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Abstract

Parameter-efficient fine-tuning (PEFT) methods, such as
Low-rank Adaptation (LoRA), have significantly reduced
the number of parameters required to fine-tune large lan-
guage models (LLMs). Recently, new PEFT methods like
Representation Fine-tuning (ReFT) have pushed this ef-
ficiency even further, reducing the fine-tuning parameter
count to less than 1% of the original model while also en-
hancing the interpretability of the fine-tuned models. In this
Stanford CS231n project, we explored the application of
ReFT in fine-tuning models for vision-related tasks, includ-
ing image-text understanding and visual instruction tuning.
ReFT employs fewer parameters than other PEFT methods
yet achieves comparable performance, particularly in im-
age captioning. This motivates us to further investigate the
application of ReFT in other domains.

1. Introduction
Pretrained large language models (LLMs) are frequently

fine-tuned to adapt them to new domains or tasks (4).
Through fine-tuning, a single base model can be adapted
to a variety of tasks with only small amounts of domain-
specific data. However, fine-tuning LLMs is expensive.
Parameter-efficient fine-tuning (PEFT) methods address the
high costs of full fine-tuning by updating only a small frac-
tion of the weights. This reduces memory usage and train-
ing time, while achieving performance similar to full fine-
tuning in many settings (12).

Current state-of-the-art PEFT methods, such as Low-
Rank Adaptation (LoRA, (11)), modify weights rather than
representations. However, much prior interpretability work
in natural language processing has shown that represen-
tations encode rich semantic information, suggesting that
editing representations might be a more powerful alterna-
tive to weight updates. Historical research on language rep-
resentations has provided increasing evidence that human-
interpretable concepts can be encoded linearly (25). It
is thus possible to use linear transformations to edit lan-
guage models’ representations, treating that as a new PEFT

method.
The recently proposed Representation Fine-tuning

(ReFT (30)) method gained insight from this reasoning.
ReFT trains linear low-rank interventions that manipulate
a small fraction of the language model’s representations
to steer model behaviors for downstream tasks at infer-
ence time. By editing representations rather than weights,
ReFT tunes fewer parameters than other PEFT methods like
LoRA, while achieving similar fine-tuning performance.
For tasks such as commonsense reasoning and instruction
tuning, ReFT has been shown to use less than 1% of the
model’s original parameters, serving as a drop-in replace-
ment for weight-based PEFTs like LoRA. In addition to be-
ing 15x-65x more parameter-efficient, ReFT is also more
flexible and interpretable.

PEFT methods like LoRA also have broad applications
in computer vision, including fine-tuning vision-language
models such as VL-Bart (15), LLaVA (17), and diffusion
models (23). However, vision feature representations lie
in different subspaces compared to token representations in
the embedding space. Therefore, a versatile PEFT method
that works across both vision and language domains would
have broad applications.

In this CS231n project, we applied ReFT to computer
vision tasks. Due to the limited time of the course project,
we focused on vision-language tasks, particularly image-
text understanding. These tasks require the model to inte-
grate information from both input texts and images, com-
pleting tasks such as (1) answering logical questions about
the given image, (2) reasoning about multiple input images,
and (3) adding captions to input images. Successfully com-
pleting these challenging image-text understanding tasks
would demonstrate ReFT’s adaptability to image features
and pave the way for broader vision applications such as
vision instruction-tuning and image generation.

Compared to LoRA-like methods, which use low-rank
matrices to approximate additive weight updates during
training, ReFT explicitly edits model activations (in our
case, adding interventions to the residual stream) to steer
the representation in a particular direction. In addition to
improving the interpretability of fine-tuning, ReFT also fa-
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cilitates easier composition of different adaptations (inter-
ventions) in the representation space. This feature is use-
ful in the language domain and even more applicable in
the vision domain. For instance, we could train one ReFT
to steer an image towards a Pikachu and another ReFT to
steer the image towards an Apple Vision Pro. Composing
these two ReFTs in the representation space could present
us with a Pikachu wearing an Apple Vision Pro. Compared
to various attempts to compose multiple LoRAs together
(33), composing ReFTs is a simple and interpretable vec-
tor space operation in the representation space, providing a
more sharable and composable framework for image edit-
ing.

2. Related Work
Parameter-efficient fine-tuning methods (PEFTs).
PEFTs train a fraction of the model’s parameters to adapt
it to downstream tasks. We classify PEFTs into three
categories:

1. Adapter-based methods train additional modules
(e.g. fully-connected layers) on top of the frozen pre-
trained model. Series adapters insert components be-
tween LM attention or MLP layers (10; 22), while par-
allel adapters add modules alongside existing compo-
nents (9). Since adapters add new components that
cannot be easily folded into existing model weights,
they impose an additional burden at inference time.

2. LoRA (11) and DoRA (19) use low-rank matrices to
approximate additive weight updates during training,
and require no additional overhead during inference,
as the weight updates can be merged into the model.
These are the current state-of-the-art PEFT methods.

3. Prompt-based methods add randomly-initialised soft
tokens to the input (usually as a prefix) and train
their embeddings while keeping the LM weights
frozen (16). These methods are often less optimal
compared to other PEFTs and come with significant
inference overhead. A variant of this method, where
hidden-layer activations are also tuned, was introduced
as a baseline in (11), showing better performance.

Representation editing. Recent work on activation steer-
ing and representation engineering demonstrates that
adding fixed or task-specific steering vectors (34; 18) or ap-
plying concept erasure (2) to the residual stream can enable
a degree of control over pre-trained LM generations without
the need for resource-intensive finetuning.

The success of these methods confirms that represen-
tations induced by pre-trained LMs carry a rich semantic
structure.

Interventional interpretability. Recent work has in-
creasingly used interventions on model-internal states to
test hypotheses about how LMs implement various behav-
iors. Specifically, interventions on linear subspaces of rep-
resentations have provided growing evidence that human-
interpretable concepts are encoded linearly (25; 24). This
includes linguistic characteristics such as gender and num-
ber (14; 1), logical and mathematical reasoning, entity at-
tributes, and a number of other domains (21; 8).

Vision-language fine-tuning. It has become common
practice to fine-tune a pretrained model to perform mul-
tiple downstream vision-language tasks. (20) first fine-
tuned a vision-language model (VLM) on multiple down-
stream tasks simultaneously. VL-Adapter (27) fine-tuned an
adapter on an LM and achieved performance comparable to
full fine-tuning on vision-language tasks. LLaVA (17) fine-
tuned the LLaMA LLM on vision instruction-tuning tasks,
unlocking vision capabilities in large language models. Our
method follows this stream and investigates whether ReFT,
as a new PEFT method, could achieve performance similar
to adapters and LoRA on vision-language fine-tuning.

3. Methods

3.1. ReFT

In this section we briefly introduce the ReFT method.
We refer users to the ReFT paper (30) for more details. To
keep the presentation simple, we assume throughout that
our target model is a Transformer-based (28) LM that pro-
duces contextualized representations of sequences of to-
kens. Given a sequence of n input tokens x = (x1, . . . , xn),
the model first embeds these into a list of representations
h(0) = (h

(0)
1 , . . . ,h

(0)
n ). Then, m layers successively com-

pute the j-th list of hidden representations h(j) as a function
of the previous list of hidden representations h(j−1). Each
hidden representation is a vector h ∈ Rd. The LM uses the
final hidden representations h(m) to produce its predictions.
For vision experiments, we only consider autoregressive
LMs, which predict p(xn+1 | x1, . . . , xn) = (Wh

(m)
n ),

where W is a learned matrix mapping from representations
to logits over the vocabulary space.

3.1.1 Motivation

The linear representation hypothesis claims that concepts
are encoded in linear subspaces of representations in neural
networks. Early connectionist work on distributed neural
representations first proposed this idea (25; 24), and recent
empirical work has found evidence supporting this claim in
neural models trained on natural language and other input
distributions (21; 8).
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Figure 1. Illustration of ReFT. Image borrowed from the ReFT paper (30). (1) The left panel depicts an intervention I: the intervention
function Φ is applied to hidden representations at positions P in layer l. (2) The right panel depicts the intervention function used in ReFT,
which finds an edit vector that only modifies the representation in the linear subspace spanned by the rows of R. Specifically, we show
how a rank-2 ReFT operates on 3-dimensional hidden representations.

In interpretability research, the framework of causal ab-
straction (5) uses interchange interventions to causally es-
tablish the role of the components of the neural network in
the implementation of particular behaviors. The logic of the
interchange intervention is as follows: if one fixes a repre-
sentation to what it would have been given a counterfactual
input, and this intervention consistently affects model out-
put in the way predicted by our claims about the component
producing that representation, then that component plays a
causal role in the behaviour being studied. Experiments in-
vestigating how such interventions affect model behavior
form the evidence for claims about the causal role of a rep-
resentation and the concept it encodes.

To test whether a concept is encoded in a linear subspace
of a representation, as claimed by the linear representation
hypothesis, one may use a distributed interchange inter-
vention (DII) (6). Let b be the hidden representation cre-
ated at row i and column k when our model processes input
b, and let s be the corresponding representation when that
same model processes input s. A distributed interchange in-
tervention on b given a counterfactual source representation
s is then defined as

DII(b, s,R) = b+R⊤(Rs−Rb) (1)

where R ∈ Rr×d is a low-rank projection matrix with
orthonormal rows, d is the representation dimensionality,
and r is the dimensionality of the subspace we are interven-
ing on. We learn the subspace R using distributed align-
ment search (DAS), which finds the subspace that max-
imises the probability of the expected counterfactual output
after intervention (6). DAS is highly expressive, and can
effectively localize concepts within model representations
(32; 1). This suggests that subspace representation inter-
ventions could also be a powerful tool for model control.

LoReFT. The formulation of DII in eq. 1 immediately
suggests a way to control model generations via interven-
tions. The guiding intuition is that we can learn how to
perform interventions that steer the model towards predict-
ing our task labels. The resulting method, Representation
Fine-tuning (ReFT), is defined by the following variant of
1:

Φ(h) = h+R⊤ (Wh+ b−Rh) (2)

This equation is identical to equation 1, except we use a
learned projected source Rs = Wh + b. ReFT thus edits
the representation in the r-dimensional subspace spanned
by the rows of R to take on the values obtained from our
linear projection Wh+ b. We depict this operation in Fig-
ure 1. The learned parameters are ϕ = {R,W,b}; the
parameters of the LM are frozen. As with DII, R ∈ Rr×d

is a low-rank matrix with orthonormal rows where d is the
hidden-state dimensionality and r ≤ d is the rank of the
subspace. We further define a linear projection W ∈ Rr×d

and bias vector b ∈ Rr.

Relationship between ReFT and LoRA. ReFT does not
limit the particular form of intervention Φ that could be ap-
plied to the representation h. To analyze the similarities and
differences between LoRA and ReFT, we can consider an
ablated form of LoReFT, which removes the orthogonality
constraint and the difference operation:

Φ(h) = h+W⊤
2 (W1h+ b) (3)

Both W1,W2 ∈ Rr×d are low-rank projection matrices.
The above intervention 3 resembles LoRA and can be con-
sidered as applying the low-rank matrix transformation to
the representation directly, instead of to the model weights.
The ReFT paper (30) suggests that removing orthogonal
constraints in Φ decreases performance only slightly.
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In both 2 and 3, we apply the intervention to the rep-
resentation of the model h at the transformer’s residual
stream, where it combines the output of the MLP layer and
the Attention layer. The closest form of LoRA to ReFT
would be to apply LoRA to the attention layer output pro-
jection matrix and the MLP projection matrix. Mechan-
ically, ReFT uses a single low rank transformation 3 to
encode multiple LoRA matrices, so it has less expressive
power than LoRA. Also, ReFT only applies to specific to-
kens in the prompt, instead of LoRA, which applies to all
the tokens in the prompt and during decoding. However,
since ReFT is grounded in the linear representation hypoth-
esis of language, it is a much more parameter-efficient way
to unlock the task-specific knowledge and capabilities in the
pre-trained model.

Training objective. In the vision-language experiments
performed in this project, we only consider generation tasks
using encoder-decoder LMs (such as Bart (15)). The pre-
trained language model induces a distribution over token
sequences p(·). We denote the model that results from the
ReFT intervention Φ on p(·) as pΦ(·) with trainable param-
eters ϕ. To simplify notation, we refer to the hidden rep-
resentations produced by the LM on input x as h(x), and
those by the intervened LM as hΦ(x).

For vision-language generation tasks, our training objec-
tive is language modeling. In our case, the input sequence
x = (x1, . . . , xn) contains n tokens as the prompt, where
the first few tokens xt = (x1, . . . , xp) are the embedded
text tokens, and xv = (xp+1, . . . , xn) are the embedded
image features. The embedded image features have been
pre-processed by a pre-trained ResNet-101 network from
the dataset’s images. Each image token corresponds to a
bounding box of image features. Image embeddings and
text embeddings are directly concatenated:

x = Concat(prompt,xt,xv) (4)

The goal is to predict the output sequence y =
(y1, . . . , ym) with m tokens. We minimize the cross-
entropy loss with teacher forcing over all output positions.

min
ϕ

{
−

m∑
i=1

log pΦ (yi | xy<i)

}
(5)

4. Dataset
We use the following fine-tuning datasets during the

training, validation, and testing of vision-language models:

• VQA v2 (7) - Visual Question Ansering. This dataset
contains various questions about input images, cov-
ering aspects like color, shape, texture, relationships
between image elements, and semantic understanding.
Figure 2 provides an example of the VQA dataset.

Figure 2. Sample VQA Image. VQA questions about this image
include: (1) Is the bed white? (2) How many frames are on the
wall? (3) What kind of room is this?

• GQA (13). An enhanced version of VQA, focusing
more on visual reasoning and compositional question
answering. Instead of simpler questions like ”What
color are the gym shoes?” in VQA, GQA includes
more complex questions, such as ”Is there any milk
in the bowl to the left of the apple?”

• NLVR v2 (26). This dataset involves questions com-
paring pairs of images. For instance, one might ask
whether the left image contains twice as many dogs
as the right image. These questions require a deeper
understanding of the logical relationships between the
pair of input images.

• COCO Caption (3). This dataset contains a large
collection of images for which the model must gen-
erate captions. The generated captions are evaluated
against a pool of human-generated captions using met-
rics such as BLEU, CIDEr, and ROUGE. Following
the approach in the DoRA paper, we report the CIDEr
(29) evaluation score for ReFT.

All these datasets use images collected for the COCO
captioning task. The COCO images are preprocessed into
image features using a ResNet-101 backbone. Our experi-
ments utilize the preprocessed image features downloaded
directly from the DoRA (19) project site.

5. Experiments
5.1. Experiment Setup

We adopted the codebase from VL-Adapter (27), DoRA
(19), ReFT (30), and Pyvene (31) and integrated these li-
braries together to fine-tune the Facebook Bart-base (15) on
the aforementioned datasets.

In our experiments, we apply ReFT exclusively to the
language model encoder, editing the representation at the
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Methods % Params VQA GQA NLVR COCO-Caption Avg
FT 100 66.9 56.7 73.7 112.0 77.3
LoRA 5.93 65.2 53.6 71.9 115.3 76.5
DoRA 5.96 65.8 54.7 73.1 115.9 77.4
ReFT-64 (Ours) 2.10 61.4 50.0 65.5 114.7 72.9

Table 1. Image-Text Understanding results of ReFT. These results are reported on the test sets of the relative datasets under the hyper-
parameter selected according to Table 2.

transformer block residual stream across all encoder layers.
This approach may be less powerful than editing the de-
coder layers as well, as done in LoRA and DoRA. We chose
to apply ReFT only to the encoder partly because ReFT pa-
per (30) indicated that intervening on the prompt yielded
the best performance, and the encoder representations cor-
respond to the prompt.

ReFT edits the prefix and suffix of the input tokens.
Since we concatenate text embeddings and visual embed-
dings as inputs in the vision-language experiments, we cre-
ate LoReFT interventions that separately edit the prefix and
suffix of both the text tokens and the image tokens. Image
interventions are also fine-tuned differently with text inter-
ventions. For example, image interventions have a much
higher rank than text interventions. We cap the text to-
ken length at 20 and image token length (number of feature
boxes) at 36. These are kept the same as DoRA (19).

For the trainable modules, we follow the same setup
as described in the DoRA paper (19). In addition to the
trainable representation interventions, which include all
LoReFT interventions such as the R matrix and the Wh+b
linear transformation, we also train the input visual em-
bedding, the batch norm and layer norm statistics, and the
model’s biases.

We use the validation set of the VQA task at epoch 20
for hyperparameter selection, then apply these hyperparam-
eters to multi-task training across VQA, GQA, NLVR, and
COCO Caption. Details of the hyperparameter selection
can be found in Table 2.

For VQAv2, we report the VQA Score, which is a
weighted average indicating whether the model’s predic-
tions match the pool of human-provided answers. GQA and
NLVR evaluations are similar to VQA. For COCO Caption-
ing, we report the CIDEr-D score, which measures the Term
Frequency Inverse Document Frequency (TF-IDF) weight-
ing for each n-gram. The CIDEr-D metric best matches hu-
man evaluation on captioning compared to other metrics re-
ported in the MSCOCO Captioning paper (3). For more de-
tails on the CIDEr metric, refer to (29). Number of beams
are set to 1 for VQA, GQA, and NLVR, but set to 5 for
COCO Captioning. We keep the generation temperature at
1 during both training and evaluation.

Fine-tuning on VQAv2 dataset alone takes about 20
hours on a single Nvidia A100 GPU with 40GB RAM. Fine-

tuning on the multi-task dataset takes about 3.5 days with
the same setup.

5.2. Results

5.2.1 Overall Results

Table 1 shows our preliminary quantitative results. In gen-
eral, on vision language tasks, ReFT’s performance still lags
behind LoRA or DoRA’s. However, for specific fine-tuning
tasks such as COCO Captioning, ReFT achieved a higher
CIDEr score than the full fine-tuning of VL-Bart. This indi-
cates that in free-form generation tasks like COCO Caption-
ing, ReFT can achieve relatively good performance. Addi-
tionally, ReFT models use fewer parameters than LoRA or
DoRA. We will explain in the ”Rank selection” section why
the parameter count cannot be further reduced.

ReFT lags behind LoRA by about 4% on VQA, 3% on
GQA, and 6% on NLVR. These tasks increasingly require
less free-form generation and more logical reasoning. Fig-
ure 3 presents a failure case of ReFT where DoRA succeeds.
In this example, ReFT can identify one of the traffic signs
as a stop sign but fails to identify the meaning of the ”yel-
low sign” and ignores the pedestrian crossing sign below
the stop sign. However, ReFT may be good at recognizing
detailed image features, as shown in Figure 4.

One hypothesis is that ReFT can unlock capabilities al-
ready present in the pretrained model, such as image cap-
tioning. However, ReFT lacks the capabilities for more fine-
grained steering of the pretrained model towards complex
reasoning. Figure 3, for example, requires the model to dis-
tinguish the three signs in the image by color. If the image
embeddings are out of distribution for the original model, it
may be difficult for ReFT to complete such tasks.

5.2.2 Rank selection

In Figure 5 we analyze the effect of ReFT rank on VQA’s
validation performance.

First, unlike models in the LoRA family, increasing the
parameter count of ReFT (such as increasing the rank of
ReFT’s steering matrix) above 64 did not lead to a signifi-
cant increase in performance. This suggests that a smaller
number of parameters might lead to overfitting with ReFT.
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Figure 3. VQA Sample where ReFT fails and DoRA succeeds.
The prompt is: “What does the yellow sign say?” ReFT responds
with “stop”. DoRA responds correctly with “pedestrian crossing”.

Figure 4. VQA Sample where ReFT succeeds and DoRA fails.
The prompt is: “Is the TV a tube or flat screen?” ReFT responds
with “flat screen”. DoRA responds incorrectly with “tube”.

Increasing the number of ReFT fine-tuning parameters be-
yond a certain limit results in diminishing returns.

Second, for Figure 5, instead of an inverted-U shape ob-
served in the text domain (which is also the behavior of
DoRA), ReFT on image tokens shows a positive U-shape.
This chart highlights the significant differences in the be-
havior of image tokens and text tokens under ReFT. It may
be possible that image token embeddings are originally out
of the distribution of the text model, so merely steering the
representation with a low-rank matrix is insufficient to align
the image tokens with the language model’s representation
distribution. However, a rank that is too large may lead to
overfitting. 1 This partly explains why the model parame-

1We did not apply dropout during ReFT training because, although it

Figure 5. VQA Validation Performance against Image Rank.
In this experiment, the text intervention’s ranks are fixed at 4. In-
terventions are applied on the first 6 and last 6 text tokens, and the
first 6 and last 6 image tokens.

ter savings of ReFT on image tasks are not as substantial as
those on text tasks, as the optimal rank for ReFT on images
is higher. Note that even when ReFT’s rank is 1, the train-
able parameters still count as 1.1% of the original model’s
parameters due to the need to tune the visual embeddings,
bias terms, and the layer norm/batch norm statistics. These
practices are kept the same as those in DoRA to ensure a
fair comparison.

6. Conclusion and Future Work
As a newly discovered PEFT method, Representation

Fine-tuning (ReFT) showed promising results when fine-
tuning large language models. In this project, we ex-
plored the potential for applying ReFT to vision-language
tasks, specifically focusing on image-text understanding.
We found that ReFT performs well on image tasks, includ-
ing the COCO Captioning dataset, where it generates free-
form responses. However, ReFT does not perform as well
as LoRA on image tasks that require higher levels of rea-
soning about image elements. Additionally, ReFT requires
higher ranks and thus more parameters for image tasks than
for text tasks.

We believe that this project can serve as a starting point
for further exploration of ReFT on other downstream tasks.
For example, DoRA was applied only to the Query and Key
matrices of the attention layer, so ReFT may be applica-
ble to representations beyond on the residual streams only.
ReFT could also be applied to the decoding layers of the
encoder-decoder language models, which we did not have
enough time to explore. Another potential approach could
be to first use captioning to summarize the image into text, a
task at which ReFT excels, and then concatenate the prompt
with the image’s summary. This might lead to better VQA

reduces overfitting, it significantly slowed down optimization.
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performance for ReFT compared to learning directly from
the image features.
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