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Abstract

This paper describes current and past work on the task
of multi-category object counting in remote sensing images
and implements a YOLO object detection model in an at-
tempt to solve the task. This problem poses many challenges
due to varying scale across different satellite images and
varying scale of objects within a single image. The YOLO
method is compared to a density based counting method.
The density based method outperforms the YOLO method,
but it comes at a cost of higher model parameter count and
the need for Near-infrared images to accompany the stan-
dard RGB image input.

1. Introduction
Accurately determining the number of items depicted in

an aerial image would be beneficial to many areas of work.
For example, farmers could use the technology to count the
number of crops in a field. Urban planners could use the
technology to count the number of cars, bicycles, and peo-
ple crossing intersections throughout the day. Furthermore,
disaster relief personnel could use the technology to assess
damage after a storm. These uses, just a sub-sample of all
the possible uses, showcase the importance and motivation
for creating an accurate model to count the number of items
in an aerial image.

Thus far, much of the work in counting items from satel-
lite images, also known as remote sensing, has focused on
counting a single type of object from an image. The subject
of multi-class object counting in remote sensing images is
nascent, with a few papers published in the beginning of
2024. The recency of these papers indicate that this topic is
a growing field of study with a lot of work still to be done.

Object counting in remote sensing images is particularly
challenging because of various obstacles that exist in satel-
lite images: unknown scale, nonuniform/cluttered back-
ground, and various object orientations. Within a single im-
age, objects have vastly different scales, ranging from large
airplanes, buildings, and ships to small cars and people. Ad-

ditionally, without an assumption of scale in a satellite im-
age (e.g. 1 meter resolution), the scale between satellite
images can vary greatly. Furthermore, satellite images have
varied backgrounds, ranging from dense cities to farmland
and oceans, all of which are captured in different lighting
conditions. These complications make multi-class object
counting in remote sensing images a challenging task.

Previous research developed tailored, task-specific mod-
els for object counting in the remote sensing domain. This
project implements a counting model using the publicly
available You Only Look Once (YOLO) object detection
model and compares the results of this model with pre-
vious multi-class object counting research. The input to
the YOLO model is a 1024 × 1024 RGB satellite image
and outputs the number of detections per class. This pa-
per uses the Northwestern Polytechnical University Multi-
Object Counting (NWPU-MOC) dataset, which contains 14
unique classes and is discussed in more detail in the Dataset
section 4.

2. Related Work
As [3] notes, the field of satellite image counting can

broadly be divided into three approaches: density map esti-
mation, regression, and detection methods.

The density based approach to counting was introduced
by [7]. In [3] and [4], Gao et al. build on this density based
approach because they found this technique to be helpful
on satellite images with dense objects and large scale vari-
ation. In this setting, “dense objects” refers to many ob-
jects that are clustered together in an image. For exam-
ple, a zoomed out view of a filled parking lot would be
considered a dense image. [3] and [4] are also influential
because they introduce two datasets for the task of object
counting in remote sensing images. In [3] Gao et al. intro-
duce the Remote Sensing Object Counting (RSOC) dataset
and a method for single class object counting in satellite
images. The RSOC dataset consists of 3057 images and
4 classes: ship, large-vehicle, small-vehicle, and building.
While this paper helped develop the field by providing a la-
beled dataset and a novel density-based counting model, it
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lacks the ability to count multiple categories of objects at
once. Thus, [3] is often used as a baseline for other remote
sensing counting research. For example, both [1] and [15]
count multiple classes in a remote sensing images, using the
RSOC dataset as a data source for evaluation. This differ-
ence between the dataset’s original task and the objective of
these models may be a source of error in computing evalua-
tion metrics. However, this problem might be solved by the
recently published [4], which introduces the NWPU-MOC
dataset for the multi-class object counting task from satel-
lite images.

Another popular approach is to use regression based
methods to estimate the number of objects in a satellite
image. For example, [10] implements a linear regression
model and [14] implements a Gaussian mixture regression
model. Furthermore, Huang et al. [5] use regression ensem-
bles to count items in the RSOC dataset. The paper shows
that the regression ensemble model performs the best when
identifying and counting buildings, but is not as good as
other methods when compared to identifying and counting
vehicles and ships. Overall, these regression based count-
ing techniques seem to only work well on certain objects.
Specifically, the regression models tend to work well when
the objects have similar scale and are evenly distributed
throughout the scene.

The last technique is a detection based approach to count
the number of objects in a satellite image. Faster RCNN
[12], YOLO [11], and SSD [9] are popular object detec-
tors that could be used. Once the objects in a scene are de-
tected, counting becomes straightforward by simply sum-
ming across the class detections in the image. Gao et al.
state “this solution [object detection methods] could be suc-
cessful in the condition that objects are with large sizes and
sparsely located but may fail in the dense cases, especially
for adjoining dense buildings, densely crowded ships in the
harbors and small vehicles in the parking lots” [3]. This re-
mark seems reasonable; however, little work in the remote
sensing object counting domain has been completed, so one
of the aims of this paper is to analyze this claim.

3. Method

3.1. Model

This paper uses the YOLO [11] model for object detec-
tion. YOLO was chosen because the company ultralytics
provides a free, public version implementation of YOLO
that easily integrates into Python [6]. This easy integration
and clear documentation was an important requirement so
that users who are unfamiliar with the algorithm, but are
still interested in counting objects in remote sensing images
can quickly and easily predict on their own images. The
ultralytics framework provides five YOLO tasks: detection,
segmentation, classification, pose estimation, and oriented

bounding boxes. The detect task was used because, in the
task of counting objects from satellite images, we care about
correctly identifying objects in the scene and less about the
exact position and shape of the object. Additionally, the
“yolov5m6u.pt” pretrained model from ultralytics was used
because it took input images of 1280 × 1280 pixels and
the NWPU-MOC dataset uses images of size 1024 × 1024
pixels. This model is pretrained on the COCO dataset [8].
Furthermore, this pretrained model contains approximately
41.2 million parameters, which is smaller than the chosen
best model in [4] that has approximately 59.9 million pa-
rameters. The ultralytics YOLO model’s maximum number
of detections was increased from the default 300 to 3,600
because there is a training example consisting of 3,582 la-
bels. This number was used as the maximum number of
detections for the training, validation, and test sets.

The YOLO model uses three loss functions: box, classi-
fication, and distribution focal loss. The standard ultralytics
YOLO model also uses pose and keypoint objectness loss,
but these were set to zero in this project because the task
of counting objects does not require knowing an object’s
pose. The box loss is calculated as the mean squared er-
ror of the predicted box compared to the true bounding box.
The classification loss is calculated using the cross entropy
loss. Lastly, the distribution focal loss is used as introduced
and described in its paper [13]. The distribution focal loss is
used to counter the imbalance of classes in the training data.
This function computes a higher loss for less seen classes,
encouraging the neural network to focus more on examples
with rare objects. Furthermore, these losses were weighted
by importance for the counting task in order to create an
overall model loss during training. The bounding box loss
was weighted by 1, the class loss by 2, and the distribution
focal loss by 10. The reasoning behind these choices was
that the multi-object counting task does not care so much
about forming a proper bounding box, but it is important to
predict the correct class for an object. For this reason, the
class loss was given double the importance of the bounding
box loss. The distribution focal loss was assigned the large
weight of 10 because there is great class imbalance in the
dataset, with some classes only appearing in tens of images
and other classes appearing in over two thousand images.

3.2. Evaluation Metrics

The ultralytics YOLO model uses precision, recall,
mAP50, and mAP50-95 to determine the accuracy of the
model’s detections. These metrics were used to assess the
model’s performance during training time since accurate de-
tections are required for accurate object counting. Once
training completed, the evaluation metric was updated to
reflect standards in the object counting task domain. Specif-
ically, following [4] and prior work in object counting, this
paper reports final counting results using Mean Absolute
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Error (MAE) and Root Mean Squared Error (RMSE) calcu-
lated for each object category separately. MAE and RMSE
are defined:

MAE =
1

n

n∑
i=1

|yi − ŷi|

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Note that n is the number of images, yi is the true cate-
gory count, and ŷi is the predicted category count from the
YOLO model.

To obtain an overall score for the model, the average
MAE and RMSE was computed as follows:

MAE =
1

C

C∑
i=1

MAEi

RMSE =
1

C

C∑
i=1

RMSEi

The variable C represents the total number of classes,
which is 14 in the NWPU-MOC dataset. One aspect of this
project was developing code that used the ultralytics YOLO
output and NWPU-MOC dataset labels to compute these
metrics.

3.3. Training

The YOLO model was trained for 100 epochs with a
batch size of 1 on a NVIDIA T4 GPU. It took approximately
12 hours for the model to train. A smaller batch size was re-
quired because the maximum number of detections is large:
3,600. The YOLO model was trained with the stochastic
gradient descent (SGD) optimizer with a learning rate of
0.01, momentum of 0.9, and decay of 0.0005. The first three
epochs of training were used as “warm-up epochs,” where
the learning rate is gradually increased to its initial value
in order to stabilize initial training. These hyperparameters
were selected by ultralytics’s training optimizer program,
which uses compute resources, batch size, and other data to
determine an optimizer and its most suitable hyperparame-
ters.

4. Dataset
The NWPU-MOC dataset was used in this paper be-

cause it is one of the first datasets that labels and counts
multiple objects in satellite images with various scale. The

Class Density Map YOLO

MAE RMSE MAE RMSE
Tree 16.6072 35.3590 29.4888 70.6238

Container 1.6381 6.2787 2.0995 12.8009
Airplane 0.0615 0.4768 0.0098 0.1082

Boat 0.7884 4.8291 0.6332 3.9602
Vessel 0.1629 1.4042 0.0166 0.1951

Car 5.6273 14.4216 4.3854 16.9220
Truck 1.6133 5.1053 0.8615 4.0578
House 2.8895 6.9919 3.1883 9.0377

Industrial 0.9073 2.7487 0.7932 2.4091
Mansion 1.7766 4.9877 1.6790 4.7560
Stadium 0.1463 0.8543 0.0107 0.2399
Others 0.2107 1.3543 0.2127 1.3529

Farmland - - 1.9580 3.4046
Pool - - 1.9259 3.5002

12-Class Avg. 2.7024 7.0676 3.6149 10.5386
14-Class Avg. - - 3.3759 9.5263

Table 1: Counting results from the density map model in
[4] and the YOLO model. Note that [4] did not list results

for Farmland and Pool.

dataset was introduced in [4] with a density based approach
to count the number of objects in the scene. Due to this
density based approach and the requirements of ultralytics’
YOLO implementation, some preprocessing of the data was
required. The NWPU-MOC dataset contains pairs of RGB
and Near-infrared (NIR) images. There are 3,416 pairs of
images split into 2,049 training, 342 validation, and 1,025
test examples. The dataset consists of 14 classes: Airplane,
Boat, Car, Container, Farmland, House, Industrial, Man-
sion, Pool, Stadium, Tree, Truck, Vessel, and Others. There
is large class imbalance in the dataset. [4] notes that “cars
appear in 2,140 images, while only 78 images contain air-
planes.”

The first preprocessing step was to remove the NIR im-
ages in the dataset because the YOLO model only takes a
RGB image as input. The next preprocessing step updated
the labels for each image so that it conformed to the ultra-
lytics label standards for the YOLO detection task. Specif-
ically, the YOLO model expects one text document per im-
age, where every line in the document represents an object
with the following information: class, x center, y center,
width, and height. The annotations provided in the NWPU-
MOC dataset contained the class, number of objects, and
(x, y) coordinates for each item in the image. These (x, y)
points were used as the center coordinates for the detect
task. Since the NWPU-MOC dataset currently does not
have bounding box information for every object, a heuristic
was used to determine an object’s height and width. Ob-
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Figure 1: This example of labels (top image) compared to
predictions (bottom image) shows that the YOLO model

can correctly predict some classes, but struggles with some
dense objects like trees.

jects were either determined to be large, medium, or small.
Large objects were assigned a height and width of 300 pix-
els, medium objects a height and width of 100 pixels, and
small objects a height and width of 30 pixels. The classes
Farmland, Industrial, and Stadium were considered large.
House, Mansion, Pool, Vessel, Container, Airplane, and
Others were considered medium. Finally, the classes that
made up the small category were Car, Truck, Boat, and
Tree. Since there exists scale variation in the dataset, it is
important to note that this heuristic is not exact and a more
precise approach would be to gather exact bounding box in-
formation on every object in the images.

Lastly, the data and labels were reorganized into the di-
rectory structure that the ultralytics YOLO model expects
and a data YAML file created to explain the structure to the
model.

Figure 2: This example of labels (top image) compared to
predictions (bottom image) shows that Farmland and Pool

are difficult to predict.

5. Results

Table 1 reports the test set results of the YOLO model
trained in this paper alongside the results of the density
based model presented in [4]. It is important to note that
[4] did not report results for the Farmland and Pool classes,
so there are two averages in the table: one for the 12
classes (not including Farmland and Pool) and one for all
14 classes.

The YOLO model performs the worst on the Tree, Car,
and Container classes. The density based model also per-
forms the worst on the Tree and Car classes. However, the
density based model performs much better than the YOLO
model on these classes. Since both models have trouble
counting trees and cars, this indicates that these classes
are particularly challenging for computer vision models to
count, especially when the scene is dense.
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Figure 3: Confusion matrix of YOLO model on validation data.

There are a few classes where the YOLO model creates
a more accurate count than the density based model. For
example, the YOLO model has a lower MAE and RMSE
for Airplane, Boat, and Stadium. All of these classes have a
small number of examples in the training data as compared
to the number of examples for Car and Tree. Therefore, this
result is likely due to the extra weight this paper placed on
distribution focal loss in order to counter class imbalance in
the training data.

The YOLO model achieved a 14-class average MAE
of 3.3759 and RMSE of 9.5263. In order to compare the
YOLO model to the density based model reported in [4],
a 12-class average was computed and the YOLO model
achieved an overall MAE of 3.6149 and RMSE of 10.5386.
Conversely, the density based model achieved an overall
MAE of 2.7024 and RMSE of 7.0676. These results show
that the density based model computes a more accurate
count of the multi-category objects in remote sensing im-
ages; however, this better performance comes at a cost. The

density based method has approximately 19 million more
parameters and requires the Near-infrared image to accom-
pany an input RGB image. The importance of this trade-off
in performance will depend on a user’s need for accuracy,
access to NIR images, and compute resources.

Figures 1 and 2 depict some qualitative examples of the
YOLO model’s performance. Figure 1 is a dense scene
with many trees, houses, and cars. Notice that the YOLO
model struggles to identify the trees in the scene, but is able
to identify many of the houses and cars. Additionally, the
model incorrectly labels a bridge as another type of building
and is unable to identify the body of water. Figure 2 further
shows that the YOLO model struggles to detect some phys-
ically larger categories, such as Farmland and Pool. Figures
1 and 2 also shows that the NWPU-MOC dataset classifies
any body of water as Pool. This is an interesting choice
of label and proves difficult for computer vision models as
bodies of water can be in various shapes and sizes. On the
other hand, swimming pools can often fit into a rectangular
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shape.
Figure 3 depicts the normalized confusion matrix of the

YOLO model. One concerning aspect of the confusion ma-
trix is that the YOLO model predicts with some regularity
Car in situations that are actually Truck and Background.
Another concern is that the YOLO model often incorrectly
predicts background when there is an object present in the
scene. These issues might be resolved through better mod-
els or additional labels and examples in the NWPU-MOC
dataset.

Recall the comment in [3]: “this solution [object detec-
tion methods] could be successful in the condition that ob-
jects are with large sizes and sparsely located but may fail
in the dense cases, especially for adjoining dense buildings,
densely crowded ships in the harbors and small vehicles in
the parking lots.” One of the aims of this paper is to ana-
lyze this claim. The results above show some contrasting
points. On one hand, the YOLO model could successfully
identify small, dense cars, but was extremely poor at iden-
tifying dense trees. Conversely, the YOLO model could not
identify large objects like farmland. Ultimately, more train-
ing data, especially data that is balanced across object cate-
gories, is needed to fully vet the claim in [3].

6. Future Work
There are two efforts that standout as possible avenues

for future work. First, exact bounding boxes to the dataset
labels can be added to the NWPU-MOC dataset. This added
information could help train the ultralytics YOLO model
on the oriented bounding boxes task, which is pretrained on
DOTA, a satellite object detection dataset [2]. The added la-
bel information and a better task-aligned pretrained model
may be able to obtain better results. Secondly, one could
add the segmentation task to augment object detection. For
example, segmentation may be able to identify the farmland
and bodies of water in Figure 2. The combination of seg-
mentation and object detection may lead to better results.

7. Conclusion
This paper explored using a YOLO model for multi-

category object counting in remote sensing images of differ-
ent scale. The YOLO model was compared against a den-
sity based counting model on the NWPU-MOC dataset. The
YOLO model performed decently well at the task, but under
performed compared the the density based model. The bet-
ter performance of the density based model comes at a cost
of a greater number of parameters and the need for Near-
infrared images to accompany the RGB input images.

8. Contributions and Acknowledgements
This paper used ultralytics YOLO implementation,

which can be found here: https://docs.ultralytics.com/.
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