
Scoring with Few Shots: Applying Few-Shot Learning to Basketball Analytics

Josh Francis
Stanford University

josfran@stanford.edu

Abstract

One of the most important skills in basketball is shooting,
and the quality of shooting form is crucial to success. This
paper explores how computer vision can help to evaluate
and improve basketball shooting form using a small dataset
of stationary videos. We collected and labeled our own
dataset due to the lack of existing suitable data, and applied
VGG-16 for image feature extraction, YOLOv3 for shooter
detection, and MoveNet for pose estimation. Several clas-
sification models were tested, including logistic regression,
random forest, gradient boosting, MLPs, XGBoost, and a
custom CNN + LSTM model. Our results indicate that XG-
Boost significantly outperforms other models, achieving the
highest accuracy and providing meaningful interpretability
using SHAP values. This study demonstrates the potential
of using computer vision and machine learning to provide
predictions and feedback on sports video, paving the way
for future advancements in sports analytics.

1. Introduction
One of the most important skills in basketball is shoot-

ing, and how well you shoot is very dependent on your
shooting form. ”Shooting form” consists of how your body
is posed as you shoot the ball, so your hip, knee, elbow,
shoulder, and wrist angles, the distance between your feet,
and the speed of your wrist, arms, and legs pushing the ball
through its trajectory towards the hoop. All of these features
are visible to an observer, so this paper seeks to evaluate
shot form through computer vision techniques.

More formally, we evaluate shot form by using shot form
to predict shot success, and then we use weight explainabil-
ity techniques to determine which parts of the shot form are
contributing positively or negatively to shot success. The
goal of this is to create a model that lets players upload
videos they record of themselves shooting a basketball and
get feedback on how to improve their shot form. This means
that all the training data is stationary videos of people shoot-
ing a basketball, with the hoop, ball, and shooter pose vis-
ible. The videos are clipped such that the ball isn’t seen

going into the basket, so the model can’t cheat and learn to
recognize the ball going in the basket. Instead, it must learn
to predict shot success solely from the pixels of the person
shooting the ball.

To do this, we had to collect and label our own dataset
of videos, because there is no existing dataset of station-
ary videos of people shooting by themselves. Data collec-
tion and labeling is a hard task though, so in this paper we
explore models that optimize shot prediction performance
given a small dataset, a.k.a. few shot learning. To do so,
we leverage VGG-16 to extract image features from video
frames, YOLOv3 to extract shooter bounding boxes in each
frame, and MoveNet to extract body keypoints for shooter
pose analysis. After extracting these features from each
frame, we explore multiple different classification models
to see which ones are best able to predict shot success and
produce meaningful weight explainability. These models
include logistic regression, random forest, gradient boost-
ing, MLPs, extreme gradient boosting, and a custom CNN
+ LSTM model. We find that extreme gradient boosting sig-
nificantly outperforms all other methods on the dataset, and
produces reasonable weight interpretability using SHAP.

In the next section we discuss the novelty of these re-
sults and how they differ from past work in the basketball
analytics space.

2. Related Work
Many people have attempted to apply machine learning

to solve the problem of basketball shot success prediction
in the past. Murakami-Moses (2019) also used MLPs, lo-
gistic regression, and gradient boosting to try to predict shot
success, but their data was NBA game data, such as player
name, position on the court, and time left in the game[9].
Although all of these features correlate with shot success,
there are many other important features that are left out, and
they don’t consider any image data in their approach. Thus,
their approaches are capped at around 65% accuracy.

A similar project was done by Brett Meehan in CS229
in 2017[8]. Their dataset also didn’t look at images, but it
looked at more shot related features like touch time and de-
fender distance. They also employ various statistical mod-

1



els and ultimately find that gradient boosting had the best
performance with 68% accuracy. In their conclusion they
noted the potential of using more spatial data in training a
model, which is what our paper sets out to do.

Harmon et al. (2021) developed a novel approach that
utilized SportsVU data and a combined CNN + FNN model
to predict with up to 61% accuracy[4]. SportsVU data pro-
vides a lot of basketball related features extracted from a
6 camera system operating at 25 frames per second, such
as 3d ball coordinates, all player coordinates, and basket
make/miss timesteps. This provides valuable data for train-
ing a predictive model, but it still is missing a lot of causal
data, such as the player’s shot mechanics. Furthermore, al-
though this approach uses a CNN, the CNN is being applied
to a fabricated image that represents player and ball trajec-
tories, so it doesn’t apply to new videos of basketball shots
unless they were recorded in the SportsVU system.

Kuhlman et al. also developed a novel technique of
classifying basketball shots based on wearable sensors[7].
Their shot classes were ”good” and ”bad” 2 pointers and 3
pointers, so there were 4 classes total. A ”good” shot form
is one that follows generally accepted shooting principles,
like lining up your body with the basket and moving the ball
up smoothly, and a ”bad” shot form was a jerky movement
and an unbalanced base. Using SVMs, they were able to
classify shot form with a stunning 86.3% accuracy, show-
ing great promise for predicting shot outcomes based off of
form features and pose data.

In CS 231a, Chen et al. (2022) were able to reconstruct
3d poses from basketball shooting videos[2]. They didn’t
end up using these 3d poses for shot prediction, but they
showed that their resulting 3d poses had low distance met-
rics from known reference poses. In this project we will use
2d pose estimation from MoveNet, but this work shows the
potential to improve performance by looking at the full 3d
structure, which is a lot more representative of the shot form
than the 2d pose.

Chou (2020) demonstrated how you can apply Open-
Pose to extract pose features for use in basketball shot
analysis[3]. They further referenced Cao et al. (2019),
which proposed OpenPose and the bottom-up approach of
pose estimation[1]. Chou first describes top-down as first
getting a bounding box for a person before applying pose
estimation to the bounding box, whereas bottom-up applies
pose estimation to the whole image. Chou outlines the pros
and cons of bottom-up versus top-down pose estimation,
with top-down suffering from pitfalls of no recovery if per-
son detection fails, but bottom-up being more computation-
ally expensive. Since we only have one person per video
in our dataset and they stand out from the background with
high confidence, person detection works well enough that
top-down methods work for our approach, but Chou and
Cao’s commentary suggest an extension to this paper in the

future of applying OpenPose to the whole frame instead of
MoveNet to just the bounding box.

Hauri et al. (2021) utilized a multi-modal LSTM on
NBA trajectories to predict future trajectories with state-of-
the-art performance[5]. While trajectory prediction is a fun-
damentally different task than shot classification, it shows
that CNN + LSTM models can be applied with great per-
formance on short time span sport prediction tasks. We take
inspiration from this in developing a CNN + LSTM for shot
prediction in this paper.

Ozkan (2020) also showed a novel concurrent neuro-
fuzzy system, which utilized a fuzzy SVM model to achieve
nearly 80% basketball play prediction accuracy[10]. While
we don’t employ these techniques in this paper, Ozkan il-
lustrates how fuzziness can be used to improve model per-
formance when optimizing under uncertainty, as we are in
this project.

Finally, Hu et al. applied Extreme Gradient Boosting
(XGBoost) to player performance prediction[6]. In their
paper, they outline the math behind XGBoost and how it
applies to NBA feature data and how to get interpretability
out of it. In this paper we will also utilize XGBoost and find
that it performs best out of all the models we apply.

Overall, related work gives lots of examples of apply-
ing machine learning methods for sports prediction tasks.
However, none of these have tried leveraging image data
for outcome prediction, and our dataset is unique. There-
fore, although we can draw from the techniques in all these
other works, how the techniques specifically apply to our
problem space is unique and gives this project its novelty.

3. Methods

In this project we employed logistic regression, random
forest, gradient boosting, MLPs, XGBoost, and a custom
CNN + LSTM model. We describe our approach for each
model in this section.

3.1. Logistic Regression

Logistic regression is a linear model for binary classifi-
cation that predicts the probability that an instance belongs
to a particular class. The probability is modeled using a
logistic function:

P (y = 1|x) = 1

1 + e−(β0+β1x1+···+βpxp)
(1)

where β0, β1, . . . , βp are the model parameters. The model
is trained to minimize the binary cross-entropy loss:

L(β) = − 1

n

n∑
i=1

[yi log(P (y = 1|xi))

+(1− yi) log(1− P (y = 1|xi))]



3.2. Random Forest

Random forest is an ensemble learning method that oper-
ates by constructing a multitude of decision trees at training
time and outputting the class that is the mode of the classes
of the individual trees. It reduces overfitting by averaging
multiple deep decision trees, trained on different parts of the
same training set.

3.3. Gradient Boosting

Gradient boosting is a machine learning technique for re-
gression and classification problems, which produces a pre-
diction model in the form of an ensemble of weak predic-
tion models, typically decision trees. It builds the model in
a stage-wise fashion and generalizes them by allowing op-
timization of an arbitrary differentiable loss function. The
objective function for gradient boosting is:

L(θ) =

n∑
i=1

l(yi, Fm(xi)) +

m∑
k=1

R(fk) (2)

where l is the loss function and R is the regularization term.

3.4. Multi-Layer Perceptron (MLP)

A multi-layer perceptron (MLP) is a class of feedfor-
ward artificial neural network (ANN). An MLP consists of
at least three layers of nodes: an input layer, a hidden layer,
and an output layer. Each node (except for the input nodes)
is a neuron that uses a nonlinear activation function:

y = σ(

n∑
i=1

wixi + b) (3)

where σ is the activation function, wi are the weights, xi are
the inputs, and b is the bias. The MLP is trained to minimize
the loss function:

L(θ) =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

3.5. Extreme Gradient Boosting (XGBoost)

XGBoost is an implementation of gradient-boosted deci-
sion trees designed for speed and performance. It provides
parallel tree boosting (GBDT/GBM) which gives it signif-
icant speedups in comparison to alternative methods. The
objective function for XGBoost is:

L(θ) =

n∑
i=1

l(yi, Fm(xi)) +

m∑
k=1

R(fk) (5)

where l is the loss function and R is the regularization term
to penalize the complexity of the model.

In the context of our basketball shot success prediction
project, XGBoost proved to be the most effective method
for several reasons:

Handling Small Datasets: XGBoost is highly effective
at handling small datasets, which is essential for our project
focused on few-shot learning. Its robust regularization tech-
niques (both L1 and L2) prevent overfitting, ensuring that
the model generalizes well even with limited data. The reg-
ularization term R(fk) controls the complexity of the model
by penalizing large weights, thus preventing overfitting.

Feature Importance: XGBoost inherently provides fea-
ture importance scores, which are crucial for understand-
ing which features contribute most to the prediction of shot
success. This capability aligns well with our goal of using
weight explainability techniques to determine which parts
of the shot form contribute positively or negatively to shot
success.

Speed and Efficiency: XGBoost is optimized for speed
and performance, making it suitable for our dataset, which
includes a large number of video frames and pose features.
The parallel tree boosting mechanism allows for efficient
training and prediction, which is beneficial given the com-
putational demands of processing video data.

The XGBoost model was trained using the following hy-
perparameters:

• n estimators: 100

• learning rate: 0.02

• max depth: 6

• subsample: 0.8

• colsample bytree: 0.8

These parameters were chosen to balance model complex-
ity and training efficiency, ensuring optimal performance on
our dataset.

3.6. CNN + LSTM Model

Our custom CNN + LSTM model is designed to lever-
age the strengths of CNNs for spatial feature extraction and
LSTMs for temporal sequence modeling. The architecture
consists of two parallel branches: one for processing the
image features of the shooter and the other for processing
their pose features. The outputs of these branches are then
concatenated and fed into fully connected layers for final
classification.

Image Feature Extraction: To start, we use a CNN to
extract spatial features from the video frames of the shooter.
The input to this branch is a sequence of video frames, each
resized to 224 × 224 pixels. The CNN consists of several
layers:



• Convolutional Layers: We use three TimeDistributed
convolutional layers with increasing filter sizes (32,
64, 128) and a kernel size of 3 × 3, each followed by
a MaxPooling layer with a pool size of 2 × 2. These
layers help in capturing spatial features and reducing
the dimensionality of the input.

• Flatten Layer: The output from the convolutional lay-
ers is flattened to create a 1D feature vector for each
frame.

• LSTM Layer: An LSTM layer with 128 units pro-
cesses the sequence of feature vectors, capturing the
temporal dependencies between frames.

• Fully Connected Layer: The LSTM output is passed
through a Dense layer with 128 units and ReLU acti-
vation, followed by a Dropout layer with a rate of 0.5
to prevent overfitting.

Pose Feature Extraction: We then use an LSTM to pro-
cess the pose features of the shooter. The input to this
branch is a sequence of pose keypoints for each frame, rep-
resented by 34 features (17 keypoints each with x and y
coordinates). The LSTM branch consists of:

• LSTM Layer: An LSTM layer with 64 units pro-
cesses the sequence of pose features, capturing the
temporal dynamics of the shooter’s movement.

• Fully Connected Layer: The LSTM output is passed
through a Dense layer with 64 units and ReLU activa-
tion, followed by a Dropout layer with a rate of 0.5.

Combining Features: The outputs from the image and
pose branches are concatenated to form a combined feature
vector. This vector is then passed through additional fully
connected layers to perform the final classification:

• Fully Connected Layer: A Dense layer with 128 units
and ReLU activation processes the combined feature
vector.

• Dropout Layer: We once again use a Dropout layer
with a rate of 0.5.

• Output Layer: The final output layer is a Dense layer
with a single unit and sigmoid activation, providing the
probability of shot success.

Model Training: We trained our model with the Adam
optimizer and the binary cross-entropy loss function, and it
is trained with class weights to handle class imbalance. The
data is split into training and testing sets using an 80-20
split, and is then trained for 50 epochs with a batch size of
4. In the end we evaluate performance using accuracy and
classification report metrics.

4. Dataset and Features
The raw dataset contains 81 videos of singular basket-

ball shots. Each clip starts when the shot motion appears
to begin, and it ends right before the ball gets close to the
rim, so that the model can’t train on seeing the ball go into
the basket or not. This means that each video is about 30-
50 frames, and they’re all in 480p. Videos were initially
recorded in 1080p, and we considered extracting just the
person bounding box in 1080p and then using 480p for the
rest of the image, but this was too computationally expen-
sive for the scope of this project, so we ended up only us-
ing 480p videos. These videos are taken using a stationary
camera, such as an iPhone propped up against something.
This was intentionally done so that if a new person is try-
ing to use the model to improve their form, they can go out
and record themselves by just putting their phone on the
ground near them, and the format of the video will be what
the model expects.

We split the dataset using a 80/20 split such that 20% of
the data was used for testing and 80% was used for train-
ing. This meant that we had 17 videos in the testing data,
and with the fixed seed we used, 10 of these were misses
and 7 were makes. In the training data there were 22 makes
and 42 misses. Instead of doing data sampling or augmen-
tation techniques to handle these imbalances, we used class
weights to balance out the disparity.

We preprocessed this dataset in 3 ways:

4.1. Image Features

The first preprocessing we did was to resize each frame
to 224 by 224 so that it could be fed into the VGG-16 model
at a constant size. We first applied VGG-16 to the whole
frame and extracted the entire image’s features.

4.2. YOLO + Image Features

The second approach we used was to first apply YOLO
to the whole image to get the bounding box of the shooter,
and then to apply the first preprocessing step to just the
bounding box. This was much more effective because of-
ten times the shooter was quite small relative to the whole
frame, and so resizing could lose valuable data about the
shooter due to the lack of granularity. This often times even
had the effect of upsizing the shooter due to them being
smaller than 224 by 224 in the whole frame, and the im-
age features were also only relevant to the person’s pose as
desired.

4.3. YOLO + Image Features + MoveNet

Our final and best approach was to first apply YOLO
to get the bounding box of the shooter, and then to use
VGG-16 and MoveNet to extract both image features of the
shooter as well as their pose keypoints. MoveNet extracts



17 tuples of x, y coordinates in addition to a confidence
score. We then concatenated the features for each frame so
that models could take advantage of both the image features
as well as the pose estimates.

5. Experiments
In this section, we present the results of each of the mod-

els we used to predict shot success.

5.1. Hyperparameter Selection

For our experiments, we chose specific hyperparameters
for each model to optimize performance on our dataset. The
learning rate, optimizer, and batch size were selected based
on initial experiments and cross-validation results. Specif-
ically, we used the Adam optimizer with a learning rate of
1 × 10−3 for the CNN + LSTM model, and a learning rate
of 0.02 for the XGBoost model. The mini-batch size was
set to 4 for the CNN + LSTM model to ensure stable train-
ing with our small dataset. Cross-validation was performed
with 5 folds to ensure robust evaluation of model perfor-
mance.

5.2. Evaluation Metrics

We used accuracy as our primary evaluation metric,
which is defined as:

Accuracy =
Number of correct predictions
Total number of predictions

(6)

Additionally, we report precision, recall, and F1-score to
provide a more comprehensive evaluation of model perfor-
mance. These metrics are defined as follows:

Precision =
True Positives

True Positives + False Positives
(7)

Recall =
True Positives

True Positives + False Negatives
(8)

F1-Score = 2× Precision × Recall
Precision + Recall

(9)

5.3. Results

Table 1 summarizes the performance of different models
on the test set.

The XGBoost model achieved the highest accuracy
(82.4%), outperforming other models significantly. The
CNN + LSTM model, despite its complexity, did not per-
form well due to the small dataset, highlighting the chal-
lenges of training deep learning models with limited data.

5.4. Model Interpretability

SHAP Weight Visualizations To understand why the
XGBoost model performed best, we used SHAP (SHapley

Additive exPlanations) values to interpret the model’s pre-
dictions. SHAP values provide insights into the contribu-
tion of each feature to the model’s output. Figure 1 shows
the SHAP summary plot for the test set, highlighting the
importance of various features.

Figure 1. SHAP summary plot for the XGBoost model.

The SHAP visualizations indicated that key joints, such
as the elbow and hips, significantly impacted the model’s
predictions. To illustrate this, Figure 2 shows frames from
correctly classified videos with feature visualizations over-
laid.

Figure 2. Left shows correctly classified make, right shows cor-
rectly classified miss, both show elbow joint correlating with the
model decision.



Model Accuracy Precision Recall F1-Score
Logistic Regression (Whole Image) 0.529 0.47 0.53 0.47
Logistic Regression (Shooter Only) 0.588 0.56 0.59 0.52
Logistic Regression (Shooter + Pose) 0.588 0.56 0.59 0.52
Gradient Boosting (Shooter + Pose) 0.706 0.72 0.71 0.68
MLP 0.647 0.65 0.65 0.61
XGBoost 0.824 0.86 0.82 0.81
CNN + LSTM 0.529 0.47 0.53 0.47

Table 1. Performance of different models on the test set.

t-SNE Visualization We also used t-SNE to visualize the
distribution of combined features (image and pose) in the
dataset. Figure 3 shows the t-SNE plot with makes and
misses labeled. No clear pattern is visible from the plot,
suggesting that more data would be necessary to train a deep
learning model, and that estimator based classifiers will per-
form better in the few shot learning scenario.

Figure 3. t-SNE visualization of combined features.

Training and Validation Loss Figure 4 shows the train-
ing and validation loss for the CNN + LSTM model. The in-
creasing gap between training and validation loss over time
indicates overfitting, likely due to the small dataset size.
Regardless of hyperparameter choices, the model always
ended up either overfitting or performing as well as random
guessing.

Figure 4. Training and validation loss for the CNN + LSTM model.

5.5. Discussion

The XGBoost model outperformed other models in this
study, achieving the highest accuracy and providing mean-

ingful interpretability through SHAP values. The impor-
tance of key joints in the predictions suggests that the model
effectively learned to identify critical aspects of shot form
that contribute to success, and the significantly better results
from the combined features versus just image features cor-
roborates this claim.

Other models, such as the CNN + LSTM, struggled due
to the limited dataset size. Deep learning models typically
require large amounts of data to generalize well, and our
small dataset likely led to overfitting, as evidenced by the
training and validation loss plot.

In future work, increasing the dataset size and incorpo-
rating more advanced techniques, such as transfer learning,
could improve the performance of deep learning models.
Additionally, exploring 3D pose estimation could provide
more detailed insights into shot form and further enhance
prediction accuracy.

6. Conclusion and Future Work

In this study, we explored various machine learning mod-
els to predict basketball shot success based on video data of
shooters. Among the models tested, XGBoost emerged as
the highest-performing algorithm, achieving an accuracy of
82.4%. The success of XGBoost can be attributed to its ro-
bust regularization techniques and its ability to handle small
datasets effectively. The use of SHAP values provided valu-
able insights into the importance of key joints in the pre-
diction, aligning with our goal of understanding shot form
dynamics.

On the other hand, our custom CNN + LSTM model
struggled with overfitting due to the limited size of our
dataset. Deep learning models generally require large
amounts of data to generalize well, and the small dataset
size was a significant constraint in this study. Despite the
complexity of the CNN + LSTM model, it did not outper-
form simpler models like XGBoost, highlighting the chal-
lenges of training deep learning models with limited data
and the power of simpler estimator based classifiers when
used in conjunction with pretrained models for few shot
learning.

For future work, increasing the dataset size would be a
primary focus to improve model performance and general-



izability. Additionally, incorporating transfer learning tech-
niques could help mitigate the data scarcity issue. Explor-
ing 3D pose estimation could also provide more detailed
insights into shot mechanics and further enhance predic-
tion accuracy. Another promising direction would be to in-
vestigate the application of advanced ensemble methods or
neuro-fuzzy systems to leverage the strengths of multiple
models.

Overall, this study demonstrates the potential of using
computer vision and machine learning to evaluate and im-
prove basketball shooting form, offering valuable feedback
to players and coaches. With further advancements in data
collection and model optimization, this approach could sig-
nificantly impact sports analytics and training methodolo-
gies.

References
[1] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh.

Openpose: Realtime multi-person 2d pose estimation using
part affinity fields, 2019. 2

[2] Y. Chen and H. Lu. Basketball shooting analysis via 3d
pose estimation. https://web.stanford.edu/
class/cs231a/prev_projects_2022/lCS231a_
Project_Final_Report.pdf, 2022. Department of
Computer Science, Stanford University. 2

[3] T. Chou. Openpose research paper summary:
Multi-person 2d pose estimation with deep learn-
ing. https://towardsdatascience.com/
openpose-research-paper-summary-realtime-multi-person-2d-pose-estimation-3563a4d7e66,
2020. 2

[4] M. Harmon, A. Ebrahimi, P. Lucey, and D. Klabjan. Predict-
ing shot making in basketball learnt from adversarial multia-
gent trajectories, 2021. 2

[5] S. Hauri, N. Djuric, V. Radosavljevic, and S. Vucetic.
Multi-modal trajectory prediction of nba play-
ers. https://djurikom.github.io/pdfs/
hauri2021wacv.pdf, 2021. Temple University, Uber
ATG, Spotify. 2

[6] H. Hu, G. Dimitrov, D. Menn, and S. Wu. Nba player
performance prediction based on xgboost and syner-
gies. https://courses.cs.washington.edu/
courses/cse547/23wi/old_projects/23wi/
NBA_Performance.pdf, 2023. University of Washing-
ton. 2

[7] N. Kuhlman and C.-H. Min. Analysis and classification
of basketball shooting form using wearable sensor systems.
In 2021 IEEE 11th Annual Computing and Communica-
tion Workshop and Conference (CCWC), pages 1478–1482,
2021. 2

[8] B. Meehan. Predicting nba shots. https://cs229.
stanford.edu/proj2017/final-reports/
5132133.pdf, 2017. Stanford University. 1

[9] M. Murakami-Moses. Analysis of machine learning models
predicting basketball shot success. The American School
in Japan; Tokyo, Japan, 2024. Email: 22murakami-
mosesm@asij.ac.jp. 1

[10] I. A. Ozkan. A novel basketball result prediction model using
a concurrent neuro-fuzzy system. Applied Artificial Intelli-
gence, 34(13):1038–1054, 2020. 2

https://web.stanford.edu/class/cs231a/prev_projects_2022/lCS231a_Project_Final_Report.pdf
https://web.stanford.edu/class/cs231a/prev_projects_2022/lCS231a_Project_Final_Report.pdf
https://web.stanford.edu/class/cs231a/prev_projects_2022/lCS231a_Project_Final_Report.pdf
https://towardsdatascience.com/openpose-research-paper-summary-realtime-multi-person-2d-pose-estimation-3563a4d7e66
https://towardsdatascience.com/openpose-research-paper-summary-realtime-multi-person-2d-pose-estimation-3563a4d7e66
https://djurikom.github.io/pdfs/hauri2021wacv.pdf
https://djurikom.github.io/pdfs/hauri2021wacv.pdf
https://courses.cs.washington.edu/courses/cse547/23wi/old_projects/23wi/NBA_Performance.pdf
https://courses.cs.washington.edu/courses/cse547/23wi/old_projects/23wi/NBA_Performance.pdf
https://courses.cs.washington.edu/courses/cse547/23wi/old_projects/23wi/NBA_Performance.pdf
https://cs229.stanford.edu/proj2017/final-reports/5132133.pdf
https://cs229.stanford.edu/proj2017/final-reports/5132133.pdf
https://cs229.stanford.edu/proj2017/final-reports/5132133.pdf

