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Abstract

Agricultural crop anomalies have a direct impact on the
health and efficacy of a crop yield. To explore possible
algorithms in order to detect such patterns, we utilize a
Agriculture-Vision dataset from 2021 to compare various
architectures’ effectiveness in performing a semantic seg-
mentation task onto satellite imagery of farmlands. We
attempt to utilize a direct semantic segmentation encoder-
decoder structure based around a U-Net as a baseline, and
improve upon that architecture by first running a classifier
on the dataset.

Having uncovered the U-Net’s general significant chal-
lenges in this setting of segmentation, our project over-
all highlights the difficulties and potential mismatch of ar-
chitectures like the U-Net to large spatial data such as
the Agriculture-Vision dataset. In addition to uncovering
knowledge around the U-Net’s applicability in the task of
aerial image segmentation, we gathered insights from the
applicability of other model architectures—such as Seg-
ment Everything Everywhere all at Once (SEEM) to the
Agriculture-Vision dataset and segmentation task.

1. Introduction

The Agriculture-Vision dataset (2021) is a large-scale
aerial farmland image dataset for semantic segmentation of
agricultural anomalies. Such instances include anomalies
like the presence of weed clusters, storm damage, farmland
drydown, nutrient deficiency, water floods, among more.
Discovering such patterns is important for farmers: the
recognition and subsequent management is ultimately crit-
ical to protecting yields. Algorithms that can detect these
field anomalies and conditions can provide a timely mech-
anism to prevent major losses and increase yields of farmer
crops. Our work aims to use pre-existing models trained on
the Agriculture-Vision dataset to understand the effect of
certain feature adjustment operations on the ultimate evalu-

ation metrics, such as the loss between predicted segmen-
tation mask and the ground truth segmentation mask as
well as the metric of mean Intersection-over-Union (mIoU).
Specifically, our project aimed to do two things. First, we
wanted to start with a pre-existing baseline U-Net imple-
mentation that performs binary segmentation (i.e. discern-
ing between background and a certain class of image told to
the model) on the Agriculture-Vision dataset to understand
where the results lie at baseline with just a simple architec-
ture, such as a U-Net. We used the implementation from
Mark Lisi [1]. In this first part we wanted to understand
how the baseline U-Net performed. Second, we sought to
observe the impact of combining a classifier with nine bi-
nary classifying U-Net models that we trained on each of
the classes of the dataset. In particular, we designed the
structure of the classifier to incorporate a Residual Neural
Network (ResNet) with a MultiOutputClassifier object from
scikit-learn, which allowed for packaging of the classifiers
to run them in parallel.

2. Related Works
2.1. Foundational Off-the-Shelf Models

An important piece of related work was a prefacing pub-
lication from Chiu et al. [2] that provided depth of back-
ground specifically around the dataset we are using. In this
paper we are introduced to popular models for semantic seg-
mentation: U-Net, which leverages an encoder-decoder ar-
chitecture for pixel-wise classification; PSPNet which uses
spatial pooling; and foundational off-the-shelf models from
DeepLab. DeepLab, in comparison to these other aforemen-
tioned methods, has many strengths. It is a very deep pre-
trained network that can be fine-tuned to the specific appli-
cation—and it showed fairly decent performance when im-
plemented by the Agriculture-Vision dataset team, getting
mIoU scores that compete with the team’s best models yet.
Heffels and Vanschoren [3], on a different aerial imagery
dataset, share similar findings, achieving high mIoU metrics
using a model architecture based on DeepLabv3. Learning
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about DeepLab led us to explore other state-of-the-art foun-
dational models, SEEM and YOLOv4. SEEM, proposed by
Zou et al. [4], as suggested by the name, claims to be
an all-around robust model in semantically segmenting any
given image prompt. Further, its strengths lie in its versa-
tility, it being able to take in a generalized range of images;
compositionality, as it has the capability to learn complex
spatial relationships between text and visual prompts; in-
teractivity, as incorporated are learnable memory prompts
into the decoder that maintains segmentation history; and
semantic-awareness and vocabulary segmentation capabil-
ity. A weakness of SEEM, as we discovered and will dis-
cuss, is its lack of applicability outside of general resolution
images—i.e., it is not as applicable in cases similar to try-
ing to semantically segment aerial imagery. We further ex-
plored YOLOv4, a popular off-the-shelf model for semantic
segmentation. One source in particular that provided insight
on YOLOv4’s specific strengths in its use cases was Samyal
et al. [5]. The authors emphasized that in this case of object
detection in aerial imagery, YOLOv4 performed better in
comparison to many models. Ruan et al. [11], in ”A precise
crop row detection algorithm in complex farmland for un-
manned agricultural machines” use YOLO as well and also
have strong performance in this context of aerial imagery.

2.2. Pre-Existing Models on our Dataset

Lisi [1] looks at the performance of U-Net in the context
of the Agriculture-Vision dataset. U-Net is a much simpler
approach to the task at hand. However a significant weak-
ness is that its simpler nature does not allow it to pick up
on the more complex features that deeper models might al-
low. Training a deeper U-Net could help this, though in
Lisi’s implementation, their model often predicted grainy
mask label predictions, as well as a significant amount of
blank label predictions. However papers like Baheti et al.
[12], who had high mIoU scores from spatial imagery us-
ing a U-Net, provided arguments for the effectiveness. The
U-Net success seems to be very context-dependent. Liu
et al. [6] motivate our work with a more complex model
approach to the Agriculture-Vision dataset. Using a novel
architecture, the Multi-view Self-Constructing Graph Con-
volutional Network (MSCG-Net), showcase in their paper
the effectiveness of the MSCG-Net in the context of the
aerial imagery from the Agriculture-Vision dataset. The
MSCG-Net is a composition of Self-Constructing Graphs
(SCGs) and Graph Convolutional Networks (GCNs). The
approach of having a CNN backbone allowed the model
to learn high-level representations from images while gain-
ing the semantic meaning and rotational invariance benefits
from the SCGs. Their model was among the top scorers in
the actual Agriculture-Vision competition.
Yang et al. [7] in the Agriculture-Vision Competition use
DeepLabV3+ with what they call Switchable Normalization

Figure 1. An example NIR satellite imagery, taken from the vali-
dation set.

blocks led to very successful mIoU scores. The strength
here is that the switchable normalization block allowed the
model to alleviate feature divergence, and they also had a
versatile hybrid loss function. Another team, Park et al. [8]
used a Residual DenseNet—a very strong approach due to
the network depth, and its unique approach when it comes
to several steps of post-processing.

3. Dataset & Features
The 2021 Agriculture-Vision dataset consists of 94,986

RGB and near-infrared (NIR) images from 3,432 different
farmlands. These farmland images were captured between
2017 and 2019 across multiple growing seasons in various
farming locations in the US. Each training image is hand-
processed by agronomic experts, who provide boundaries
(e.g., drawn boxes) and labels to identify the anomalies in
each farmland image. The full set of possible labels and
their corresponding numerical labels for segmentation in
the dataset are: double plant (1), drydown (2), endrow (3),
nutrition deficient (4), planter skip (5), storm damage (6),
water (7), waterway (8), and weed cluster (9). As a form
of data handling, the dataset does not include images from
the same farmland in more than one subset from the train-
ing, test, and validation set to preserve the integrity of our
model.
Due to the large size of the dataset, we created our own
train-val-test split consisting of 18,334 images for training,
3,667 images for validation, and 1,833 images for testing.
To preprocess the data for our ResNet-based model, we ap-
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Figure 2. The corresponding RGB image for the above figure.

plied a series of transformations using the PyTorch trans-
former module. First, the pixel values of the images were
rescaled to the range [0.0, 1.0]. Then, the images were
normalized using a mean of [0.485, 0.456, 0.406] and a
standard deviation of [0.229, 0.224, 0.225] across the color
channels. These preprocessing steps are necessary to en-
sure compatibility with the pre-trained ResNet model. The
labels were converted to tensors without any further trans-
formations.
By utilizing both the RGB and NIR images during train-
ing, our model aims to learn from a broader spectrum of in-
formation, potentially improving its ability to identify and
segment the various anomalies present in the farmland im-
ages. The preprocessing steps of rescaling and normaliza-
tion align the input data with the requirements of the ResNet
model, enabling effective training and inference. We chose
to normalize the images in the same way across all experi-
ments to ensure consistency.

4. Methods

In this study, we aimed to develop an effective seg-
mentation model for the 2021 Agriculture-Vision dataset,
which consists of farmland images captured across vari-
ous locations in the US. Our primary metric for evaluating
model performance was the mean Intersection over Union
(mIoU), which measures the overlap between the predicted
and ground truth masks for each class.

4.1. MSCG-Net : Baseline

To establish a baseline, we selected a state-of-the-art
model from a competition that demonstrated low loss
and high accuracy. The chosen model, Multi-view Self-
Constructing Graph Convolutional Networks with Adap-
tive Class Weighting Loss (MSCG-Net), is a deep learn-
ing architecture designed for semantic segmentation tasks.
MSCG-Net leverages multi-view information by processing
the input image from different perspectives (e.g., original,
rotated, and flipped views) and constructing graph convo-
lutional networks (GCNs) to capture long-range dependen-
cies within each view. The model also employs an adaptive
class weighting loss function to address class imbalance is-
sues commonly found in semantic segmentation datasets.
By integrating multi-view information and adaptive class
weighting, MSCG-Net aims to improve segmentation accu-
racy and robustness. The code for MSCG-Net is provided
in the attached document.

4.2. Segment Everything Everywhere All at Once
(SEEM)

In addition to MSCG-Net, we explored the use of an off-
the-shelf segmentation model called Segment Everything
Everywhere All at Once (SEEM). SEEM is a prompt-based
model that can segment images based on user-provided tex-
tual descriptions. We conducted experiments to evaluate
the effectiveness of SEEM in segmenting the Agriculture-
Vision dataset images.

4.3. Baseline U-Net Implementation

We explored the use of a U-Net architecture for seman-
tic segmentation of the Agriculture-Vision dataset. U-Net,
proposed by Ronneberger et al. [9], is a convolutional neu-
ral network designed for biomedical image segmentation.
The architecture consists of an encoder path that captures
context and a symmetric decoder path that enables precise
localization. The skip connections between the encoder and
decoder paths allow for the propagation of spatial infor-
mation, making U-Net well-suited for segmentation tasks.
Inspired by the architecture from github.com/marklisi1/ag-
vision-segmentation/blob/main/ag-vision.ipynb, we made
modifications to the original U-Net to adapt it to our specific
task. Our U-Net implementation consists of an encoder with
four convolutional blocks, each followed by max pooling
for downsampling. The decoder path includes four upsam-
pling blocks, each followed by convolutional layers. Skip
connections are added between the corresponding encoder
and decoder blocks to preserve spatial information. To ad-
dress potential over-fitting issues, we introduced dropout
layers between the convolutional layers in the encoder path.
Dropout is a regularization technique that randomly sets a
fraction of input units to zero during training, which helps
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Figure 3. Architecture of our baseline U-Net, which contains four
conv layers, three relu layers, and a pooling layer.

prevent the network from relying too heavily on specific
features and promotes generalization.

4.4. Classifier & U-Net Pipeline Implementation

4.4.1 Classifier

Another architecture we experimented with was to first uti-
lize a multilabel classifier to output the existing classes for
each image. The advantage of such a structure was to al-
low 9 separately trained U-Nets to focus on binary seg-
mentation. In theory, this would allow us to first detect
which classes existed in each image, and run each image
in a more finely tuned U-Net to then find the pixels where
for each of the detected classes. Since our dataset con-
tained only ground truth masks, as a segmentation dataset,
we first extracted the necessary class labels for each image
by checking the 9 ground truth masks for each image. The
length 9 label vector for each image was then stored in a
csv file. Our multilabel classifier was structured using the
MultiOutputClassifier object from scikit-learn. We imple-
mented ResNet-50 with pretrained weights as our estimator
by defining a ResNet class with methods fit and predict, cor-
responding to train and testing. ResNet, introduced by He et
al. [10], has become a popular choice for many computer vi-
sion tasks due to its ability to train deep networks effectively
by mitigating the vanishing gradient problem through the
introduction of residual connections. This ResNet-50 was
then fed into the MultiOutputClassifier, which finetuned 9
separate classifiers, each with a pretrained ResNet-50 as the
backbone.

4.4.2 U-Net

We then aimed to create a pipeline between the classifier
and the U-Net models. Again, the goal was to have a sep-
arate U-Net for each of the classes, providing a more spe-
cialized model to segment and learn the features of each
class more effectively. To implement this, we created a U-

Figure 4. Proposed architecture for the classifier/U-Net pipeline.
The above figure is an example with an image where classes 3 and
8 are found present by the multilabel classifier. The U-Nets trained
on classes 3 and 8, endrow and waterway respectively, are then ran
on the image to detect the pixels.

Net with the same decoder architecture as 4.3. We chose to
use ResNet-18 as the encoder for our U-Net models instead
of the original encoder architecture due to its proven effec-
tiveness in computer vision tasks. Our hypothesis for using
ResNet-18 as the encoder was that it would provide a more
powerful and efficient feature extraction mechanism com-
pared to the original U-Net encoder. ResNet-18 has been
pre-trained on large-scale datasets like ImageNet, which en-
ables it to learn robust and transferable features. By leverag-
ing the pre-trained weights of ResNet-18, we aimed to bene-
fit from transfer learning, where the knowledge gained from
image classification tasks can be applied to semantic seg-
mentation. Furthermore, the deeper architecture and resid-
ual connections of ResNet-18 allow for the capture of more
complex and hierarchical features while facilitating the flow
of information and gradients throughout the network. This
enables the training of deeper models without performance
degradation. We hypothesized that this enhanced feature
extraction capability, combined with the benefits of trans-
fer learning, would lead to improved segmentation accuracy
and generalization compared to the original U-Net encoder.
ResNet-18 is also a relatively lightweight model compared
to its deeper counterparts (e.g., ResNet-50, ResNet-101),
making it computationally efficient and faster to train. This
is particularly advantageous when training separate U-Net
models for each class, as it reduces the overall training time
and resource requirements.

5. Experiments, Results & Discussion
5.1. MSCG-Net

We used the checkpoint in the codebase for the MSCG-
Net on the Agriculture-Vision dataset. The model check-
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point was stored after 20 epochs of training. We ran the
model on our testing dataset, and achieved a loss of 1.12
and an accuracy (as defined by the paper itself) of 63.9%.
The mIoU metric returned a value of 43.

5.2. Segment Everything Everywhere All At Once
(SEEM)

Prompt-based Segmentation with SEEM: To explore
the potential of prompt-based segmentation, we conducted
10 trials using the SEEM model. In each trial, we up-
loaded a batch of RGB images from the Agriculture-Vision
dataset and provided the corresponding label class as the
prompt. Unfortunately, despite our efforts, SEEM was un-
able to effectively segment the images based on the pro-
vided prompts. The model’s performance in this task was
unsatisfactory, suggesting that prompt-based segmentation
may not be directly applicable to the specific characteristics
and challenges of the Agriculture-Vision dataset, focusing
on a single class with non-empty labels. However, despite
the inclusion of dropout, we observed an exponential re-
duction in training loss, with the final training loss reaching
around 0.018 and an mIoU of 1.00. These results suggested
that the model was overfitting to the training data, and the
performance on the test data confirmed this assumption with
our model not generalizing well to these unseen samples, as
our loss spiked to 1.997. Furthermore, when looking at in-
dividual samples, the IoU for most samples was 0, as our
model suffered from having a bias towards producing blank
masks (as confirmed by printing out the predicted masks).

5.3. Classifier & U-Net Pipeline

We were unable to run inference on our classifier model
as we kept running out of memory on our GPU. To fix this,
we tried several approaches including decreasing the size
of our dataset - but to no avail. In further testing, we would
have switched the ResNet-50 model for a lighter model with
comparable performance.
To evaluate the effectiveness of our ResNet-18 U-Net ap-
proach for semantic segmentation of the Agriculture-Vision
dataset, we conducted a series of experiments. We initially
trained the model on the entire set of non-empty labels and
corresponding images for a single class. However, upon
testing, we observed that the model consistently produced
blank segmentation masks. To investigate whether this is-
sue was specific to a particular class, we repeated the exper-
iment with various classes. Unfortunately, the model gener-
ated blank masks across all classes, indicating a more sys-
tematic problem.
Throughout the training process, we monitored the loss
function, which exhibited a decreasing trend. The final
loss values ranged between 0.5 and 1.5, suggesting that the
model was learning to minimize the objective function. We
employed the Binary Cross-Entropy (BCE) loss with log-

Figure 5. An example of the blank masks generated by the U-Nets.
The black pixels in this output mask indicate the lack of any crop
anomalies detected by the model in the image.

its, a commonly used loss function for binary segmentation
tasks, implemented in the PyTorch framework.
To further investigate the model’s behavior, we created a
small dataset consisting of approximately 300 non-empty
images and trained the model on this subset for 20 epochs.
The goal was to overfit the model on this limited dataset and
assess its performance. However, even when tested on the
same set of images used for training, the model still pro-
duced blank segmentation masks.
Our hypothesis is that the model learned to minimize the
loss by producing blank masks as an average representa-
tion of the entire dataset. This behavior suggests that the
model struggled to capture the discriminative features nec-
essary for accurate segmentation. The consistent decrease
in loss values during training, despite the generation of
blank masks, supports this hypothesis.

6. Conclusion

In this study, we explored various approaches for seman-
tic segmentation of agricultural anomalies in aerial imagery
using the Agriculture-Vision dataset. Our primary goal was
to compare the effectiveness of foundational segmentation
models and investigate the impact of architectural modifi-
cations and pipeline designs on the segmentation perfor-
mance.
We established a baseline using the state-of-the-art MSCG-
Net model, which leveraged multi-view information and
adaptive class weighting to address the challenges of aerial
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image segmentation. MSCG-Net achieved promising re-
sults on the Agriculture-Vision dataset, demonstrating the
effectiveness of its architecture in capturing long-range de-
pendencies and handling class imbalance.
We also explored the applicability of off-the-shelf models,
such as SEEM, to our task. However, despite its success
in other domains, SEEM struggled to effectively segment
the aerial images based on the provided prompts. This
highlights the specific challenges posed by the Agriculture-
Vision dataset and the need for domain-specific adaptations.
Our experiments with the U-Net architecture revealed sig-
nificant challenges in achieving accurate segmentation re-
sults. Despite modifications such as the introduction of
dropout regularization and the use of ResNet-18 as the en-
coder, the U-Net models consistently produced blank seg-
mentation masks. This behavior suggests a mismatch be-
tween the U-Net architecture and the complex spatial pat-
terns present in the aerial imagery.
We attempted to address these challenges by designing a
pipeline that combined a multilabel classifier with special-
ized U-Net models for each class. The classifier aimed
to detect the presence of different anomalies in each im-
age, while the U-Net models focused on binary segmenta-
tion. However, memory optimization issues hindered the
successful implementation of this pipeline.

6.1. Future Work

To further advance the field of agricultural anomaly seg-
mentation in aerial imagery, several avenues for future re-
search can be explored:

1. Investigating alternative architectures: While U-Net
and its variants faced challenges in this task, explor-
ing other architectures specifically designed for aerial
image segmentation, such as DeepLabV3+ or PSP-
Net, may yield better results. These architectures have
shown success in capturing long-range contextual in-
formation and handling the unique characteristics of
aerial imagery.

2. Efficient memory management: Developing efficient
memory management strategies is crucial for train-
ing deep learning models on large-scale datasets like
Agriculture-Vision. Exploring techniques such as gra-
dient checkpointing, mixed-precision training, or dis-
tributed computing could enable the successful imple-
mentation of more complex pipeline designs.

By addressing these challenges and exploring novel ap-
proaches, future research can contribute to the development
of robust and reliable segmentation models for agricultural
anomaly detection in aerial imagery. Such advancements
have the potential to support precision agriculture practices,
improve crop yield, and enhance food security.

7. Contributions
1. Malvyn : Implemented the Classifier as well as edited

the MSCG-Net it get it to run.

2. Arunima : Modified the implementation of the U-Net
to add a Res-Net decoder as well as ran the trials for
the Classifier & U-Net pipeline model. Helped edit
MSCG-Net to get it to run

3. Devan : Implemented the baseline U-Net and ran all
trials for it.

All three members contributed to writing the project pro-
posal, milestone and report.
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