to do with the difficulty of the route.
Therefore, a large amount of each image is irrelevant to the
target task and allows for overfitting. As the relevant fea-
tures are quite specific, it is expected that training a model
from scratch would require a significant amount of training
data to achieve a low prediction error.

To address these challenges of the low data scenario,
we choose to use self-supervised learning on an adjacent
dataset. Related work has shown the extreme efficacy of
self-supervised learning in pre-training a model on unla-
beled data.

Self-supervised learning is a technique in which a larger
unlabeled dataset is leveraged to create a labeled dataset to

allow the model to learn useful representations. For exam-
ple, one common self-supervised learning method is pre-
dicting the correct orientation of each image in the unla-
beled dataset. Such a model becomes a four-class (0◦, 90◦,
180◦, 270◦) classifier.

While this technique is useful for learning representa-
tions on large datasets, the climbing hold dataset is still
small on the scale of image datasets. Traditional self-
supervised learning may not be effective due to the size of
the dataset. Further, as climbing holds can be placed in any
way, the orientation of the image will be primarily deter-
mined by the floor, ceiling, edge of the wall, or ropes, none
of which are useful for route grading. Therefore even if
self-supervised learning can learn good representations for
the rotation task, they likely won’t be useful for the grading
task.

While other traditional self-supervised learning objec-
tives exist, like filling in a hole, recoloring, or ordering a
jigsaw, no objectives force the model to learn any represen-
tations of the holds. As the holds can be placed anywhere
in any orientation, any truly unlabeled dataset will not be
suitable for learning representations that help with grading
routes.

Therefore, we propose a form of related task self-
supervised learning. This technique shares similarities with
transfer learning. In particular, we propose training a CNN
on a related dataset using useful labels that will help learn
good representations. As we have a dataset of object de-
tection bounding boxes on climbing holds, which are an
important part of understanding a route, we pre-train our
model on the object detection task. This is an application of
self-supervised learning but with a task with proper labels.
It is similar to transfer learning in that a model trained for
one task is used for another, except that the final layers will
be replaced and retrained for the new task.

We hypothesize that this approach will be effective due
to past results indicating that self-supervised learning is
very effective, as well as research showing that such learn-
ing is more effective when the task is hard [8] (as hold de-
tection is in comparison to image rotation) and the dataset
and task are related to the final dataset [18].

As the climbing hold dataset has object detection labels,
a YOLOv5 model was used as the network for this algo-
rithm. YOLO is a family of single-shot object detection
pipelines [13]. To only use a single pass over the input
image, YOLO uses a grid bounding box selection instead
of a proposal network. Within each grid cell, the network
identifies every object whose center lies within the grid cell.
The model then proposes several bounding boxes that may
contain objects. Each grid box has a predicted confidence
score, which is used to select boxes that are likely to contain
objects. The coordinates of the boxes are then adjusted with
a regression head. Finally, for each adjusted bounding box

4



class probabilities are predicted. For inference, the model
selects the bounding boxes with confidence scores over a
certain threshold, adjusts the bounding box with the regres-
sion head, and then chooses the class with the highest con-
ditional probability. The result is a list of bounding boxes
with confidence scores and class predictions. For training
purposes, each head contributes to the loss, producing the
following loss function

ℓ =λcoord

S2∑
i=0

B∑
j=0

1obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2]

+ λcoord

S2∑
i=0

B∑
j=0

1obj
ij

[
(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2]
+

S2∑
i=0

B∑
j=0

1obj
ij

(
Ci − Ĉi

)2
+ λnoobj

S2∑
i=0

B∑
j=0

1noobj
ij

(
Ci − Ĉi

)2
+

S2∑
i=0

1obj
i

∑
c∈ classes

(pi(c)− p̂i(c))
2

Importantly for this application, YOLO networks use a
single CNN backbone that feeds into each of the different
heads. This is useful for this application as it means that
the CNN in the YOLO model must learn all representa-
tions necessary for all the sub-tasks in the object detection
task. That means that the CNN must be able to distinguish
generally where objects on the wall are and also their ex-
act boundaries and identities. This algorithm is thus con-
structed to take maximal advantage of the self-supervised
learning that occurs on the hold detection dataset.

The YOLOv5 model used has pre-trained weights, al-
lowing the algorithm to take advantage of the stacking ben-
efits of pre-training and self-supervised learning.[20] Those
weights were first fine-tuned on the climbing hold dataset
to learn more accurate representations of climbing holds.
Then the various heads of the YOLO model were removed,
and a convolutional layer was added to reduce the number
of channels, then finally a fully connected layer was added
to produce an appropriate regression head for the grading
task. This regression head uses a mean squared error loss
like the baseline model, though it updates only two layers’
worth of weights, freezing the rest.

In summary, the model begins as a YOLOv5 object de-
tection model, pre-trained on the large COCO dataset. This
dataset contains nothing about climbing but teaches the
model many useful representations of objects and shapes.
Then the architecture is preserved but the weights are up-
dated when the model is tuned on the hold detection dataset.
While this doesn’t directly teach anything about the target
task, it teaches the CNN component of the YOLO model
useful representations that allow it to identify climbing
holds, especially their edges. Finally, the weights of the

CNN are frozen, having learned the best representations
they can, but the regression, confidence, and class heads
are removed from the model, and replaced by convolutional
and fully connected layers, which are tuned on the target
dataset. While the target dataset isn’t large enough to train
a full model, it may be able to take advantage of previously
learned representations and learn an effective convolutional
and fully connected layer, creating a more effective regres-
sion head.

5. Experiments

All of the approaches in this paper ultimately trained di-
rectly on the target dataset using the mean squared error
(MSE) loss. As this metric is relatively divorced from un-
derstanding the performance of the various models, some
benchmarks need to be set. The first benchmark is random
guessing. A model that only guesses the sample mean grade
achieves an MSE of 4.40 on the test set. Any model that
claims to hold predictive power must beat that benchmark.

The second benchmark is human performance on the
task. When allowed to climb the route, a human will gener-
ally never be off by more than one grade, meaning the MSE
should be less than 1. However, in cases where an image is
the only thing provided, an error of two grades is plausible,
though anything worse would be quite unlikely. In such a
case, the mean squared error of human performance would
likely be between 1 and 2.

5.1. Baseline

Two baseline models were trained directly on the target
dataset without using the climbing holds data at all. Both
models had their hyper-parameters lightly tuned on the val-
idation set. Both models were trained for 5 epochs with an
Adam optimizer with a learning rate of 0.001. A batch size
of 4 was used.

The ResNet network trained from scratch achieved a test
MSE of 4.87, while the ResNet network pre-trained on Im-
ageNet achieved a test MSE of 5.23. This is significantly
below even the benchmark of guessing the sample mean,
indicating that these models are inaccurate, as seen in Fig-
ure 4, which shows predictions for the pre-trained models.

These results demonstrate that the extremely small
dataset didn’t contain enough examples to learn anything
meaningful. As the test MSEs were not below that obtained
by guessing, the models contained no meaningful predic-
tive power. This is not a large surprise, as the dataset is so
small, and the baseline models are not specialized for the
task. These results justify the need for an improved model,
one that uses another source of data in order to learn mean-
ingful representations

5



Figure 4. A graph demonstrating the very weak relationship be-
tween real grade and predicted grade when using the pre-trained
ResNet model with no self-supervised learning.

5.2. Proposed Method

The proposed method had a first step, supervised learn-
ing on the climbing holds dataset. This object detection
task, unlike the grading task, used the metric mAP50 (mean
Average Precision). This metric measures the value of pre-
cision for each recall value from 0 to 1. The YOLOv5 pre-
trained model was trained for 10 epochs with an Adam op-
timizer with a learning rate of 0.01 and a batch size of 16.
These hyper-parameters were tuned on the validation set.
After training, the YOLOv5 model achieved a 0.78 mAP50
score, indicating a relatively strong ability to detect climb-
ing holds. A visual examination confirmed, as shown in
Figure 5, that the detection is consistent and accurate.

Figure 5. Two example images of climbing hold detection by the
pre-trained YOLOv5 model.

The pre-trained YOLO model with self-supervised learn-
ing was compared with another pre-trained YOLO model
that was trained on the target dataset without self-supervised
learning. Both models had their CNN backbones used,
with the various heads discarded and replaced by regres-
sion heads. These models were trained for 2 epochs with
an Adam optimizer with a learning rate of 0.0001 and a
batch size of 1. These hyper-parameters were tuned on the
validation set and displayed significant effects from small
changes.

The model that didn’t undergo pre-training on the climb-
ing hold dataset achieved a test MSE of 2.05, while the one
that did reach a test MSE of just 1.47. These test errors
are much lower than random chance would allow for and
comparable to a human level. As seen in Figure 6, there is
a strong correlation between the actual grade and the pre-
dicted grade. The general trend is for the predictions to be
closer to the ’center’ of the common grades (3-4), which
makes sense as the MSE metric punishes extreme predic-
tions far more than conservative ones.

Figure 6. A plot of the average predicted grade for each ground
truth grade for both YOLO models

Looking at examples of very wrong predictions reveals
more about the nature of the model. The most misclassi-
fied example in the test set was the route depicted in purple
in Figure 7. This route is a V7, but the proposed network
predicted a grade of 2.1. This is a reasonable prediction.
The holds appear large and close together, hallmarks of an
easier route. The route is extremely difficult because the
holds barely protrude from the wall, giving little to work
with, a fact that is not clear from the image. This mistake
is not only one that a human would make but also demon-
strates that our network understands some important aspects
of grading a route.

Figure 7. An example route (in purple) that was misgraded

6



5.3. Discussion

Model Architecture Pre-Trained SSL Test MSE
ResNet No No 4.87
ResNet Yes No 5.23

YOLOv5 Yes No 2.05
YOLOv5 Yes Yes 1.47

Table 1. Table of test MSEs of the models tested in this paper

The ResNet architecture failed to do better than predict-
ing the sample mean, even when pre-trained. This is likely
due to the small size of the target dataset. Even when al-
lowed to train for longer, these models simply were unable
to form good predictors for this dataset.

The YOLOv5 architecture surprisingly was quite effec-
tive even without the additional learning from the climbing
hold dataset. This major jump in predictive power over the
ResNet may be due to the YOLO model’s additional heads
directing focus to the edges of objects, rather than the im-
age as a whole. This is much more suited for a task like
grading a route because, even though it requires information
from the entire image, grading a route requires knowledge
of subtle details about each individual hold, and needs very
little else.

This model, even without any domain-specific pre-
training, was able to reach the level of perhaps a beginner
climber. While mistakes are still very common, most pre-
dictions understand the broad strokes of the route, and very
few predictions are off.

As hypothesized, and consistent with previous research
that both pre-training and self-supervised learning boost
model performance, the YOLO model utilizing both tech-
niques was the most successful. This aligned with the
reviewed literature suggesting that a hard self-supervised
learning task in an adjacent domain would be the most ef-
fective training method. This aligns with the understanding
of CNNs. The pre-training forces the model to learn to iden-
tify a climbing hold, especially its edges. This is a necessary
skill for route grading, and one that on its own provides a
significant advantage.

This model displays a high level of sophistication and
can grade routes at a similar level to that of perhaps an inter-
mediate climber. The most significant mistake it made was
understandable to a human and reflected its understanding
of what makes a route difficult or easy. This understanding
also aligns with the pre-training, where the model focuses
on the holds it learned to detect, and makes its decisions
based on those holds.

6. Conclusion
As hypothesized and supported by previous research, the

most effective model was one that utilized both pre-training
on unrelated datasets as well as self-supervised learning
on a related but distinct task on an adjacent dataset. This
model was quite effective, surpassing a beginning human
level with just 52 training examples, due to the boost from
the other learning techniques. This result indicates that sig-
nificant results can be achieved even on small datasets, so
long as there is another method to learn important represen-
tations.

Given more time and resources, we would test the effect
of the size of the target dataset on the test error to determine
whether there are any thresholds for dataset size. Further
research could also investigate whether these techniques can
be applied to other problems with limited data. If so, this
could be a promising avenue of research for fields in which
labeling data is expensive or otherwise difficult.

7. Contributions and Acknowledgements
Jack collected, processed, and hand-labeled the route

grading dataset, trained the YOLO model on the hold iden-
tification dataset, trained the baseline models on the target
dataset, wrote the code to modify YOLO models into re-
gression models, and wrote the paper.

Ethan trained and fine-tuned the hyper-parameters of the
proposed models on the target dataset, visualized the re-
sults, and wrote the paper.

We used the GitHub library Ultralytics (https://
github.com/ultralytics/ultralytics), an im-
plementation of the YOLO model family into PyTorch.

7

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics


References
[1] Blackcreed. Climbing holds and volumes dataset.

https://universe.roboflow.com/blackcreed-xpgxh/climbing-
holds-and-volumes, February 2024.

[2] S. Bucci, A. D’Innocente, Y. Liao, F. M. Carlucci, B. Ca-
puto, and T. Tommasi. Self-supervised learning across do-
mains. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(9):5516–5528, 2021.

[3] A. Clark. Pillow (pil fork) documentation, 2015.
[4] N. Draper. 14 climbing grades. The Science of Climbing and

Mountaineering, page 227, 2016.
[5] A. El-Nouby, G. Izacard, H. Touvron, I. Laptev, H. Jegou,

and E. Grave. Are large-scale datasets necessary for self-
supervised pre-training? arXiv preprint arXiv:2112.10740,
2021.

[6] L. Ericsson, H. Gouk, and T. M. Hospedales. How well
do self-supervised models transfer? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5414–5423, 2021.

[7] P. Goyal, M. Caron, B. Lefaudeux, M. Xu, P. Wang, V. Pai,
M. Singh, V. Liptchinsky, I. Misra, A. Joulin, et al. Self-
supervised pretraining of visual features in the wild. arXiv
preprint arXiv:2103.01988, 2021.

[8] P. Goyal, D. Mahajan, A. Gupta, and I. Misra. Scaling and
benchmarking self-supervised visual representation learning.
In Proceedings of the ieee/cvf International Conference on
computer vision, pages 6391–6400, 2019.

[9] M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal
semi-supervised learning for image classification. In 2010
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 902–909, 2010.

[10] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–
362, Sept. 2020.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[12] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007.

[13] G. Jocher. YOLOv5 by Ultralytics.
[14] T. maintainers and contributors. Torchvision: Py-

torch’s computer vision library. https://github.com/
pytorch/vision, 2016.

[15] A. Newell and J. Deng. How useful is self-supervised pre-
training for visual tasks? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7345–7354, 2020.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[17] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages
56 – 61, 2010.

[18] J. Xu, L. Xiao, and A. M. López. Self-supervised do-
main adaptation for computer vision tasks. IEEE Access,
7:156694–156706, 2019.

[19] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer. S4l: Self-
supervised semi-supervised learning, 2019.

[20] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk,
and Q. Le. Rethinking pre-training and self-training. Ad-
vances in neural information processing systems, 33:3833–
3845, 2020.

8

https://github.com/pytorch/vision
https://github.com/pytorch/vision

