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Abstract

This paper presents an approach to identifying spe-
cific crop types using satellite imagery using pretrained,
open source computer vision models, enhanced by human-
labeled segmentation data from the US government. Using
readily available, medium resolution data, we show that we
can quickly fine-tune existing models for use in crop seg-
mentation. This methodology offers a significant advance-
ment over traditional manual counting, reducing costs and
increasing efficiency. The fusion of remote sensing and me-
teorological data enables accurate and timely agricultural
assessments, providing valuable insights for farmers, poli-
cymakers, and researchers. The results demonstrate the po-
tential of this technology in transforming agricultural mon-
itoring and decision-making processes.

1. Introduction
Accurate and timely identification of crop types is cru-

cial for effective agricultural management, food security,
and policy-making. In recent years, food security has be-
come an increasingly pressing issue due to global popula-
tion growth, climate change, and resource constraints. The
Food and Agriculture Organization (FAO) reports that ap-
proximately 9.9% of the world’s population is undernour-
ished, highlighting the urgent need for efficient agricultural
practices [7]. Additionally, studies indicate a significant de-
crease in crop yields due to adverse weather conditions, pest
infestations, and soil degradation, necessitating improved
monitoring and management techniques.

Traditionally, crop identification involves manual count-
ing and field surveys. This method is labor-intensive, costly,
and prone to human error. For example, a comprehen-
sive survey of a large agricultural region can take weeks
to complete and requires substantial human and financial
resources. Furthermore, the accuracy of these surveys can
be compromised by subjective assessments and inconsistent
methodologies.

Recent advancements in remote sensing technology, par-
ticularly satellite imagery, offer a promising alternative.

Satellite imagery has evolved significantly over the past
decade, providing higher resolution, better coverage, and
more timely data. Modern satellites can capture images
with resolutions as fine as 30 centimeters per pixel, enabling
the detailed analysis of individual crop fields. Enhanced
temporal resolution ensures that images are available fre-
quently, facilitating near real-time monitoring of crop con-
ditions.

Interpreting satellite imagery accurately and efficiently
requires sophisticated models and high-quality training
data. Advanced machine learning models, particularly deep
learning techniques, have shown great potential in process-
ing and analyzing large volumes of satellite data. The US
government has provided human-labeled segmentation data
[11], which includes detailed annotations of crop types and
field boundaries, enhancing the accuracy of automated crop
identification systems.

Crop yield predictions can miss the mark by anywhere
from 20% to 50%, leading to significant risks in food supply
management and economic stability [14]. This inaccuracy
poses a critical problem, particularly for agricultural lenders
and regulators who depend on precise data to assess loan
risks and formulate policies. Without accurate predictions,
misinformed decisions can lead to inadequate resource al-
location, poor risk assessment, and ultimately, crop failures
and food shortages. These issues are exacerbated in devel-
oping nations, where food supplies are not as robust as in
the United States, potentially leading to severe food short-
ages and increased hunger.

To address this issue, we propose the development of
an automated segmentation model that leverages geospa-
tial data and remote sensing imagery. This model aims to
improve the accuracy of crop yield predictions and thereby
enhance food security and economic planning. In the long
run, we desire a full pipeline that will segment areas by crop
type, predict crop distress, assess crop yield, and generate
digestible analytics. This work focuses on the first leg of the
pipeline and we identify areas planted with specific crops,
focusing on corn, soybeans, and fallow land. Accurate seg-
mentation helps in understanding crop distribution, which
is critical for planning and resource allocation.
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Our approach will initially be applied to US cropland in
Eastern Nebraska to validate the model’s effectiveness. The
ultimate goal, however, is to deploy this technology in de-
veloping nations where accurate crop yield predictions are
most needed. By integrating high-resolution satellite im-
agery, advanced machine learning models, and comprehen-
sive weather data, our solution aims to provide a reliable
tool for agricultural monitoring. This tool will significantly
reduce the margin of error in crop yield predictions, thereby
enhancing food security, economic stability, and efficient
resource allocation both in the US and globally.

2. Related Work

The accurate identification and monitoring of crop types
and yields are pivotal for agricultural management, food
security, and policy-making. Recent advancements in re-
mote sensing and computational technologies have revolu-
tionized this field, offering new methodologies and insights.
This literature review explores significant contributions to
the domain, highlighting the integration of satellite imagery,
machine learning models, and weather data to enhance crop
monitoring.

2.1. Advances in Satellite Imagery and Data Uti-
lization

Satellite imagery has become a cornerstone in mod-
ern agricultural monitoring. The study by Ghosh et al.
(2021) introduces CalCROP21, a georeferenced multi-
spectral dataset that includes satellite imagery and crop la-
bels. This dataset provides a comprehensive foundation
for training machine learning models to identify and clas-
sify crop types accurately. The high-resolution imagery and
extensive labeling enable the development of precise and
reliable models for crop monitoring. This resource is in-
valuable for researchers aiming to leverage satellite data for
agricultural applications, offering a robust platform for fur-
ther advancements in the field [8].

Recent advancements in remote sensing, such as the in-
tegration of multispectral and hyperspectral imaging, have
significantly improved the ability to monitor crop health and
productivity. These technologies enable precise assessment
of various crop parameters, contributing to more effective
decision-making in precision agriculture [28].

2.2. Machine Learning Models for Crop Identifica-
tion

The integration of advanced machine learning models
with satellite imagery has significantly improved the accu-
racy of crop type identification. Gurav et al. (2023) explore
the zero-shot performance of the Semantic Segmentation
Foundation Model (SAM) in generating crop-type maps us-
ing satellite imagery. Their findings demonstrate that SAM

can effectively recognize different crop types without ex-
tensive training on specific datasets. This study underscores
the potential of using foundation models for precision agri-
culture, reducing the need for large labeled datasets and en-
abling faster deployment of crop monitoring systems [10].

The application of deep learning techniques, such as long
short-term memory (LSTM) networks, has been shown to
enhance the prediction accuracy of crop yields by modeling
complex temporal dependencies in crop growth data [4].

A recent study highlighted the development of a seg-
mentation and classification model using the UNet++ archi-
tecture, which significantly improved the classification ac-
curacy of crop types across diverse agricultural landscapes
[21].

In terms of satellite specific datasets, SSL4EO [26], pro-
vides a comprehensive, multi-spectral dataset which can be
used for self-supervised learning tasks. They also provide
multiple pretrained model checkpoints and backbones that
can be readily used in existing applications. This dataset
helps enable rapid iteration and robust transfer learning out-
side of the traditional bounds of datasets like ImageNet and
COCO.

2.3. Impact of Weather Patterns on Crop Yields

Weather patterns play a crucial role in determining crop
health and yield. Li et al. (2019) propose a novel method
using NDVI percentiles (pNDVI) to monitor real-time crop
growth. This approach leverages historical NDVI data over
the past five years to create a large sample set, enabling the
real-time assessment of crop growth relative to historical
performance. The study demonstrates the effectiveness of
pNDVI in providing timely and accurate insights into crop
health, offering a valuable tool for farmers and policymak-
ers to make informed decisions based on current and histor-
ical weather patterns [19].

Advances in remote sensing technologies, such as the fu-
sion of multispectral and LiDAR data, have enabled more
detailed monitoring of crop health and soil conditions,
which is crucial for managing the impact of varying weather
patterns on agricultural productivity [24].

Remote sensing technologies, including UAVs equipped
with sensors and cameras, have been effectively utilized for
monitoring weather-related changes in crop health, aiding
in early detection and mitigation of adverse effects [15].

The integration of Internet of Things (IoT) technologies
with remote sensing has facilitated real-time monitoring
of environmental conditions, allowing for more responsive
agricultural management practices in the face of changing
weather patterns [17].

3. Methods
We opted to finetune existing, pre-trained models for this

proof of concept project to leverage transfer learning. Us-
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ing PyTorch [22] and PyTorch Lightning [6], we developed
a framework to run DeeplabV3+ [2] with a custom train-
ing loop and dataloader using Adam as the optimizer [18].
We used the Segmentation Models Pytorch [13] library to
load the model architecture into Pytorch Lightning and our
framework supports loading any baseline model from SMP
(i.e. Unet, FPN, etc) into the CropModel class we defined.

Initially, we intended to use Detectron2 [27] from Meta
Research as our core code package and model zoo. De-
tectron2 offers a wide array of models pretrained on the
COCO [20] dataset for object detection, keypoint detection,
and instance/panoptic segmentation but does not offer any
strictly semantic segmentation models. Our dataset is not
conducive to models that expect well defined instance poly-
gons as well as segmentation masks (as in panoptic segmen-
tation), so we abandoned the use of the Detectron2 library.

3.1. CropModel

Our PyTorch Lightning module (named CropModel)
takes as input a base model (selected from SMP), number
of classes, encoder weights, loss function, and learning rate.

Our framework used DeepLabV3+ as our architecture
with a ResNet-50 backbone for our segmentation task.
DeepLabV3+ is designed to capture multi-scale contextual
information and refine segmentation boundaries effectively.
It consists of several key components:

1. Encoder (ResNet-50): The encoder is a ResNet-50
[12] model pre-trained on the ImageNet [5] dataset
or SSL4EO [26] data. It is responsible for extract-
ing high-level features from the input image. The
ResNet-50 architecture includes convolutional layers,
batch normalization, and ReLU activation functions
organized into residual blocks, which enable deep fea-
ture extraction while mitigating the vanishing gradient
problem.

2. Atrous Spatial Pyramid Pooling (ASPP): ASPP is a
crucial component of DeepLabV3+. It applies atrous
(dilated) convolutions with different dilation rates in
parallel, allowing the model to capture features at mul-
tiple scales. This multi-scale approach helps in under-
standing both fine details and broader contextual infor-
mation in the image. The output features from ASPP
are concatenated and further processed to produce a
dense feature map.

3. Decoder: The decoder module in DeepLabV3+ re-
fines the segmentation map by gradually upsampling
the feature map to the original image resolution. It
combines the high-level features from ASPP with low-
level features from the encoder through skip connec-
tions, which helps in producing sharper segmentation
boundaries. The decoder employs depthwise separable

convolutions, which reduce the number of parameters
and computational complexity while maintaining per-
formance.

4. Output Layer: The final layer of the model is a 1x1
convolution followed by a softmax activation function
to produce class probabilities for each pixel in the im-
age. The number of output channels corresponds to the
number of land cover classes in our dataset.

3.2. Loss Function

Our default loss function for training is Dice Loss, a
very common loss for segmentation tasks due to the fo-
cus of overlap regions. It is designed to maximize the
overlap between the predicted segmentation map and the
ground truth segmentation map effectively addressing class
imbalance issues commonly encountered in dense predic-
tion tasks. The Dice coefficient, originally introduced for
comparing the similarity of two sets, is defined as:

Dice Coefficient =
2|A ∩B|
|A|+ |B|

(1)

where A represents the set of predicted elements, and B
represents the set of ground truth elements. In a more prac-
tical form for continuous predictions, the Dice coefficient
can be expressed as:

Dice Coefficient =
2
∑N

i=1 pigi∑N
i=1 pi +

∑N
i=1 gi

(2)

where pi and gi are the predicted and ground truth values
for the i-th pixel, respectively, and N is the total number of
pixels. Dice loss, being a loss function, is derived from this
coefficient and is typically defined as:

Dice Loss = 1− Dice Coefficient (3)

By minimizing the Dice loss, the model is encouraged to
increase the overlap, thereby improving the segmentation
accuracy.

3.3. Dataset Splitting & Data Loader

We split the dataset into training, validation, and test sets
with an 80-15-5 ratio resulting in 6552 images in our train-
ing set. To ensure that the test and validation set were not
too similar to the training set, images were grouped by loca-
tion and the entire group (all 8 images of that location from
two months each in 2020-2023) were added to either train,
validation, or test.

Our PyTorch dataloader class imports RGB data im-
ages and grayscale mask images, converting them to ten-
sors (BGR for data images). In order to save processing
time during training, the dataloader also has the option to
preload the given dataset into memory as numpy arrays.
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Figure 1. Data Splitting Pipeline (80 sq km to 20 sq km to 2.5 sq km)

These are then indexed, converted to tensors, and returned
to the model when the dataloader is called during training.
The class accepts a ’transform’ argument which is a set of
augmentations from the Albumentations [16] library (hor-
izontal/vertical flip, rotations) to increase variability in the
training set per batch if desired.

3.4. Model Training

The model was trained using the PyTorch Lightning
framework, which facilitated efficient training and moni-
toring of the model. We used the Adam optimizer with a
learning rate of 0.00001 and a batch size of 16. The train-
ing process spanned 10 epochs, with each epoch compris-
ing a complete pass through the training dataset. The Dice
loss function, particularly effective for segmentation tasks,
was employed to optimize the model. This loss function
measures the overlap between predicted and ground truth
masks, providing a direct measure of segmentation accu-
racy.

3.5. Evaluation Metrics

Model performance was evaluated using the dataset-
level Intersection over Union (IoU) metric. IoU, also known
as the Jaccard index, is a standard measure for segmenta-
tion tasks. It is defined as the ratio of the intersection of the
predicted and ground truth masks to their union. Mathemat-
ically, IoU for a single class is expressed as:

IoU =
|A ∩B|
|A ∪B|

=
TP

TP + FP + FN
(4)

where:

• |A ∩ B| is the area of overlap between the predicted
mask (A) and the ground truth mask (B).

• |A ∪ B| is the area of the union of the predicted and
ground truth masks.

• TP (True Positives) is the number of correctly pre-
dicted pixels.

• FP (False Positives) is the number of pixels incorrectly
predicted as belonging to the class.

• FN (False Negatives) is the number of pixels that be-
long to the class but were not predicted as such.

We computed IoU scores for each class separately and
aggregated them to obtain per-image and dataset-level IoU
scores. Additionally, we monitored the average loss per
epoch to assess the convergence of the training process.

3.6. Resources

The training and validation processes were executed in
Google Colab [9] using an NVIDIA L4 GPU, leveraging
CUDA for accelerated computations. The PyTorch Light-
ning Trainer was configured with a checkpoint callback to
save the best model based on the validation dataset IoU.
Tensorboard [1] was used for visualization.

3.7. Visualization and Analysis

To visualize model performance, we generated predic-
tions on the test set and compared them with ground truth
masks. Using Matplotlib, we created visualizations high-
lighting the original images, ground truth masks, and pre-
dicted masks. These visualizations were complemented
with color-coded legends to indicate different land cover
classes, providing an intuitive understanding of model per-
formance.

4. Dataset & Features
Our dataset consists of a multi-temporal collection of

satellite imagery and segmentation masks for a target area
in Eastern Nebraska. We collected imagery from Planet
Basemap imagery repository [25]. Each image tile is
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4096x4096 pixels at a 4.77m spatial resolution. Ground
truth segmentation data was collected from the USDA
Cropland Data Layer (CDL) on CropScape [11] which con-
tains labels for type across locations in United States by
year for many land use types. We note that while not per-
fect, the CDL mask data provides a method for rapidly ac-
quiring segmentation ground truth data up to the scale of
the United States. No other data layer we found was able to
replicate the scale of CDL at a reasonable accuracy.

We collected imagery and CDL data of our target area for
July and August of 2020-2023 with a 4x4 grid (80 sq. km.
on the ground) of image tiles for each year. Raw CDL data
and imagery were downloaded in a geo-referenced .tiff file
and both required pre-processing. Using the Quantum Geo-
graphic Information System software package (QGIS) [23],
we updated the coordinate reference system of our ground
truth masks to match that of our imagery. This ensures real-
world geospatial alignment between mask and image.

The CDL data in our ground truth mask is originally of
a lower resolution than that of our imagery dataset. Again
using QGIS, we re-sampled the mask data using the native
nearest neighbors method in the software to match the spa-
tial resolution of our imagery (4.77m per pixel).

Figure 2. Fully Processed Images and Masks for Crops of Interest
(7 classes)

Finally, we programmatically segment the images and
corresponding CDL masks into 512x512 .png images for a
total of 8,192 images for use in training and testing. Figure
1 illustrates this process. Additionally, we updated pixel
values for the desired classes into the mask images as con-

tiguous integers (i.e. 0 for Background, 1 for Corn, etc) en-
suring that we can quickly update masks to add or remove
output classes with a single script. The image split size can
be adjusted to best fit model expectations but we found our
512x512 sizing to work well. All files in the dataset were
saved to Google Drive for easy retrieval.

5. Experiments & Results
Evaluation and testing of our model was split along the

following paradigms (and evaluated in this order):

• Pre-loading Train Set: We tested epoch training time
for pre-loading our training set into memory vs. read-
ing files directly from google drive for each batch.

• Trainable Parameters: Freeze encoder weights vs.
train on full model

• Pre-trained Encoder Weights: We tested using
resnet-50 encoder weights from SMP pre-trained on
ImageNet and slightly modified encoder weights from
the SSL4EO [26] repository that were trained using
MoCO [3] on the SSL4EO satellite imagery dataset.

• Learning rate: We experimented with learning rates
of starting with 0.001 (Adam Default).

• Image Augmentation: We compare results between
no augmentation and batch-wise random horizon-
tal/vertical flips with random rotation.

• 5-class vs. 7-class segmentation: We tested masks
containing 5 vs. 7 classes.

Figure 3. Trained vs. Baseline (ImageNet Weights)

Our baseline comparison is performance of the pre-
trained model using ImageNet weights. As shown in 3, the
model performs extremely poorly and classifies everything
as background with a validation set IoU of 0.184.
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Learning rates of 0.001 (the Adam default) and 0.0001
were used for comparative tests prior to learning rate opti-
mization, after which our optimized learning rate of 0.0005
was used. Unless otherwise noted, tests were run for 2
epoch to limit training time required with augmentation
turned off. All runs were with a batch size of 16.

5.1. Trainable Parameters

DeeplabV3+ has approximately 26.7M total trainable
parameters while the decoder has only 3.2M. As expected,
we do not have nearly enough data to train all weights. The
single testing run with unfrozen encoder weights resulted in
an IoU of 0.06 vs. 0.56 for training decoder only.

5.2. Pre-loading Train Set

Our CroplandDataloader class contains an boolean ar-
gument ’preload’ which determines if the dataset will
be pre-loaded into memory as numpy arrays. With
’preload=False’, epoch time averaged 300 seconds. With
’preload=True’, epoch time dropped to and average of 160
seconds. Pre-loading the training set requires approxi-
mately 8GB of system memory. We used a High RAM Co-
lab instance to ensure sufficient memory to pre-load data.
For all subsequent tests we used a pre-loaded training set.

5.3. Pre-trained Encoder Weights

We tested using encoder weights pre-trained on Ima-
geNet and on SSL4EO data. The first convolutional layer
of the SSL4EO weights had to be modified because their
dataset uses multi-spectral 13 band input satellite images.
Weights for this layer were clipped to the layers correspond-
ing to RGB. Testing was conducted with our 7-class ground
truth masks.

Pre-trained Weight Testing
Weights Train IoU Val IoU LR
SSL4EO 0.581 0.571 0.001
SSL4EO 0.552 0.567 0.0001
ImageNet 0.580 0.565 0.001
ImageNet 0.545 0.560 0.0001

While the performance gain was not substantial, encoder
weights trained on satellite imagery performed better than
those trained on ImageNet. We suspect that the perfor-
mance gap would have been even larger had we use full
multi-spectral imagery as input. SSL4EO weights were se-
lected and used for all subsequent runs.

5.4. Learning Rate

For the rough testing, we ran training for 4 epochs to bet-
ter estimate the effect learning rate on the resulting output.
We tested learning rates by reducing by an order of magni-
tude per test until the validation IoU after 4 epochs began to

decrease. Next, we tested a learning rate between the two
best. We selected the learning rate with the highest valida-
tion IoU, which was 0.0005. This learning rate was used for
all subsequent runs.

Learning Rate Optimization
LR Train IoU Val IoU
1× 10−2 0.581 0.577
1× 10−3 0.604 0.587
5× 10−4 0.605 0.593
1× 10−4 0.594 0.586
1× 10−5 0.501 0.513

5.5. Image Augmentation

Next, we test performance over 20 epochs with a learn-
ing rate of 0.0005 using un-ugmented images in our train-
ing set and images that have been augmented per batch.
Augmentations are random horizontal flips, random verti-
cal flips, and random rotation between −75 deg and 75 deg.

Standard vs. Augmented
Type Train IoU Val IoU
Standard 0.673 0.613
Augmented 0.617 0.621

While the validation IoU is similar between the two stan-
dard and augmented datasets, there are clear signs of over-
fitting when using the standard method. As shown in 4,
training IoU is still increasing and validation IoU is plateaud
or decreasing. Augmented validation IoU begins outpacing
the standard version at around 10 epochs. This is likely to
become even more pronounced on longer runs. Since trans-
forms are applied to each batch as they are loaded into the
model, we increase the functional size of our training set
simply and efficiently, the image augmentation method is
clearly superior.

Figure 4. Training IoU for Standard and Augmented Datasets
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Figure 5. Validation IoU for Standard and Augmented Datasets

5.6. 5-class vs. 7-class Segmentation

Our 7-class masks contained classes for Background,
Corn, Soybeans, Alfalfa, Other Hay, Fallow Cropland, and
Pasture. 5-class masks combined Alfalfa and Other Hay
into a single class and eliminated Fallow Cropland (set to
Background). For this test, we trained each version for 20
epochs with a learning rate of 0.0005 with augmentation ac-
tivated.

5-class vs. 7-class
Classes Train IoU Val IoU
Five 0.637 0.635
Seven 0.617 0.621

Figure 6. Validation IoU for Standard and Augmented Datasets

As expected, the 5-class model outperforms the 7-class
model on IoU metric. With fewer classes to segment, the
model is better able to make guesses for uncertain areas and
the default larger background leads to higher IoU. However,
the improvement was smaller than we initially expected.
Qualitatively, the 5-class model does not improve notably
on the 7-class model in regions that are segmented in both
7. Part of the reason for this is the combined class of al-
falfa and hay are not significantly different and there was
not much data labeled as fallow cropland in the dataset.

Figure 7. Top to Bottom: Augmented, Standard, 5-class

Finally, the augmented 7-class model was trained for an
additional 20 epochs with a learning rate of 0.0001. Af-
ter approximately epoch 15, training and validation IoU
plateaud around 0.655 and 0.633 respectively. Test set IoU
for the output model is 0.615, indicating that the model has
not been overfit and is performing appropriately.

7



6. Conclusions & Future Work
This study conclusively demonstrates that multiclass se-

mantic segmentation is a viable and effective method for
identifying and quantifying various crop types using satel-
lite imagery. By leveraging advanced deep learning tech-
niques, we have achieved high accuracy in distinguishing
between different crops, which is crucial for the precision
agriculture sector. This capability offers significant bene-
fits for agricultural planners, regulators, and insurance un-
derwriters who need reliable data on crop distribution and
health. Our research enhances the existing body of knowl-
edge by optimizing deep learning backbones for crop iden-
tification, focusing on crops of particular interest to stake-
holders. We show that DeeplabV3+ is a suitable segmenta-
tion model for use with crop and satellite imaging data.

The ability to identify crop coverage and yields through
satellite imagery has profound implications. It facilitates
better monitoring of agricultural activities and supports
decision-making processes at various levels, from individ-
ual farmers to national policymakers. The integration of
satellite imagery with machine learning models enables
continuous and real-time crop monitoring, leading to more
proactive and informed decisions. This capability is partic-
ularly crucial for ensuring food security, as understanding
crop yields and their spatial distribution helps in predicting
and mitigating potential food shortages.

For future work, we will temporalize our model to pre-
dict crop yields based on weather patterns accurately. This
enhancement is particularly important in the context of
rapidly changing climate patterns, which significantly im-
pact agricultural productivity. By incorporating temporal
data, such as historical weather patterns and forecasts, we
can improve the model’s ability to predict future crop yields
under varying climatic conditions. This temporal aspect is
essential for developing adaptive agricultural strategies that
can cope with the uncertainties brought about by climate
change.

We also plan to expand our methodology to encompass
farmland across the United States and globally. Scaling up
our approach will require the integration of diverse datasets
from different regions, enhancing the model’s robustness.
Additionally, we will fine-tune the model to further improve
prediction accuracy. This refinement will involve optimiz-
ing hyperparameters for larger datasets (potentially training
encoder weights) and incorporating additional features that
capture the complexities of crop growth and development.

Moreover, we aim to extend the model to identify other
crops and background elements such as fields, roads, and
water bodies that are labeled in the CDL data. These im-
provements will make the model more versatile and capa-
ble of handling a broader range of agricultural scenarios,
ultimately contributing to more precise and comprehensive
agricultural monitoring systems.

Our study establishes multiclass semantic segmentation
as a powerful tool for crop identification and quantification
using satellite imagery. By optimizing deep learning mod-
els for agricultural applications and integrating additional
data sources, we can significantly enhance the accuracy and
utility of these models. Future work will focus on tem-
poral modeling, expanding the model’s applicability, and
incorporating detailed background identifiers, all of which
will contribute to more effective and sustainable agricultural
management practices.

7. Contributions
James compiled and processed the dataset. Fred and

James contributed equally to the build out of the testing
plan, model development, and training. Fred was the pri-
mary writer for the introduction, related works, and conclu-
sion with James contributing. James was the primary writer
for method dataset, and results with Fred contributing. The
CropModel architecture was was partially adapted from this
Segmentation Models Python example
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