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Abstract

This project focuses on enhancing the semantic segmen-
tation capabilities of the SegFormer model for robot nav-
igation in warehouse environments. By utilizing synthetic
data generated through nVidia ISAAC Sim and fine-tuning
the model, we aim to improve the segmentation accuracy
and reliability essential for autonomous robot operations.
The results demonstrate a significant increase in mean In-
tersection over Union (mIoU) from 0.43 to 0.70, highlight-
ing the effectiveness of synthetic data in training advanced
segmentation models. Key improvements include better dif-
ferentiation between similar objects and the introduction of
new classes critical for navigation, such as forklifts.

1. Introduction

Image segmentation is a fundamental problem in com-
puter vision that involves dividing an image into multiple
segments or regions to simplify the representation and make
it more meaningful for analysis. It is pivotal in tasks like
object recognition, medical imaging, and autonomous driv-
ing, where understanding the spatial organization of differ-
ent objects within an image is crucial [3, 4].

One foundational work that has been frequently cited in
the context of image segmentation is Long et al.’s introduc-
tion of Fully Convolutional Networks (FCNs) for seman-
tic segmentation [6]. This paper revolutionized the field by
adapting CNNs for pixel-wise prediction without any fully
connected layers, which enabled end-to-end training and in-
ference on images of arbitrary sizes. This approach has laid
the groundwork for many subsequent developments in im-
age segmentation methodologies.

The introduction of Transformer models has brought a
new perspective to handling image segmentation tasks, tra-
ditionally dominated by convolutional networks. The Seg-
Former paper by Xie et al. [7] integrates the Transformer
architecture specifically tailored for the demands of seman-
tic segmentation. SegFormer stands out for its hierarchi-
cal Transformer encoder which efficiently processes multi-
scale features, crucial for capturing detailed context at vari-
ous resolutions necessary for accurate segmentation.

Another significant contribution is the Swin Transformer
by Liu et al. [5], which constructs hierarchical feature maps
and applies shifted windows for self-attention, enhancing
modeling capability and efficiency for various vision tasks,
including semantic segmentation.

As the field progresses, more innovations continue to
emerge, such as the integration of Transformer models with
conventional CNNs to leverage the strengths of both archi-
tectural paradigms [1, 2]. These advancements underscore
the dynamic nature of the field and the ongoing efforts to
improve the accuracy and efficiency of image segmentation
models.

In this project, we focus on enhancing the semantic seg-
mentation capabilities of the SegFormer model for robot
navigation in warehouse environments. By utilizing syn-
thetic data generated through nVidia ISAAC Sim and fine-
tuning the model, we aim to improve the segmentation ac-
curacy and reliability essential for autonomous robot oper-
ations.

2. Problem Statement
In the context of enhancing autonomous robot navigation

within warehouse environments, this project addresses the
critical task of semantic segmentation.

• Objective: Enable autonomous robots to navigate effi-
ciently and safely in complex and dynamic warehouse
settings.

• Input: Images captured by the robot’s camera while
navigating the warehouse.

• Output: Segmented images where each pixel is la-
beled with the class of the object it represents, allowing
the robot to understand and interpret its surroundings.

• Challenges:

– Accurate Navigation: Robots need to accu-
rately identify paths, obstacles, and relevant
items within the warehouse.

– Dynamic Environments: Warehouses are dy-
namic with frequently changing layouts and ob-
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jects, requiring robust and adaptable segmenta-
tion models.

– Data Acquisition: Obtaining a large, diverse,
and accurately labeled dataset for training is of-
ten expensive and time-consuming.

The aim is to achieve a high level of precision in im-
age segmentation to ensure robots can navigate effectively,
avoiding obstacles and identifying essential items reliably.

3. Methodology Overview

To address the challenges identified, this project utilizes
the following methods:

• SegFormer Model: Leveraging the SegFormer
model, which is renowned for its efficiency and effec-
tiveness in semantic segmentation tasks. The model
processes multi-scale features, crucial for capturing
detailed context at various resolutions necessary for
accurate segmentation.

• Synthetic Data Generation: Utilizing high-fidelity
graphical simulations through nVidia ISAAC Sim to
generate large volumes of labeled training data. This
approach mitigates the challenges of acquiring real an-
notated images in specialized settings by producing
high-quality, diverse synthetic datasets.

• Model Fine-Tuning and Performance Enhance-
ment: Fine-tuning the SegFormer model on the syn-
thetic data to improve its performance efficiently. This
strategy leverages the controlled conditions of simu-
lated data to enhance the model’s generalization capa-
bilities in real-world scenarios.

4. The SegFormer Model for Semantic Seg-
mentation

SegFormer is an advanced semantic segmentation model
that leverages the power of Transformers to achieve efficient
and accurate segmentation results. The architecture, as pro-
posed by Xie et al. [7], integrates several innovative design
elements to enhance performance and scalability.

4.1. Architecture Overview

The SegFormer architecture (shown in Figure 1) consists
of two main components: the encoder and the decoder. The
encoder is responsible for extracting multi-scale features
from the input image, while the decoder processes these
features to produce the final segmentation map.

Figure 1. Architecture of the SegFormer model, highlighting its hi-
erarchical Transformer encoder and efficient design. Source: Xie
et al. [7]

4.1.1 Encoder

The encoder in SegFormer uses a hierarchical structure of
Transformer blocks, which allows it to process input im-
ages at multiple scales. This multi-scale feature extraction
is crucial for capturing both fine details and broader contex-
tual information. Each stage in the encoder consists of:

• Overlap Patch Embeddings: Converts the input im-
age into a sequence of patches with overlapping re-
gions to retain spatial information.

• Transformer Blocks: Processes the patches using
self-attention mechanisms and feed-forward networks
to extract rich features.

• Patch Merging Layers: Reduces the spatial dimen-
sions of the feature maps while increasing the depth,
enabling efficient multi-scale representation.

4.1.2 Decoder

The decoder aggregates the multi-scale features from the
encoder and refines them to produce a high-resolution seg-
mentation map. Key components of the decoder include:

• MLP Layers: Multi-Layer Perceptron (MLP) layers
are used to merge features from different scales.

• UpSampling Layers: These layers increase the spatial
resolution of the feature maps to match the input image
size, facilitating accurate pixel-wise predictions.

4.2. Benefits and Performance

The SegFormer model is designed to be both simple and
efficient, making it suitable for real-time applications in en-
vironments with limited computational resources. Key ben-
efits include:
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• High Efficiency: The use of lightweight Transformer
blocks and efficient patch embedding techniques en-
sures that SegFormer can process images quickly with-
out compromising on accuracy.

• Scalability: The hierarchical design allows SegFormer
to scale effectively, handling images of various sizes
and resolutions.

• Robustness: The multi-scale feature extraction and
merging capabilities make SegFormer highly robust to
variations in object sizes and complex scene layouts.

In their experiments, Xie et al. [7] demonstrated that
SegFormer achieves state-of-the-art performance on several
benchmark datasets, including ADE20K and Cityscapes,
outperforming many existing models in terms of both ac-
curacy and inference speed.

5. Dataset
The dataset creation is a pivotal part of this project, fo-

cusing on generating high-quality synthetic data for train-
ing the SegFormer model tailored for warehouse navigation.
The following subsections describe the environment setup,
data capture, and preprocessing steps involved in creating
the dataset.

5.1. Environment Setup and Data Capture

A detailed 3D warehouse environment was constructed
using nVidia ISAAC Sim on an Ubuntu workstation
equipped with a Geforce RTX graphics card. The realism
of the environment was enhanced by the Warehouse Cre-
ator Extension, which supports hyper-realistic, ray-traced
scenes.

An animation of a simulated robot camera was defined to
navigate around the warehouse, capturing images from var-
ious angles and positions. This setup allows for the genera-
tion of ground-truth data for semantic segmentation, crucial
for the training and evaluation of the SegFormer model.

See Figure 2 for a screenshot of the ISAAC environ-
ment. Top-left panel shows a realtime, ray-traced rendering
of the 3D scene. On the bottom right we use the “Synthetic
Data Recorder” tool to automatically generate the ground-
truth segmentation data during the animation. The latter is
controlled by the timeline at the bottom, where we defined
a path of the robot around the warehouse via a series of
keyframes.

5.2. Dataset Composition

The dataset comprises 100 elements, where each element
includes:

• A 3-channel (RGB) rendering of the scene with dimen-
sions 3x512x512.

• A 512x512 tensor representing the semantic segmen-
tation ground truth, where each pixel’s value is a class
ID corresponding to the object present in that pixel.

• A JSON file mapping each class ID to its respective
class name, providing an understandable and traceable
reference for each object in the images.

See Figure 3 for some example RGB images from the
dataset, as well the ground-truth segmentation data auto-
generated by the Synthetic Data Recorder tool. Notice how
the images look very realistic thanks to the advanced ren-
dering capabilities of ISAAC Sim with ray-tracing. Also
note the complexity of the scenes, which would require a
lengthy and expensive manual labeling process.

5.3. Preprocessing and Class Mapping

One of the more complex aspects of the dataset creation
was the preprocessing of segmentation data. Each captured
image came with its unique mapping from IDs to objects,
which varied due to the presence of different objects across
the images. To standardize this, an extensive matching pro-
cess was undertaken to align each object with one of the 150
classes defined in the ADE20K dataset [8], supplemented
by additional classes to cover new objects found in the
warehouse environment. This was done because we chose
as baseline the SegFormer model trained on ADE20K.

Ultimately, a unified dictionary was created where each
“ID” was associated with a “class” name, totaling 165
unique classes. This standardized mapping ensured that all
processed segmentation data had class IDs consistent with
this single dictionary, simplifying the training and valida-
tion process for the SegFormer model.

Here follows a list of all the classes present in the ware-
house dataset. In bold the new classes not available in
the ADE20K dataset that the fine-tuned model will have to
learn from scratch.

BACKGROUND box
rack pillar
paper note pallet
UNLABELLED floor decal
ceiling floor
sign fire extinguisher
crate wall
lamp wire
bottle barel
bracket fuse box
forklift cone
cart bucket
paper shortcut barcode
emergency board
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Figure 2. Warehouse 3D environment using nVidia ISAAC Sim.

6. Finetuning the SegFormer Model

Finetuning the SegFormer model was a crucial part of
this project, aimed at optimizing the model’s performance
for semantic segmentation in warehouse environments. The
finetuning process was implemented in PyTorch and exe-
cuted on a fully-specced Apple MacBook Pro with an M3
Max chip, which includes 40 GPU cores and 128GB of uni-
fied memory. Leveraging the MPS backend of PyTorch al-
lowed us to efficiently utilize all GPU cores and most of the
available memory.

6.1. Training Setup

The finetuning process spanned approximately one
week, during which a total of 18 training attempts were con-
ducted. The training experiments were meticulously logged
using TensorBoard, as illustrated in Figure 4. Each training
run explored different hyper-parameters and dataset aug-
mentations to identify the optimal configuration.

6.2. Optimization and Augmentation

We utilized the AdamW optimizer in PyTorch, experi-
menting with various learning rates ranging from 1× 10−7

to 1×10−4, and stability parameter ϵ values from 1×10−8

to 1 × 10−6. Additionally, random dataset augmentations
were applied, including color jitter, rotations, and flips.

6.3. Finetuning Results and Observations

Figure 5 shows the train and test loss curves for the best
finetuned model, obtained after 80 epochs. This optimal
result was achieved with a learning rate of 2 × 10−5 and
ϵ = 1 × 10−8, without applying vertical flips or rotations
to the dataset. This decision was based on the necessity to
preserve the concept of “up” and “down,” which provides
critical information for distinguishing between the ceiling
and the floor in warehouse environments.

In some training attempts, we observed a significant dis-
crepancy between test and train loss, indicating potential
overfitting. Additionally, prolonged training beyond a cer-
tain number of epochs led to performance deterioration and
instability. Therefore, for the best model, we aimed to
achieve a clean and consistent decrease in both train and test
losses, with the test loss slightly higher but not excessively
so.

The TensorBoard metrics provided valuable insights into
the finetuning process, highlighting the importance of bal-
anced training and the careful selection of hyper-parameters
to avoid overfitting while achieving robust performance im-
provements.
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Figure 3. Samples from the generated synthetic dataset. Top: RGB
images, showcasing the photo-realistic fidelity of ISAAC Sim.
Bottom: overlay with ground-truth segmentation data generated
via the Synthetic Data Recorder tool.

7. Results
This section presents the evaluation results of the Seg-

Former model before and after finetuning on the synthetic
warehouse dataset. We utilize the mean Intersection over
Union (mIoU) metric to quantitatively assess the model’s
performance.

7.1. Mean Intersection over Union (mIoU)

The mIoU metric is a common evaluation measure for
semantic segmentation tasks. It calculates the average IoU
across all classes, where IoU is defined as:

IoU =
Intersection

Union
(1)

For each class, the intersection is the area of overlap be-
tween the predicted segmentation and the ground truth, and
the union is the total area covered by both the predicted seg-
mentation and the ground truth. The mIoU is then computed
as the mean of the IoUs for all classes.

7.2. Overall Performance

Figure 6 shows the inference performance on the en-
tire test dataset, comparing the baseline SegFormer model

Figure 4. Tensorboard metrics for the 18 fine-tuning attempts with
different hyper-parameters and dataset augmentations. Notice the
attempts with a large discrepancy in train loss (top-right) vs test
loss (top-left), likely indicating overfitting.

Figure 5. Train vs. Test loss for the best finetuned model, obtained
at Epoch 80.

(red) and the finetuned model (blue). The finetuned model
demonstrates a significant improvement in mIoU, increas-
ing from an average of 0.43 to 0.70.

7.3. Specific Image Analysis

To further illustrate the improvements achieved through
finetuning, Figure 7 presents the segmentation results for
a specific test image. The finetuned model shows notable
improvements in key areas:
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Figure 6. Inference performance on test dataset, comparing base-
line SegFormer (red) vs. SegFormer fine-tuned on the warehouse
dataset (blue).

• Shelf Segmentation: The finetuned model more accu-
rately differentiates between boxes, pallets, and racks
on the shelves. This distinction is crucial for robotic
navigation and manipulation tasks within the ware-
house.

• Forklift Detection: The finetuned model successfully
detects the forklift, a new class introduced during fine-
tuning. Detecting such obstacles is essential for safe
navigation and operation within the environment.

It is interesting to note that classes such as boxes and
racks were already present in the ADE20K dataset, which
the baseline SegFormer model was trained on. Despite this,
finetuning with the synthetic warehouse dataset led to sig-
nificant improvements, highlighting the effectiveness of the
finetuning process.

7.4. Case of Decreased Performance

While the finetuned model generally outperforms the
baseline, there is one instance at index 10 where the fine-
tuned mIoU is lower. Figure 8 compares the baseline and
finetuned models for this specific image. In the finetuned
model, the wire on the wall is misclassified as a pillar, and
there is slightly more noise in the segmentation of the bot-
tom boxes. However, the finetuned model correctly classi-
fies the floor decal, which is essential for navigation, and
the pallet on the bottom right.

Despite the lower mIoU for this particular image, the im-
provements in key areas for robotic operation in a ware-
house, such as accurate floor decal detection and pallet
recognition, demonstrate the overall effectiveness of the
finetuning process.

8. Conclusion
In this project, we successfully enhanced the seman-

tic segmentation performance of the SegFormer model for

robot navigation within warehouse environments. By lever-
aging synthetic data generated through high-fidelity simu-
lations and implementing an extensive fine-tuning process,
we significantly improved the model’s mean Intersection
over Union (mIoU) from 0.43 to 0.70. The finetuned model
exhibited notable advancements in accurately differentiat-
ing between similar objects and detecting new classes es-
sential for navigation, such as forklifts.

Our findings underscore the potential of synthetic data
in training sophisticated models for complex tasks where
real-world annotated data is scarce or expensive to obtain.
The success of this approach sets a precedent for future re-
search in robotics and computer vision, demonstrating that
synthetic data, when properly utilized, can effectively en-
hance model performance in real-world applications.

Future work will focus on further optimizing the model,
exploring additional synthetic data generation techniques,
and testing the model in more diverse and challenging real-
world environments to ensure its robustness and generaliz-
ability.
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Figure 7. Inference results on challenging image. Left: ground truth. Middle: baseline SegFormer. Right: fine-tuned SegFormer (ours). A
key area of improvement is discerning between boxes, pallets, and racks on both shelves. Other notable areas are the forklift, as well as the
separation of pillars and lamps from the ceiling.

Figure 8. Comparison of segmentation results for a specific test image where the finetuned model performed worse. Left: Ground Truth.
Middle: Baseline SegFormer. Right: Finetuned SegFormer.
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