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Abstract

Building operations contribute to 40% of US energy-
related CO2 emissions, primarily from HVAC systems.
Identifying and enhancing HVAC efficiency is crucial for
emission reduction. We introduce a transfer learning ap-
proach to object detection for rooftop units. We demon-
strate that convolutional neural networks can be adapted to
identify rooftop HVAC equipment given building imagery.
Quantitative and qualitative evaluations demonstrate the
effectiveness of this approach despite a wide range of equip-
ment types and occlusions. Code and data are available at
https://github.com/NWChen/rtus,

1. Introduction

Our problem is automatic detection of rooftop HVAC
equipment, also known as rooftop units (RTUs) from
aerial imagery. Building operations contribute to 40% of
US energy-related CO2 emissions, primarily from cool-
ing/heating loads handled by HVAC systems. Emissions
reductions globally rely nontrivially on identifying and en-
hancing HVAC equipment efficiency. Automatic detection
and/or identification of rooftop HVAC equipment can ac-
celerate efforts to retrofit and upgrade the existing HVAC
equipment fleet, as well as evaluate the distribution of RTU
equipment currently in use.

HVAC equipment for commercial buildings is often lo-
cated on these buildings’ rooftops. Imagery/photography of
these rooftops is often available via satellite or aerial sens-
ing. Rooftop HVAC equipment comes in many shapes and
sizes, and can be easily confused for other mechanical, elec-
trical, or plumbing (MEP) equipment visible from a rooftop.
Additionally, while rooftop imagery is fairly abundant, few
labelled datasets exist for this type of equipment. Rooftop
HVAC equipment is often a similar color relative to the rest
of a given roof, and can be occluded by other MEP features.

The input to our algorithm is overhead rooftop imagery
generated by remote sensing equipment such as satellite
photography. In particular, our algorithm accepts rooftop

imagery that has already been cropped to a given building
or built environment feature. We make this design decision
because there already exists extensive literature concerning
the extraction of individual buildings or building rooftops
from aerial imagery, but comparatively little work has been
published for identifying specific features on such rooftops.
We use a variety of convolutional neural network archi-
tectures designed for object detection to output predicted
bounding boxes and/or masks over rooftop units.

We evaluate a transfer learning approach based on the
Faster-RCNN object detection architecture. There is no ex-
isting state-of-the-art for the specific inputs and outputs of
this problem. We use common object detection metrics to
evaluate the effectiveness of our approach. Quantitative and
qualitative evaluations demonstrate the effectiveness of our
approach despite a wide range of equipment types and oc-
clusions. We also demonstrate the effectiveness of our ap-
proach on a small dataset.

2. Related Work

We review related work in two domains: rooftop extrac-
tion and rooftop object detection.

2.1. Rooftop Extraction

This problem can be decomposed into two unique prob-
lems: rooftop extraction and RTU detection. Rooftop ex-
traction is the more well-researched problem. Wu et al [20]
used a heuristic-based approach to remove vegetation and
terrain regions from aerial stereo images with digital sur-
face models (heightmaps), isolating rooftops in the process.
Abraham et al [1]] used a similar heuristic-based approach
but also evaluated the effectiveness of road detection and a
mean-shift algorithm to identify individual rooftops.

Li et al [11]] developed a deep generative adversarial net-
work to attempt building extraction from remote sensing
imagery. In this approach, a DenseNet[8]-based generator
produces image classification maps, while a discriminator
learns structural features. This approach overcomes some
problems caused by spatial inconsistency in overhead im-
agery. Gao et al [6] framed rooftop extraction as an instance
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segmentation problem and used a Mask R-CNN based ap-
proach to segment rooftops from aerial orthoimagery.

More recent work in deep-learning-based computer vi-
sion approaches has also been applied to the rooftop extrac-
tion problem. For example, Wang et al implement a
vision transformer approach to achieve state-of-the-art per-
formance (IoU) for building extraction in large remote sens-
ing imagery. This approach addresses the computational
complexity of a vision transformer-based approach using a
dual-path structure: the model encodes spatial details in one
context path, and global dependencies in a global context
path. With more than 300 million existing buildings across
the world, considerations for computational cost are very
important.

Buildings can exhibit unique shapes depending on locale
and imagery approach. For example, low-density residen-
tial housing tends to exhibit a distribution of rooftop shapes
that is dissimilar to the distribution of high-density com-
mercial building rooftops in urban environments. Sun et al
[18]] propose a revised U-Net model to specifically extract
roofs in rural areas from satellite imagery. Orthographic
aerial imagery was used as input to obtain roof area, ridge-
line (highest point), and orientation using a U-Net convolu-
tion neural network trained on imagery for northern China.
Combined approaches separately tailored to the residential
and commercial sectors may best handle the unique distri-
butions in building contours for each building use type.

2.2. Rooftop Object Detection

Building rooftops can contain many types of equipment
observable from overhead imagery, including but not lim-
ited to solar panels, antennae/satellite dishes, HVAC equip-
ment, skylights, water towers, and more. An example is
shown in Figure [1| Because of the potential impact of eval-
uating solar potential, methods for segmenting/detecting
photovoltaic equipment on rooftops are by far the most
well-researched among rooftop equipment.

Malof et al [14] gathered 100 unique residential build-
ings from publicly available satellite orthoimagery, of
which 50 contained a rooftop photovoltaic installation and
50 did not. They implement a support vector machine clas-
sifier with a radial basis function kernel to detect rooftop
panels, achieving a 94% recall on this dataset. The simplic-
ity of this approach implies benefits for model interpretabil-
ity, but is limited to the very small input dataset used.

Li et al [10] evaluated a combination of SVM and CNN
approaches to automatically segment photovoltaic equip-
ment on rooftop imagery. Given a dataset of 269,632
satellite images across the US, this approach achieves a
Matthews correlation coefficient (MCC) of 0.17, outper-
forming existing pre-trained CNN approaches.

Solar potential estimation is a similar task blending the
problems of rooftop extraction and photovoltaic equipment

Figure 1. Overhead aerial imagery of a commercial building in
New York City, with some examples of RTUs outlined in blue.
Other rooftop features such as greenery, ducting, seating, and
tiling also clutter the scene.

detection. Lee et al [9] achieved a 91.1% recall on a rooftop
identification task using overhead satellite imagery. This
approach uses a feature pyramid network to identify roof
segments and nearby structures and output a roof orien-
tation matrix, roof mask, and vegetation and background
masks. They then apply a heuristic-based approach for
computing solar potential given solar irradiation. Com-
bined approaches involving deep models for rooftop extrac-
tion and heuristic-based approaches for evaluating solar po-
tential demonstrate the most promise and applicability for
commercial use, as solar potential is often limited by fac-
tors not observable from aerial imagery such as cost and
energy infrastructure.

CNN/R-CNN approaches have been used in similar do-
mains: for example, Castello et al [2] trained a U-Net on
remote sensing imagery to identify solar panels on rooftops.
Yao et al used Faster R-CNN to identify chimneys and
condensing towers on a self-collected dataset. Fernandes
et al 5] applied a Detectron2 Mask-RCNN based approach
on a dataset of 56 images with image augmentation to de-
tect RTUs. This last approach reported a train mean average
precision (MAP) of 87.5% and a test MAP of 91.1%. No-
tably, Fernandes et al collected their own rooftop imagery
via drone photography. The resulting training data were im-
aged from a shallower angle and expose different features of
RTUs than would otherwise be visible from aerial imagery.



3. Methods
3.1. Faster R-CNN

Faster R-CNN [17] is a state-of-the-art object detection
model. As a two-stage object detector, Faster R-CNN builds
on the Fast R-CNN [[7] architecture by using a region pro-
posal network (RPN). Given an image as input, the RPN
module outputs a set of object proposals represented by
rectangles. Each proposal is associated with a score. A
region of interest (Rol) pooling layer crops and resizes fea-
ture maps according to region proposals from the RPN. The
new feature maps from the RPN can then be used for clas-
sification and bounding box regression.

Like the original implementation of Faster R-CNN, our
approach combines two loss functions for bounding box re-
gression. Let a ground truth object be defined by the bound-
ing box rectangle (z,y,w,h) and a region of interest be
defined by the rectangle (Z0, Yrois Wrois Rroi). The tar-
get vector y, represents a distance encoding between the
ground truth and Rol:

The classifier loss L. represents binary cross-entropy
loss, and the regression loss L, represents mean squared
error (MSE):

n

1 ) R
Le=—— > (Weilog e + (1= yei)log(l — Je.i))
=1

1 n
L’r' = % Zz:; Ye,i

L=L.+L,

| 2

|ym‘ — Yri

Our specific implementation of Faster R-CNN uses a
pretrained ResNet-50-FPN backbone with a Fast R-CNN
detector network fine-tuned for the rooftup unit object de-
tection task. The pretrained Faster R-CNN implementation
available in the torchvision package handled 91 out-
put classes (including the background). For our object de-
tection task, we are only interested in 2 classes: RTU and
background. In particular, we are only fine-tuning the soft-
max classifier and bounding box regressor stage of the Fast
R-CNN head. The backbone was pretrained on the COCO
2017 dataset [13].

3.2. Other Approaches

As we will discuss in [5.2] we investigated other object
detection algorithms for this task. These include:
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Figure 2. Faster R-CNN architecture.
paper[17].
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OWL-ViT. OWL-VIT [13]] is an open-vocabulary object
detection model based on the Vision Transformer [4] archi-
tecture. This approach involves separately training a vision
encoder and a text encoder. Contrastive loss is evaluated
over this combined text and image embedding. At infer-
ence time, query strings are embedded with the text encoder.
OWL-VIT appends small object classification/localization
heads to the output of the image encoder; as a result the
model can perform open-vocabulary object detection.

RetinaNet. RetinaNet [12]] is a one-stage object detec-
tor. Unlike Faster R-CNN, one-stage object detectors such
as RetinaNet do not use a region proposal network to gener-
ate regions of interest. This tends to come with a tradeoff in
accuracy because of difficulty localizing small or overlap-
ping objects. RetinaNet proposes an improvement to the
single-stage object detector approach by defining a focal
loss term to remediate class imbalance between foreground
and background. This addresses flaws of one-stage object
detectors in localizing small objects, which are otherwise
prone to foreground-background class imbalance.

4. Dataset and Features

No existing rooftop imagery dataset was available with
labelled RTU equipment. The input dataset for our model
was manually assembled and uses the Aerial Imagery for
Roof Segmentation (AIRS) dataset for source aerial im-
agery. The Aerial Imagery for Roof Segmentation (AIRS)
[3]] dataset provides 7.5cm-resolution aerial imagery of over
220,000 buildings. The dataset is designed specifically for
roof semantic segmentation problems. Buildings in the
AIRS dataset can contain 0 or more instances of a vari-



ety of rooftop HVAC equipment, including but not limited
to air conditioners, VAV systems, evaporators, blower fans,
chillers, condensers, VRFs/VRVs, and heat pumps. It is not
always straightforward even for a human observer to dif-
ferentiate between the systems, but the broad category of
“rooftop unit” can generally be easily discerned. Images
are specified in t 1 f format.

We manually extract individual buildings from AIRS im-
agery in New York City and Taiwan. Then, we manually
labeled bounding boxes for RTUs atop each building. This
dataset contains 98 high-resolution building rooftop images
and bounding boxes for RTUs located in these images, cor-
responding to 98 unique buildings. A given building rooftop
can contain more than one RTU. Across all 98 images in our
manually-collected dataset there are 635 unique instances
of RTUs. The train, validation, and test sets include 78,
10, and 10 images respectively. Bounding boxes were con-
fined to a single output class, resulting in only two output
classes: background and RTU. Figure 3| provides an exam-
ple of RTUs in bounding boxes on a single building rooftop.

Manual annotations for bounding boxes were stored
in the COCO JSON format. A customer dataloader
was implemented in Torch. Our bounding boxes
in COCO JSON format was transformed from a
xmin, ymin, width, height format to the
xmin, ymin, xmax, ymax format expected by
Torch.

Images in the dataset were then preprocessed to 640px x
640px. Larger images were cropped; smaller images were
filled with O value pixels. Input images were normalized to
pixel ranges between [0, 1]. We normalize the images using
the sample mean and standard deviation. Each image has
3 (R, G, B) channels, resulting in a (3, 640, 640) tensor for
each image example. This dataset is available at https:
//github.com/NWChen/rtus.

Finally, we experiment with additional data augmenta-
tion. These transforms include horizontal and vertical flip-
ping with p = 0.5, 90- and 270-degree rotations with prob-
ability p = 0.5, and saturation jitter of 0.3. All transforma-
tions were performed using the torchvision library.

As seen in Figure ] RTUs can come in many differ-
ent shapes and sizes. They can also be occluded by other
rooftop features, vegetation, and dirt or debris.

5. Experiments

Experiments were tested in a Google Cloud environment
with a Tesla T4 GPU. PyTorch implementations were
used for pretrained models.

We use a stochastic gradient descent (SGD) optimizer
and a learning rate scheduler that decays learning rate by a
factor of 0.1 every 3 epochs to improve convergence speed
and model performance. We selected a mini-batch size
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Figure 3. An example of a rooftop consisting of multiple RTUs.
Colored bounding boxes surround each RTU instance.

Figure 4. An example of a rooftop containing many RTUs (out-
lined in blue) of varying type and dimension.

of 4 images given the small input dataset. We use cross-
validation with 5 folds. Models were trained for 20 epochs.

For hyperparameter optimization, several values of
learning rate (0.0005 < n < 0.005), momentum (0.1 <
n < 1.0), and weight decay 0.0001 < n < 0.0008 were
used. Table [T] details results with each of these hyperpa-
rameters.
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Figure 5. A rooftop with 3 RTUs. Ground truth bounding boxes
are in blue.

5.1. Metrics

Common classification or object detection metrics in-
clude precision, recall, and F1 score, which are defined as
follows:

. True positive
Precision = p

True positive + False positive

True positive

Recall = — >
True positive + False negative

Precision x Recall

F1 score = 2 x —
Precision + Recall

True positives were identified using the intersection-
over-union (IoU) metric with a threshold of 0.5. For two
bounding boxes A and B, this metric is defined as

|AN B
|AU B

such that for an IoU > 0.5 between a ground truth
bounding box and a predicted bounding box is considered a
true positive.

5.2. Results

With precision of 0.5805 and recall of 0.9167, test set F1
score of 0.7111 was observed in the final model. Overfitting
is unlikely given the similarity between training and test set
performance. With high learning rates (e.g. above 0.001,
loss explosion was observed. In these cases, losses rapidly
jumped to NaN. Figure [7] shows precision, recall, and loss

IoU =

Figure 6. Predictions (in red), including an incorrectly classified
false positive in the center of the image.
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Figure 7. Precision, recall, and loss over 20 training epochs of the
final model.

curves as a function of training eopchs in the final Faster
R-CNN-based model.

Qualitatively, false positives often occurred in cases
where other rooftop features exhibited similar contours to
RTUs. For example, Figure |5 shows a rooftop image with
bounding boxes in blue. In Figure 6| we see that the model
misidentified an additional feature near the bottom-center
of the image as an RTU. This is presumably due to a large
circular feature being bound by a rectangular feature, which
is a common pattern for RTUs that have intake/exhaust fans
facing the sky.

We also observe examples of false positives where the
model struggles to differentiate between a single RTU and
separate but adjacent RTUs. For example, Figure [0 shows
a case where the model detected multiple separate RTUs (in



Hyperparameters

Method . . Precision Recall F1 score
Learning rate Momentum  Weight decay
Faster R-CNN 0.001 0.9 0.0005 0.6408  0.9167 0.7543
Faster R-CNN 0.001 0.4682 0.0005 0.4083 0.67 0.5074
Faster R-CNN 0.00275 0.55 0.0005 0.5156  0.8944 0.6541
Faster R-CNN 0.00275 0.55 0.0005 0.5439  0.9028 0.6788
Faster R-CNN 0.00275 0.1 0.0008 0.4552  0.9167 0.6083
Faster R-CNN 0.005 0.55 0.0001 0.6878  0.9028 0.7808
Faster R-CNN 0.005 0.55 0.0005 0.6394  0.9236 0.7557
Faster R-CNN 0.005 0.55 0.0008 0.6947 09167 0.7904
Faster R-CNN 0.005 0.1 0.0001 0.6195  0.8819 0.7278
Faster R-CNN 0.005 0.1 0.0005 0.5936  0.9028 0.7163
Faster R-CNN 0.005 0.1 0.0008 0.5397  0.8958 0.6736

Table 1. Precision, recall, and F1 scores on validation data for various hyperparameter settings with a Faster R-CNN-based approach.

Figure 8. Predictions (in red) of RTUs, including a large unit at a
non-right angle.

red) despite only a single ground truth RTU (in blue) being
present. This type of false positive error can occur even
with human classifiers due to the proximity of RTUs to one
another on rooftops.

The Faster R-CNN approach was robust to rotation and
flip of the same image, and qualitatively demonstrated the
ability to detect RTUs in a various orientations, including
those at non-right angles. An example of this is visible in

Figure 8]
5.3. Other Approaches

We experimented with other algorithms but did not in-
vestigate quantitative results due to poor performance, in-
cluding:

Figure 9. Predictions (in red) of separate RTUs. The correct detec-
tion is in blue, for a large, single RTU.

OWL-ViT. We attempted to use the OWL-ViT [15]
open-vocabulary object detection network, which uses
CLIP as a multi-modal backbone, to identify rooftop equip-
ment using text queries. This approach involves zero-shot
text-conditioned object detection. OWL-ViT was unable to
identify any rooftop equipment from raw imagery, and pro-
duced no bounding boxes in 3 random samples. This may
be because RTUs are a rare object class easily confused for
other features in aerial imagery, and may therefore not be
suitable for the one/few-shot use case.

RetinaNet. We attempted to use the RetinaNet [12]
single-stage object detector to identify RTUs using the in-
put dataset. We achieved best recall of 0.52 and precision
of 0.1195 with this approach for an Fl-score of 0.1943.



We believe the poor F1-score performance of this approach
may be attributable to incorrectly defined weights in the pre-
trained backbone of the implementation, and more work is
needed to investigate whether a RetinaNet-based approach
can perform as well as our demonstrated Faster R-CNN ap-
proach.

6. Conclusion and Future Work

We demonstrated that, despite a very small input dataset
of fewer than 100 images with 635 examples of the tar-
get class, a transfer learning approach based on Faster R-
CNN can effectively detect RTUs across a wide distribution
of commercial rooftop aerial imagery. We achieved an F1
score of 0.7111 for object detection of RTUs.

While we demonstrated the effectiveness of deep con-
volutional networks for object detection of RTUs given a
single target class generically representing all RTUs, fu-
ture work could evaluate the performance of pretrained
object detectors on multiple subtypes of RTU. These in-
clude heat pumps, condensers, chillers, blowers, evapo-
rators, VAV systems, and more. Automatic detection of
these subtypes could provide valuable insight for evaluat-
ing building/equipment retrofit suitability.

This work also evaluates object detection given input
data that has already isolated rooftops of individual build-
ings. Additional future work could evaluate the perfor-
mance of an end-to-end pipeline that, given aerial imagery,
could both isolate individual buildings and identify RTUs
on individual building rooftops.
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