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ShapeCraft: Body-Aware and Semantics-Aware 3D Object Design
HANNAH CHA, MICHELLE GUO, MIA TANG, RUOHAN ZHANG, KAREN LIU, and JIAJUN WU, Stanford
University, USA

Fig. 1. ShapeCraft generates 3D shapes given text as input. The objects are optimized to fit on various character body shapes.

1 ABSTRACT
For designing a wide range of everyday objects, the designing process should
be aware of both the human body and the underlying semantics of the design
specification. However, these two objectives present significant challenges
to the current AI-based designing tools. In this work, we present a method
to synthesize body-aware 3D objects from a base mesh given an input body
geometry and either text or image as guidance. The generated objects can be
simulated on virtual characters, or fabricated for real-world use. We propose
to use a mesh deformation procedure that optimizes for both semantic
alignment as well as contact and penetration losses. Using our method, users
can generate both virtual or real-world objects from text, image, or sketch,
without the need for manual artist intervention. We present both qualitative
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and quantitative results on various object categories, demonstrating the
effectiveness of our approach.
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1

2 INTRODUCTION
Have you struggled to find an everyday object that will fit your body
perfectly and match the exact creative concept you have in mind?
Recent progress in generative AI models shows promising results
in generating 3D objects, which have the potential to facilitate
the design process (e.g., help designers rapidly iterate ideas) and
enable better customization in industrial design [Chui et al. 2023;
Epstein et al. 2023; Makatura et al. 2023]. For designing a wide
range of everyday objects, such as glasses, hats, rings, and shoes,
the designing process should be aware of both the human body and
the object semantics. For these objects that are designed to be used
1M.G., M.T., R.Z., K.L., and J.W. are not enrolled in CS231N.
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by humans, being body-aware is essential and the design should
be primarily optimized for the interaction between the object and
the body that it is designed for. In addition, we want to be able to
customize the design, styles, or aesthetics of these objects, i.e., we
want the design to be semantically-aware in the sense that it aligns
with our design specifications, which can be either text descriptions
or visual examples. Therefore, we need to provide tools to address
individual differences in the different object categories’ demands of
body fitness and the underlying semantics of the designs.
Generative AI models, such as Stable Diffusion [Rombach et al.

2022], DALL-E [OpenAI 2023], and DreamFusion [Poole et al. 2022],
can generate semantics-aware 3D assets when given design specifi-
cations in the format of natural language, although text-to-image
models would require another step that converts 2D designs into 3D
objects using image-to-3D models [Liu et al. 2023b]. However, these
approaches typically optimize objects for semantics-related objec-
tives, such as prompt alignment. However, designing useful objects
requires an understanding of the physical interactions between bod-
ies and objects. It is difficult to use text or image to specify design
needs for different body shapes and preferred body contacts, hence
the resulted designs are not sufficiently body-aware. Additionally,
the generated designs are derivatives of datasets that belong to a
specific population of certain body shape and size; therefore, to
generate designs for characters of all shapes and sizes, we need to
explicitly incorporate the awareness of body shapes and contacts
within the generative models.

On the other hand, while some previous methods [Blinn et al.
2021; Mezghanni et al. 2022] have been optimizing body contact or
functionality for objects, their methods are usually limited to com-
mon objects. The optimization process does not consider semantics-
related design specifications, such as text or image prompts. Ad-
ditionally, optimizing functionality for creative objects, especially
for individual human bodies and preferred contacts, is significantly
more challenging and not well-addressed. Meanwhile, there are
works that address both body- and semantics-aware objectives, how-
ever, they are limited to specific object categories, such as garments
[Sarafianos et al. 2024; Wang et al. 2018].

In this work, we propose a tool to generate both body-aware and
semantically-aware, customized 3D designs. The tools can be ap-
plied to a wide range of everyday object categories, without relying
on object datasets. We build a flexible system that jointly optimizes
for multiple objectives. We define semantically-aware design as the
process of designing according to a text or visual concept. Personal-
ized, body-aware design is generating a 3D shape that is well-fitted
to an individual body or even a specific contact map.

As shown in Figure 1, we showcase a gallery of our generated de-
signs for various digital avatars and multiple object categories. Our
qualitative results show that ShapeCraft is effective in generating
designs that are simultaneously body-aware and semantics-aware.
Additionally, we show that compared to baselines, our joint optimiza-
tion approach achieves the best results in terms of both objective
and subjective metrics.

“star ring” “bunny slippers”

“dinosaur helmet”“alligator bangle”“heart glasses”

“cow hat” “rose necklace”

“cat mask”

Fig. 2. Our method generates a variety of semantics and body-aware objects
from input text prompts.

“cat”Template “dragon”

Fig. 3. Our method can deform the same template mesh into different text-
specified geometries that are body-fitting.

3 RELATED WORK
Text or image-conditioned 3D synthesis. Recent works propose to

tackle text-conditioned 3D generation either via text-to-3D [Chen
et al. 2023a; Lin et al. 2023; Tsalicoglou et al. 2023; Zhu et al. 2023],
or image-to-3D [Liu et al. 2023b,a; Qian et al. 2023] where the input
image is generated by a text-to-image model such as Stable Diffu-
sion [Rombach et al. 2022] or DALL-E [OpenAI 2023]. Another line
of work directly trains 3D diffusion models for various 3D represen-
tations, including point clouds [Nichol et al. 2022], meshes [Gao et al.
2022; Liu et al. 2022], or neural fields [Jun and Nichol 2023]. Finally,
other works achieve text or image-conditioned mesh generation by
deforming a template mesh through text or image guidance [Gao
et al. 2023; Michel et al. 2022; Sarafianos et al. 2024].
Compared to text-to-image models, text-to-3D is significantly

more challenging, partially due to the lack of large-scale training
datasets. However, text-to-3D models can leverage pre-trained 2D
models, such as CLIP, to synthesize better objects. Guided by a text
prompt (embedded using CLIP), Dreamfields [Jain et al. 2022] synthe-
size 3D objects leveraging volume rendering. DreamFusion [Poole
et al. 2022] and [Wang et al. 2022] distill 2D diffusion models as a
differentiable image-based loss. Surface-based differentiable render-
ing can be used to pass views of explicit 3D objects to CLIP, such as
Text2Mesh [Michel et al. 2022] in which they stylize the template
mesh while preserving the initial content. CLIP-Mesh [Khalid et al.
2022] generates new 3D objects by deforming a sphere at the vertex
level, guided by the input text prompt. Magic3D [Lin et al. 2023] first
optimizes a radiance field, extracts the mesh from the radiance field,

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2024.
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and optimizes the mesh via differentiable surface rendering and
score distillation. TextDeformer [Gao et al. 2023] leverages differen-
tiable rendering and CLIP, but focuses on the problem of deforming
explicit geometry rather than generating it from scratch.

Body-aware 3D synthesis. The design of 3D objects for human-
object interaction is an important research topic. For everyday ob-
jects, it is important to consider human bodies, poses, and move-
ments when generating 3D designs for humans [Chen et al. 2016;
Saul et al. 2010]. To optimize for human interaction, various objec-
tive functions and evaluation metrics are defined [Wu et al. 2020].
Several previous works have explored this direction, e.g., in 3D room
layout generation [Sun et al. 2024], scene synthesis [Sun et al. 2024;
Vuong et al. 2024; Ye et al. 2022; Yi et al. 2023], as well as chairs and
other body-supporting surfaces design [Blinn et al. 2021; Leimer
et al. 2018, 2020; Zhao et al. 2021; Zheng et al. 2015]. A notable
but challenging research direction is garment deformation [Kar-
dash et al. 2022; Li et al. 2023; Sarafianos et al. 2024; Wang et al.
2018]. To deforming 3D objects, one can directly optimize on the 3D
space [Jung et al. 2024; Liu et al. 2018; Sorkine et al. 2004], using tri-
planes [Frühstück et al. 2023] and text-to-mesh methods [Chen et al.
2019; Michel et al. 2022; Mohammad Khalid et al. 2022]. Foundation
models can provide guidance or supervision signals for text and
image-based stylization [Decatur et al. 2023] and manipulation [Gao
et al. 2023] of 3D objects with various deformation methods [Baran
et al. 2009; Gao et al. 2018; Groueix et al. 2019; Jacobson et al. 2011;
Sumner and Popović 2004; Wang et al. 2015; Yifan et al. 2020; Zhang
et al. 2008]. Related effort [Chen et al. 2023b; Richardson et al. 2023;
Yeh et al. 2024; Zeng 2023] applied text-to-image generation models
to create textures based on the mesh and given text or image.

4 METHOD
Our goal is to design rigid objects that satisfy diverse contact con-
straints for different body shapes and semantics. Figure 4 shows
an overview of our method. It takes in multiple inputs, including
a text prompt or image (e.g., generated by text-to-image models
or existing images), a template object mesh, a body mesh, and a
set of desired contact points. We represent the geometry of the
input object using a mesh M with 𝑛 vertices V ∈ R𝑛×3 and 𝑚
faces F ∈ {1, . . . , 𝑛}𝑚×3. We aim to optimize a displacement map
Φ : R3 → R3 across the vertices.

Shape optimization through Jacobians. The design parameteri-
zation plays a significant role in the difficult design optimization
problem. Naive optimization of the mesh deformation through ver-
tex displacement can result in significant artifacts and is prone to
convergence to local minima [Gao et al. 2023]. Inspired by Neural
Jacobian Fields [Aigerman et al. 2022], we indirectly optimize the
deformation map by optimizing a set of per-triangle Jacobian ma-
trices 𝐽𝑖 ∈ R3×3 for every face 𝑓𝑖 ∈ F . The deformation map Φ∗ is
computed as the mapping with Jacobian matrices that are closest to
{𝐽𝑖 }, solved via the following Poisson optimization problem:

Φ∗ = min
Φ

∑︁
𝑓𝑖 ∈F

|𝑓𝑖 |∥∇𝑖 (Φ) − 𝐽𝑖 ∥2
2, (1)

where ∇𝑖 (Φ) denotes the Jacobian of Φ at triangle 𝑓𝑖 and |𝑓𝑖 | is the
area of that triangle.

4.1 Semantics-Aware Optimization
The user has the option to specify the semantic goals with a text
prompt or an input image. Depending on the input modality, our
system uses different losses to guide the optimization. We describe
the losses for each modality below.

Input text guidance. For text guidance, the goal during the opti-
mization process is to ensure that the resulting object aligns with
the text prompt that specifies the desired design outcome. The pre-
trained CLIP [Radford et al. 2021] provides a joint text-image feature
space, which can be used for this alignment objective. We pass the
current deformed mesh Φ∗ (M) to a differentiable renderer R [Laine
et al. 2020] to generate 𝐾 images from different views:

𝐼𝑘 = R(Φ∗ (M)), 𝑘 = 1, . . . , 𝐾 . (2)

The images are passed to CLIP to obtain the embeddings of the
renders CLIP

(
𝐼𝑘
)
∈ R512. We pass the text prompt P to CLIP to get

the language embedding with the same dimension, CLIP(P) ∈ R512.
Then, we define the text alignment objective to be the negative
cosine similarity between the embeddings:

L𝑠 (M) = 1
𝐾

𝐾∑︁
𝑘=1

−sim
(
CLIP

(
𝐼𝑘
)
, CLIP

(
P
) )
. (3)

Since CLIP operates on 2D images, multi-view consistency is a
challenge. Averaging gradients across different views of the object
often results in inconsistent artifacts such as incorrect geometry.
We adopt the regularization term developed in [Gao et al. 2023],
which tackles this problem by utilizing the patch-level deep features
of CLIP’s vision transformer (ViT). The intuition is that we can split
the image into small patches, which are then projected into a higher-
dimensional space. For each vertex and each render, we compute
the pixel value in that render that contains the vertex. Then, by by
associating the pixel value with the nearest corresponding patch
center, we obtain a feature vector for that vertex in that render. In
this way, we can encourage vertices to have similar deep features
across renders from different viewpoints.

Input image guidance. If the user provides an input image 𝐼 , the
goal of the optimization process is to optimize the shape of the
object such that it matches the design in the input image. Inspired
by Sarafianos et al. [2024], we use an image-to-3D model [AI 2024]
to lift the image to a 3D guidance mesh denoted as M. Similar to
text guidance, we render the guidance mesh from the 𝐾 different
views:

𝐼𝑘 = R(M), 𝑘 = 1, . . . , 𝐾, (4)
and compute the cosine similarity of the CLIP embeddings of the
guidance mesh renders and the current deformed mesh, averaged
across the views:

L𝑠 (Φ∗ (M),M) = 1
𝐾

𝐾∑︁
𝑘=1

−sim
(
CLIP

(
𝐼𝑘
)
, CLIP

(
𝐼𝑘
) )
. (5)

This loss acts as a soft constraint between the embeddings of the
deformed mesh Φ∗ (M) and those of the pseudo-ground truthM.
For stronger 3D supervision, we use a two-sided Chamfer Distance
(CD) loss to measure the distance between two sets of points, 𝑝 ∈ 𝑆
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2D-to-3D
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like a cat.”

Template Mesh

Renderings

Guidance Image

Guidance Text
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Differentiable

Renderer


Body Mesh

Contact Points

Fig. 4. Method overview. We synthesize body-aware 3D objects from a base mesh given an input body geometry and either text or image as guidance. We
propose to use a mesh deformation procedure that optimizes for both semantic alignment as well as contact and penetration losses.

and 𝑝 ∈ 𝑆 , sampled from Φ∗ (M) and M, respectively, in each
optimization step:

LCD =
1
|𝑆 |

∑︁
𝑝∈𝑆

min
𝑝∈𝑆

∥𝑝 − 𝑝 ∥2
2 +

1
|𝑆 |

∑︁
𝑝∈𝑆

min
𝑝∈𝑆

∥𝑝 − 𝑝 ∥2
2 . (6)

For 2D supervision, we use an L1 loss to ensure that the deformed
mesh does not deviate too much from the image guidance along
each step of the optimization:

L2D =
1
𝐾

𝐾∑︁
𝑘=1

|𝐼𝑘 − 𝐼𝑘 |. (7)

4.2 Body-Aware Optimization
A key component of our optimization procedure is to produce ob-
jects that will satisfy contact constraints for different body shapes.
Inspired by [Ye et al. 2022], given contact verticesV𝑐 , the contact
loss L𝑐 is defined as

L𝑐 (V,V𝑐 ) = 𝜆𝑐
1

|V𝑐 |
∑︁
𝑣𝑐 ∈V𝑐

min
𝑣∈V

| |𝑣𝑐 − 𝑣 | |22, (8)

where 𝜆𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is a tunable weight. This encourages the object to
be in contact with the body vertices specified by the input contact
vertices. To reduce penetration between the object and the body
mesh M𝑏 , we include an additional loss L𝑝 :

L𝑝 (M,M𝑏 ) =
∑︁
𝑑𝑖<𝐷

𝑑𝑖
2, (9)

where 𝑑𝑖 are signed distances between the object and the body mesh,
and𝐷 is the penetration distance threshold. In total, the body-aware
optimization loss is defined as:

L𝑏 (V,V𝑐 ,M,M𝑏 ) = 𝜆𝑐L𝑐 (V,V𝑐 ) + 𝜆𝑝L𝑝 (M,M𝑏 ). (10)

In Figure 5, we show the effect of the contact loss L𝑐 and the pen-
etration loss L𝑝 during the deformation procedure for the text
prompt “a mask that looks like a cat”. While semantic optimization

“cat mask”

No With With With

Fig. 5. We show the effect of contact vs. penetration losses on text guided
deformation for “cat mask”.

severely penetrates the face, integrating contact and penetration
losses improve the fit and reduce the penetration, respectively.

4.3 Optimization Problem Statement
In summary, the optimization objective is to optimize the Jacobian
matrices 𝐽𝑖 according the weighted sum of the semantics-aware and
body-aware losses:

L(M) = 𝜆𝑠L𝑠 (Φ∗ (M),M) (11)
+ 𝜆𝑏L𝑏 (V,V𝑐 ,M,M𝑏 ) (12)

+ 𝛼
| F |∑︁
𝑖=1

∥ 𝐽𝑖 − 𝑰 ∥2 . (13)

The last term regularizes the predicted Jacobians, where 𝑰 denotes
the identity matrix, and 𝛼 controls the strength of the deformations.
We show the evolution of the mesh deformation process across opti-
mization iterations in Figure 6. During the optimization process, the
mesh becomes more semantically aligned with the input guidance,
while fitting the body well.

5 EXPERIMENTS AND RESULTS
In our experiments, we seek to answer the following questions:

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2024.
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Fig. 6. Evolution of design throughout optimization iterations.

• Can ShapeCraft be used to generate object designs across differ-
ent semantic targets and body shapes?

• What is the effect of the choice of guidance (text vs. image)?
• How does the body loss affect the design and fit of the object on

the body?
• Is joint optimization better than two-stage optimization?
• How does our method compare with baseline methods in terms

of semantic alignment and body fit?

5.1 Generality of ShapeCraft
Different object categories and design specifications. As shown in

Figure 2, ShapeCraft is a general method that can generate semanti-
cally and body-aware everyday objects. Here we intentionally cover
a variety of objects that need to be attached to different parts of
the body: head (mask, glasses, helmet, visor), neck (necklace), wrist
(bangle), finger (ring), and foot (slippers).

Next, we assess whether the same base mesh can deform into
multiple target prompts in Figure 3. We find that indeed the same
base mesh can be used for different text prompts within the same
object category, given that the topology within an object category
are often shared across different designs.

Different body shapes. We evaluate our system on different body
shapes, ranging from realistic human adults and children to fantasy
virtual characters such as dinosaurs and cartoon-looking cows. Fig-
ure 7 shows the same object and text prompt designed for different
character body shapes. We observe that different body shapes affect
the creativity of the optimization due to the amount of free space
the object has to deform on the character without penetrating the
body, but ShapeCraft is able to optimize for individual body shapes.
Given the prompt of "bunny slipper", we show the optimization
results for dog, dinosaur, and LEGO character in Figure 7’s third
row. We observe that the slipper’s main feature bunny ears vary
across the body shapes with noticeable differences in length and
orientation of the ears. For example, the dog’s slipper have much
more pronounced bunny ears than the LEGO character’s. This is
due to the variance of character body shapes — the dog’s thin leg
provides more room for the slipper to grow. Even though the LEGO
character’s slipper has shorter bunny ears as its rigid leg prevents
the ears from growing further, it still managed to be prompt-aligned.

5.2 Justification of Design Choices
Effect of text vs. image guidance. We evaluate the effect of text vs.

image guidance in Figure 8. While text guidance occasionally de-
forms the base mesh into the desired semantics (e.g., “heart glasses”,
“cat mask”), on most examples it provides limited deformation (e.g.,
“star ring”), so the results look mostly like the base mesh. In contrast,

“heart glasses”

“alligator bangle”

“bunny slipper”

“cow hat”

Fig. 7. Our method can customize the same object design for different
character body shapes.

te
xt

 g
ui

da
nc

e
im

ag
e 

gu
id

an
ce

“heart glasses” “cat mask”“cat mask” “cow hat”

Fig. 8. We evaluate the effect of text vs. image guidance. Image guidance
produces stronger control, generating objects that are more prompt-aligned.
We show the reference image in the bottom right corner of example of the
image guidance row.

image guidance provides a much stronger signal for deformation.
This is likely because the CLIPmodel alone is not as strong as 2D and
3D guidance provided by text-to-image and image-to-3D models.
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“alligator bangle” “dinosaur helmet” “cow hat”

N
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“heart glasses”

Fig. 9. With contact and penetration losses, the text-guided deformations
are more body fitting.
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Fig. 10. We visualize penetration maps on objects optimized with (second
row) and without body losses (first row). In the penetration maps, the blue
regions indicate a positive distance between the mesh and the characters,
signifying no penetration. Red regions indicate a negative distance, denot-
ing penetration between the mesh and the interacting character. Without
the incorporation of body losses, the generated objects exhibit significant
penetration with the character.

Effect of body loss. In Figure 9, we analyze the effect of body losses
in the text guidance setting. Even though the base mesh initially
fits well on the body, text guidance tends to ignore the body when
optimizing for alignment with the prompt, resulting in objects that
are not body-aware. When including the body loss, the objects are
well fitted on the human.

In Figure 10, we compare objects that are optimized using image
guidance, with and without the body loss. We find that including
the body loss in the image guidance optimization helps minimize
penetrations between the object and the human, making the objects
more fit on the body.

Comparison with two-stage optimization. In Figure 11, we ana-
lyze alternatives for image-guided 3D generation: (i) the guidance
mesh (generated via text-to-image and image-to-3D models), (ii)
the guidance mesh with a second body-aware refinement stage.
Although making the guidance mesh body-aware reduces penetra-
tions, it cannot make the thin parts of the guidance mesh wider.
In contrast, jointly optimizing for both body and semantics from a
template mesh mesh results in a fitting bangle that is aligned with
the prompt.

OursGuidance Mesh Optimized w/Optimized w/

Fig. 11. We show the object mesh (first row) and the penetration map
from a different viewpoint (second row). Even though we can apply a body
refinement optimization on the guidance mesh to reduce the penetrations,
it cannot the fix the thin structure on the object. Jointing optimizing for
both body and semantics together results in a more well-formed mesh while
also minimizing penetrations.

Template Mesh 

Optimized with     .

OursGuidance Mesh Guidance Mesh 

Optimized with       .

Fig. 12. We show the object mesh (first row) and the penetration map
(second row). When the guidance mesh lacks the correct topology, such as
missing a hole for the head in the helmet, body refinement cannot fix the
issue and ends up enclosing the entire head. Starting from the template
mesh and optimizing for semantics alone is also not sufficient; while the
topology is correct, the optimizing may introduce penetrations.

In Figure 12, we analyze another example with a “dinosaur hel-
met”. Because the topology of the guidance mesh is incorrect (miss-
ing holes for the head), applying a body-aware refinement step
optimizes penetrations by enclosing the entire head. Starting from
the base mesh and optimizing for semantics alone is also not suffi-
cient; while the topology is correct, the optimization may introduce
penetrations. Our method is able to properly generate a helmet that
is prompt-aligned while maintaining a hole for the human’s head.

5.3 Comparison with Baselines
To provide a quantitative evaluation of ShapeCraft against baselines,
we compute prompt alignment, contact distance, and penetration
distance on all the differentmethod variants. As shown in Table 1, we
find that incorporating body loss significantly reduces penetration,
regardless of the Base Mesh. Furthermore, the chamfer distance of
the contact points are also well-maintained by using body loss. One
interesting observation here is that Guidance mesh without any
further edits has the highest CLIP score, which intuitively makes
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Table 1. We report quantitative metrics on the prompt alignment, penetra-
tion, and chamfer distance of the contact points to the object vertices.

Base Mesh Input Modality L𝑏 CLIP ↑ 𝐷𝑝 ↓ 𝐷𝑐 ↓
Template N/A N/A 0.25 6.7e-2 1.9e-10
Guidance N/A N/A 0.28 65.6 2.1e-10
Guidance N/A Y 0.27 8.5e-4 5.1e-3
Template Image N 0.27 3.7 7.6e-3
Template Image (Ours) Y 0.27 7.0e-4 4.6e-3

Table 2. We report results on the user study. We ask participants to rate
the prompt alignment, aesthetics, and the perceived comfort of generated
objects on the body.

Align. ↑ Aesth. ↑ Comf. ↑
Template mesh 1.47 5.25 6.74
TextDeformer [Gao et al. 2023] 3.19 2.94 2.88
Body-Aware TextDeformer 3.04 3.96 5.17
Ours 7.78 6.40 5.75

sense since CLIP is better at recognizing common objects in the
world, while an "alligator bangle" design has a vast design space.

We also conduct a user study (N=9) asking participants to rate (on
a Likert scale of 1-10) the prompt alignment (“how aligned/similar
are each of objects to the original prompt?”), aesthetics (“how aes-
thetic are the following objects?”), and the perceived comfort of
the object on the human body (“how comfortable do the following
objects look on the human?”). Our method performs the best on
prompt alignment and aesthetics, and achieves comparable perfor-
mance on comfort with the template mesh. We see that the template
mesh achieves the lowest score on prompt alignment, which is ex-
pected, because the template mesh is only representative of the
object category, and not adapted to the creative prompt. We see
that TextDeformer itself has the lowest score in comfort which is
expected, as the objects were optimized without considering fit to a
body. Although Body-Aware TextDeformer achieved a higher score
in comfort compared to TextDeformer, its alignment score decreased
in comparison. This indicates that the deformation prioritized body-
awareness in a way that conflicted with the object’s prompt align-
ment. In contrast, our method remains the most prompt aligned
and aesthetic across all methods while also maintaining comfort,
showing our method successfully prioritizes both body-awareness
and semantic-awareness.

5.4 Applications of ShapeCraft
Fabricated designs. The designs generated by our system are fab-

ricable in the real world. In Figure 13 left, we show the photo of
3D-printed objects — they are directly 3D-printed using ShapeCraft-
generated meshes without manual modifications. In Figure 13 right
we also show how objects fit on a real human body and characters.

Sketch-guided design. We show a sketch applicationwith ShapeCraft.
We ask a user to draw a sketch of an object, and we use Control-
Net [Zhang et al. 2023] to convert the sketch into a 2D image. The

Fig. 13. We fabricated the objects in the real world with 3D printing. The
objects can be worn as accessories on real people and characters.

Sketch 2D Image Human + Object

Fig. 14. We show an application of lifting a sketch into a body-fitting 3D
object design.

image is used as an input to our image-guided mesh deformation
method. The results are shown in Figure 14.

6 CONCLUSION
In this work, we present ShapeCraft, a 3D object design framework
that integrates body and semantic awareness into the generative
process. Our method synthesizes body-aware 3D objects from a
base mesh using input body geometry and guidance from text or im-
ages. The joint optimization for semantic alignment and body-aware
losses ensures that the generated objects are both creatively cus-
tomized and functionally practical. Our evaluations demonstrate the
efficacy of ShapeCraft in producing virtual and real-world objects
that fit a wide range of body shapes without the need for manual
intervention. ShapeCraft not only streamlines the design process
but also enables the fabrication of personalized, body-aware objects,
thereby enhancing customization and usability in everyday object
design.
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