
Sign Language Recognition with Convolutional Neural Networks

Arnav Gangal
agangal@stanford.edu

Anusha Kuppahally
akupp@stanford.edu

Malavi Ravindran
mr328@stanford.edu

Abstract

Our paper presents a two-pronged ablation study for
sign language recognition for American Sign Language
(ASL) characters on two datasets. Experimentation re-
vealed that hyperparameter tuning, data augmentation, and
hand landmark detection can help improve accuracy. The fi-
nal model achieved a test accuracy of 96.42%. Future work
includes running the model for a greater number of epochs,
tuning the minimum detection confidence parameter in hand
landmark detection, further hyperparameter tuning for data
augmentation, and additional hand detection bounding box
or coordinate methods.

1. Introduction

Effective sign language recognition is an active area of
research that intersects both computer vision and natural
language processing, with a variety of methods aiming to fa-
cilitate communication among the deaf and hard-of-hearing
community. This research area can help resolve a communi-
cation gap between those who use sign language, and those
who do not. The existence of this gap leads to significant
barriers in everyday interactions, and reducing it through ef-
fective translation models can create more inclusive and eq-
uitable spaces for deaf and hard-of-hearing people, as well
as improve their quality-of-life.

To explore this application of computer vision, our
project focuses on American Sign Language (ASL) char-
acter detection using CNNs. The input to our algorithm is
static images of ASL character signs, with variation in the
dataset coming from the image angle, the image lighting,
and the specific subject performing the sign. Then, we use
a dual-input CNN to identify key points on subjects’ hands
(’landmarks’), and output a character prediction based on a
combination of these landmarks and the image itself. Our
project focuses on the ASL fingerspelling alphabet, includ-
ing all characters except J and Z, as signing these characters
requires motion. We chose this project because it is a cur-
rent area of research that has many different methods and
architectures, which gave us many opportunities to test a
range of different models, and compare their performance

in the classification task. Additionally, this topic is an in-
teresting example of the intersection between artificial in-
telligence and social good, and in particular how computer
vision models can be deployed to improve the quality-of-
life of often marginalized groups.

2. Related Work

2.1. Hand Detection

Within this research area, hand isolation and detection is
an important component of sign language recognition. One
example of this is [15], which uses Google’s hand landmark
model [22] to identify hand landmark coordinates, which
serves as a second input channel to a CNN.

Another example of this is [19], which uses skin mask-
ing, which crops the region of interest (RoI) that only con-
tains the hand, the Canny Edge Detection algorithm to de-
tect the edges of the hand, and extracts features with Scale-
Invariant Feature Transform (SIFT) to account for factors
like rotation, scaling, etc.

One more instance of hand detection is done by [17],
which uses a finetuned CNN model based on the Faster
Region-based Convolutional Neural Network (RCNN),
which uses a region proposal network (RPN) to predict the
bounds where the hand is located, achieving 99.31% accu-
racy.

Additionally, [8] uses a tree-structured regional ensem-
ble network (REN), which partitions convolution outputs
into different regions, concatenates results, and regresses
3D joint coordinates in depth images with end-to-end op-
timization. All of these papers employ different techniques
to detect hands in images, and also use data augmentation.

In particular, [17] excels at these techniques by using
the detected hand and then applying various data augmenta-
tion techniques, such as 5 crops and adding noise. Adding
crops in this way increased the amount of data and made
the model more robust. On the other hand, one thing to note
about [15] is that this paper did not sufficiently compare re-
sults between a single input channel against a multi-headed
CNN after adding the hand landmark coordinates. While
other papers were formatted as ablation studies, this paper
lacked an explanation of how the model was built upon.

1



2.2. Real-time Robust ASL Recognition

While classifying and translating static images of sign
language letters and words is an essential task, there is also
a need for robust and scalable real-time ASL recognition
models. A noted weakness of existing training datasets is
that they often do not contain a variety of skin-tones, mak-
ing models trained on them prone to failure at inference
time when presented with a hand from an ethnicity not seen
during training. One strategy to mitigate this is presented in
[21], which uses a skin detection algorithm to create a mask
for the input image, that works by looking at the colors of
the image in terms of luminance (Y), and chrominance (Cb
and Cr), a common color space in video compression. This
mask was used to remove all parts of the image that were
not identified as skin, and their model was able to achieve
94.7% test accuracy with a downstream classification model
based on AlexNet.

Similarly, [12] proposes a multiple-stage pipeline to im-
prove model robustness with reduced inference latency, by
integrating MediaPipe landmarks into a standard CNN ar-
chitecture (similar to [15]). This works validates the find-
ings of multiple other researchers ([5], [3]), who achieved
greater classification accuracy when integrating MediaPipe
hand landmarks (with both static 2d images, and 3d depth
images) into their data preprocessing pipeline. [12] com-
pared their model to ones based on pre-trained Incep-
tion CNNs, and non-convolutional models such as random
forests and SVMs, and found that an integrated MediaPipe
landmark/raw image model was able to outperform them in
terms of accuracy (9̃0% for Inception and SVM baselines,
compared to over 99% accuracy for their model) and in
some cases, in inference time (particularly the SVM-based
image model used in [18]).

One noticeable vector to reduce gesture recognition in-
ference time is presented in [9]. This paper is distinct in
that it trains on a variety of international sign languages,
including Indian Sign Language (ISL) gestures. ISL is dis-
tinct from ASL in that ISL fingerspelling gestures typically
use two hands instead of one, making the MediaPipe model
(which is designed to be adaptable to generate landmarks
for multiple hands in a single image) an appropriate model-
ing choice. Their model achieves low-latency by not using
CNNs at all, instead using a lightweight SVM as the clas-
sifier, after reducing the size of the input search area using
two-stage hand-detection/landmark extraction pipeline. [9]
achieve accuracies of > 98% on Italian, Indian, and Amer-
ican sign language datasets, indicating that this approach is
also effective at performing real-time gesture recognition.

2.3. 3D CNNs and Hand Modeling

3D CNNs are another prominent architecture in sign lan-
guage recognition. One instance of this is [11], which uses
Microsoft Kinect, a motion sensor that provides a color and

depth stream and can track body movement, as an input de-
vice. With Kinect, the CNN has 5 inputs, including depth
and a body skeleton, and achieves 94.2% accuracy, which is
higher than baseline methods.

Another instance of this is [7], which uses a multi-
stream architecture that comprises of CNNs and GANs to
generate depth and joint information from RGB channels.
Then, manual and non-manual features are processed in a
3D CNN. This multi-stream model receives the frames in
RGB, segmented hands and faces, distance and speed maps,
and the artificial depth maps generated by the GANs, and
achieves 91% accuracy.

One more example of 3D CNNs is [1], which uses a fu-
sion of parallel 3D CNN structures, where linear sampling
is applied to select frames, and a 3D CNN learns the spa-
tiotemporal features at certain times in the video sequence.
Then, the 3D CNN extracts features from one of the clips,
and then various methods for feature fusion are considered,
including MLP, LSTM, and stacked autoencoders. After
considering scenarios of all combinations, including signer-
dependent and signer-independent (where the signers in the
test data aren’t included in the training data), the model that
was signer dependent using MLP fusion achieved 98.12%
accuracy. In particular, [7] employed state-of-the-art tech-
niques by combining many architectures and using datasets
in multiple languages of sign language. Also, [1] excels in
testing many different model combinations and techniques,
even applying PCA and t-SNE for data reduction. In con-
trast, [11] has no mention of data augmentation, which is
important to consider to prevent overfitting.

3. Methods

3.1. Baselines

Our project is modeled as an ablation study—we built
upon our model iteratively to test and evaluate each exten-
sion. We first started with a simple CNN, made up of 2
convolutional layers (with 32 and 64 channels respectively),
each of which is followed by ReLU and 2 × 2 max pool-
ing. The data is then flattened, and fed through two fully-
connected layers, with 128 nodes and 24 nodes respectively,
where 24 was the number of classes. Using a simple CNN
as our initial model allowed us to develop a robust image
preprocessing pipeline, and develop an initial understand-
ing of how suited CNNs were as a general approach to this
task. This CNN was implemented using the standard deep
learning framework Pytorch [14], and image preprocessing
was performed using the Python Imaging Library (Pillow)
[4]

To add model complexity and additional pathways for
feature extraction, we then chose to replicate the architec-
ture in [15], using solely the input channel of grayscale im-
ages. This model will be referred to as our baseline model,

2



and provided us with a more comprehensive baseline for the
classification task. For this CNN , we used the following ar-
chitecture: 5 convolutional layers with a filter size of 3 and
32, 64, 128, and 512 filters and ReLU activation. Each is
followed by a dropout layer and batch normalization, as a
form of model regularization. Each convolutional block af-
ter the first is followed by a max pooling layer of size 2×2.
We used a dropout probability of 0.3 and learning rate of
0.001 as initial hyperparameter values, before tuning. We
modified the paper’s architecture slightly to maintain out-
put dimensions. The model ends with a fully connected-
dropout-fully connected block as a classification head, to
classify each image into one of the 24 classes. A complete
diagram of this model’s architecture can be seen in Figure
1.

Figure 1. Baseline CNN Architecture, from [15]

A deeper CNN architecture such as this one offers the
benefits of being able to extract more complex spatial fea-
tures before classification. The model’s loss was evaluated
using cross-entropy loss, which can be seen in Equation 1.

LCE(y, ŷ) = −
N∑
i=1

yi log(ŷi), (1)

3.2. Tuning and Augmentation

To maximize this model’s ability to accurately classify
letters, we conducted hyperparameter tuning on dropout
probability and learning rate, with the intention of apply-
ing the most successful values to subsequent models. Since
our baseline dataset was relatively small, we did not per-
form cross-fold validation to tune these parameters, but
rather used the complete dataset. Full details of the result
of this tuning can be found in Table 3. To improve this
input channel’s robustness to potential data sources in-the-
wild, we also applied a variety of image data augmentation
techniques, including salt and pepper noise, random rota-
tion, random zoom, random shift, random horizontal flip,
and random crop.

3.3. Hand Landmarks

To further compare our approach to models in the liter-
ature ([15, 5]), we integrated a second-input channel with
our CNN. This channel takes in color images of signed
gestures, and uses the MediaPipe hand landmark extraction
model to obtain a set of 21 hand landmark coordinates [22].

This is followed by a shallow CNN consisting of 2 convo-
lutional layers with 50 and 25 channels respectively, each
with ReLU activation, batch normalization, and 2 × 2 max
pooling. The MediaPipe landmark model itself is made up
of two models - a palm detector to provide a bounding box
for hands, and a hand landmark model, that provides a hand
skeleton in the form of 21 hand-knuckle coordinates within
the image.

The palm detector allows the model to localize the hand
to a particular area of the image. The detector uses an
encoder-decoder feature extractor, built on the idea of a Fea-
ture Pyramid Network (FPN) [13]. FPNs are a type of CNN
architecture that were specifically designed to enhance the
ability of CNNs to detect objects at multiple scales. This
helps models develop scale-invariance, which is useful for
our proposed task in that it reduces the need for scale-based
data augmentation. FPNs are typically computed on top of
backbone CNNs such as ResNet, and work by successively
extracting feature maps at different stages of the backbone
network’s architecture (for example, in the ResNet case,
these feature maps are taken from different residual blocks).
Feature maps from different stages are them combined, of-
ten using upsampling and element-wise addition, to produce
a ‘pyramid’ of features at different scales. In the case of
palm detection, standard RoI pooling methods such as Fast
R-CNN [6] are used to produce RoIs from the feature maps
at different levels of the pyramid. An example of this type
of architecture can be seen in Figure 2.

Figure 2. FPN region proposal, from [13]

Once bounding boxes around hands have been detected,
the hand landmark model performs landmark localization as
a regression task to find key coordinates on the hands. This
model takes a proposed region of the input image from the
palm detection model as input, and outputs 21 2.5D hand
landmark coordinates (x, y, and z relative to wrist land-
mark), using some type of feature extractor (details of this
extractor are not provided in [22]). The model also outputs
a confidence score, indicating how likely it thinks that the
region contains a hand - in the case that the confidence score

3



was too low, we chose to fill in the output tensor with ze-
ros, to maintain shape consistency for the remainder of the
network. The topology of the landmark coordinates can be
seen in Figure 3.

Figure 3. Hand landmark topology, from [2]

In our project, we did not implement or train this model
ourselves. Rather, we used the MediaPipe Python package
[22] to instantiate a pre-trained hand landmark model, and
passed the outputs of that model to the shallow CNN that
we did instantiate and train. The output of this shallow
CNN was flattened and concatenated with the output of the
grayscale channel, and the combined tensors were passed
through two fully connected-dropout-fully connected clas-
sification head for final classification.

3.4. Retesting on different data

Because our initial dataset was too simple (see Section
4), we chose to replace our initial dataset with a larger
ASL dataset that contained more complex images (differ-
ent backgrounds, more occlusion, more potential sources
of distraction like faces) and repeated the same steps men-
tioned above.

4. Dataset and Features
For our primary dataset, we used the same dataset used

by [15], which contains 24 letters (excluding J and Z) [16].
The dataset contains images from 5 non-native signers, with
over 500 images for each sign per signer. The dataset con-
tains 65,748 images total. We split the data as following:
70% train, 15% validation, and 15% test.

For the first input mode to our model, we applied the
following pre-processing steps to replicate [15]: converting
the images to grayscale, sharpening using the same sharp-
ening filter as in [15], resizing to 50 × 50, and normaliz-
ing the grayscale values. An example of the results of this
process can be seen in Figure 4. For the second input chan-
nel, the only pre-processing step was resizing the images to
224 × 224 so that they could be passed to the MediaPipe
detector.

However, after initial results when using the data from
[16], we discovered that our images were too simple, lead-
ing to our model performing extremely well with little tun-
ing or extensions (see section 5.1). This motivated the
application of noisy augmentation methods, to make our

dataset more diverse, and the classification task more dif-
ficult, as mentioned in the related work section. We ap-
plied salt and pepper noise (0.05), random rotation within
10 degrees, random zoom (10%), random shift (0.1), ran-
dom horizontal flip (0.5), and random crop (50 ×50 pixels)
(Figure 4). The salt and pepper noise was implemented our-
selves, using NumPy [10], and the remaining augmentation
methods were implemented using existing functions in Pil-
low [4]. After this augmentation, images were converted
to grayscale and resized to 50 × 50 pixels, and normalized
before being fed into the model’s first input channel.

Figure 4. Image Processing and Data Augmentation Example

To further evaluate how well our model architecture
could perform on more difficult data, we replaced our ex-
isting dataset with more complex data, from [20]. This new
dataset consists of 233,104 images for 29 ASL classes, in-
cluding all 26 characters of the alphabet as well as signs for
“delete”, “nothing”, and “space”. For consistency and com-
parability against results using our first dataset, we excluded
the signs for J and Z, and also excluded the signs for delete,
nothing, and space. We applied the same pre-processing
and data augmentation to these images, again resulting in
images of 50 × 50 pixels for the first input channel. We
split the data as before, into 70% train, 15% validation, and
15% test. This dataset is significantly more complex than
the first one, as it contains more diverse and larger back-
grounds, along with the faces of signers. For example, some
images are taken in rooms where there are multiple different
objects in the background. We hoped that by using this data,
that data augmentation and hand detection would result in
improved performance.

5. Experiments, Results, and Discussion
For quantitative evaluation, our primary metric was over-

all accuracy on the validation set, i.e. the percentage of val-
idation examples which were correctly classified. On par-
ticular models, we also calculated the precision, recall, and
F1 score for each individual class for a more detailed break-
down. These metrics are calculated as follows:

Precisioni =
True Positivesi

True Positivesi + False Positivesi

Recalli =
True Positivesi

True Positivesi + False Negativesi

4



F1 Scorei = 2× Precisioni × Recalli
Precisioni + Recalli

5.1. Smaller Dataset

For our baseline models, the model’s overall accuracy
on a randomly selected validation set made up of 15% of
the data found in [16] (“smaller dataset”) is found in Table
1. This subsection contains an explanation of each of these
models, and our decision-making process when considering
how to extend the baselines.

Model Validation Accuracy
Results from [15], single
input channel, with data

augmentation

96.29%

Results from [15], two
input channels, with data

augmentation

98.42%

Simple CNN 98.14%
Baseline Model 99.34%

Baseline Model with Data
Augmentation

96.40%

Complete Model 96.5%

Table 1. All Model Results, Smaller Dataset

Our initial point of comparison, the top row of 1, is the
validation accuracy reported in [15] on a model with only
the 50 × 50 grayscale input channel, and data augmenta-
tion. Our second point of comparison is the validation ac-
curacy reported in [15] on a dual-input model (grayscale
images and landmarks), with data augmentation.

The first model we tested, as a proof-of-concept, was a
relatively simple CNN with two convolutional layers and
a single grayscale image input head. We were surprised
to find that this model was able to achieve extremely high
accuracy on the smaller dataset (98.14%), when the data
had not been augmented. Our initial thoughts were that we
were overfitting to the data. However, plotting our training
and validation accuracies and losses as a function of epoch
(Appendix 12) indicated that we were not overfitting to the
training data, but that the model was actually extremely ef-
fective at classifying this dataset. One important thing to
note about these plots is that the validation loss and accu-
racy outperforms training loss and accuracy due to the fact
that the model uses dropout, and so the model’s full classi-
fication capability is only seen at test time.

We then replicated the deeper CNN architecture in [15]
(“baseline model”), but again only initially worked with a
single input data source. As expected, this model outper-
formed the Simple CNN, as the increased depth likely al-
lowed for it to extract richer semantic features from the in-
put images. A detailed breakdown of our precision, recall,
and F1 scores for this model is provided in Table 2, and the

accuracies and losses are plotted in Appendix 13.

Class Precision Recall F1 Score Support
A 1.00 0.99 0.99 412
B 0.99 1.00 0.99 430
C 1.00 0.99 0.99 431
D 0.99 0.99 0.99 403
E 1.00 1.00 1.00 400
F 1.00 0.99 0.99 388
G 1.00 0.99 0.99 376
H 0.99 1.00 0.99 409
I 0.99 0.99 0.99 395
K 1.00 0.99 0.99 435
L 0.99 0.99 0.99 396
M 0.98 0.99 0.99 410
N 0.98 0.98 0.98 418
O 0.99 0.99 0.99 387
P 0.99 0.98 0.98 434
Q 0.98 0.98 0.98 378
R 0.97 1.00 0.98 442
S 0.99 0.99 0.99 415
T 0.99 0.99 0.99 430
U 0.99 0.99 0.99 407
V 0.97 0.99 0.98 418
W 0.99 0.98 0.99 457
X 0.99 0.97 0.98 389
Y 0.99 0.99 0.99 406

Total 0.99 0.99 0.99 9866

Table 2. Baseline Model, Smaller Dataset Classification Report

At this point in our experimentation process, we chose to
conduct hyperparameter tuning on the Adam learning rate
and dropout probability of each layer. Our results indicated
that the best combination of parameters were a dropout
probability of 0.2 and a learning rate of 0.0005, and these
parameters were used for all subsequent models. The clas-
sification accuracies for the various combinations of param-
eters can be found in Table 3.

Dropout Rate
0.1 0.2 0.3 0.4

L
ea

rn
in

g
R

at
e 1e-4 99.44% 99.40% 98.84% 97.40%

5e-4 99.49% 99.62% 99.46% 99.14%
1e-3 99.41% 99.61% 99.49% 98.81%
5e-3 99.25% 99.17% 99.02% 98.23%
0.01 98.82% 98.55% 97.92% 95.84%

Table 3. Hyperparameter Tuning Classification Accuracy

To further bring our experiments more closely in line
with those in the literature, we then applied data augmen-
tation to the grayscale images (as detailed in Section 4). A
baseline model with only the grayscale input head trained
on these augmented images was able to achieve 96.4% val-

5



idation accuracy. As expected, due to the simplicity of the
initial data, our final performance was worse than the base-
line model. Similarly to the baseline model, validation ac-
curacy was higher than training accuracy, likely due to the
fact that our model uses dropout layers (Appendix 14). As
seen in the confusion matrix, the characters most confused
were classes 14 and 15 (P and Q), 19 and 20 (U and V),
20 and 21 (V and W), and 0 and 18 (A and T) (Figure 5).
Given the signs for these characters, this misclassification
is likely, as the signs for P and Q look very similar, and the
signs for U, V, and W, and A and T, all have a similar hand
position (Figure 6)[16]. Also, since this dataset consists of
signs from non-native signers, slight errors and variations in
signs may contribute to this misclassification.

Figure 5. Confusion Matrix for Baseline Model, Smaller Dataset,
Data Augmentation

After adding hand landmark detection using a minimum
detection confidence of 0.5, we achieved a slightly higher
validation accuracy of 96.5% on our complete model (Fig-
ure 7). and reduced the misclassification among classes 19,
20, and 21 (U, V, and W), and classes 0 and 18 (A and T)
(Figure 8). For test accuracy on our complete model, we
achieved 96.8% accuracy. Our test accuracy is lower than
the results achieved by [15], but there are a few differences
to note—our model ran on 10 epochs and used a fixed learn-
ing rate of 0.0005 due to hardware restrictions, while [15]
ran their model on 50 epochs with a dynamic learning rate.

Despite improved accuracy overall when using hand
landmark detection, we noticed that the number of misclas-
sified images among classes 14 and 15 (P and Q) remains
the same, and surprisingly, the misclassification between
classes 6 and 7 (G and H) and 12 and 18 (N and T) in-

Figure 6. ASL alphabet

Figure 7. Losses and Accuracies for Complete Model, Smaller
Dataset

creased. As seen in Figure 6, the signs for these characters
are quite similar. Even with hand landmark detection, it is
possible that the model has confused these two signs due to
their similarity.

There are a few reasons why this could have happened.
First, there are some images where the hand landmark
model is not able to detect a hand in the image. In this
case, the prediction is solely based on the image, so for
commonly confused signs, the coordinates are not able to
assist in preventing misclassification. It is also possible that
the coordinates are incorrect based on the image, which may
worsen the prediction. Examples of both the missing land-
marks case and the incorrect landmarks case can be seen
in Figure 9. With a minimum detection confidence of 0.5,
23.27% of the images had landmark coordinates. We tried
using a lower minimum detection confidence, but noticed
that images tended to have incorrect coordinates—we de-
cided to err towards no coordinates rather than incorrect co-
ordinates as we believed this was more likely to produce a
correct prediction.

Then, we examined the precision, recall, and F1 score.
The letters G and T had the lowest precision, while the let-
ters N and Q had the lowest recall. Overall, classes N, Q,

6



Figure 8. Confusion Matrix for Complete Model, Smaller Dataset

Figure 9. Data Augmentation and Hand Landmark Detection Ex-
amples

and T had the lowest F1 scores (Table ??).

5.2. Larger Dataset

We then repeated the following steps after replacing our
data with a larger and more complex dataset. A summary
of our results is found in Table 5.

For the simple CNN, the model did not perform as well

Class Precision Recall F1 Score Support
A 0.98 0.98 0.98 403
B 0.97 1.00 0.98 392
C 0.99 0.99 0.99 444
D 0.99 0.97 0.98 421
E 0.96 0.99 0.97 374
F 0.98 0.97 0.97 406
G 0.92 0.96 0.94 413
H 0.98 0.94 0.96 442
I 0.98 0.96 0.97 417
K 0.96 0.97 0.96 452
L 0.98 0.99 0.99 412
M 0.97 0.97 0.97 412
N 0.97 0.90 0.94 378
O 0.96 0.97 0.96 371
P 0.93 0.95 0.94 401
Q 0.95 0.92 0.93 382
R 0.97 0.93 0.95 454
S 0.95 0.98 0.97 410
T 0.92 0.94 0.93 405
U 0.96 0.97 0.97 393
V 0.97 0.98 0.97 405
W 0.98 0.98 0.98 465
X 0.96 0.96 0.96 398
Y 0.99 0.97 0.98 416

Total 0.96 0.96 0.96 9866

Table 4. Complete Model, Smaller Dataset Classification Report

Model Validation Accuracy
Simple CNN 57.45%

Baseline Model 98.25%
Baseline Model with Data

Augmentation
98.93%

Complete Model 96.6%

Table 5. All Model Results, Larger Dataset

as the same model did with the simpler data, which is ex-
pected (Appendix 15).

Next, after running the baseline model on the new data,
our validation accuracy significantly improved to 98.25%
(Appendix 16).

With data augmentation, we achieved a higher validation
accuracy of 98.93%–this indicates that data augmentation
helped make our model more robust to the complex data
(Appendix 17).

Then adding hand landmark detection, we had a valida-
tion accuracy of 96.6% (Figure 10). We also had a test ac-
curacy of 96.42%. Our test accuracy is again lower than
the results obtained by [15], but this is likely due to slight
changes in architecture as mentioned above.

After examining the confusion matrix, it is clear that the

7



Figure 10. Losses and Accuracies for Complete Model, Larger
Dataset

model confuses classes 19, 20, and 21 (U, V, and W), 0
and 18 (A and T), 16 and 19 (R and U), and classes 11 and
12 (M and N) (Figure 11). Similarly to the full model on
the smaller data, the model still confuses signs that have
similar hand positions even with hand landmark detection.
However, this model slightly out performed the full model
on the smaller data, which is important to note considering
this data is more complex.

Figure 11. Confusion Matrix for Complete Model, Larger Dataset

Using the new data, we had 66.52% of images have co-
ordinates with the same minimum detection confidence of
0.5, which is a significant improvement. We were surprised
to see that adding hand landmark detection slightly wors-
ened results. This may be because of the added complexity
of the data—it may be that additional hand detection meth-
ods may be needed to make the landmark detection more
effective, like RPN or cropping the RoI.

6. Conclusion and Future Work
Overall, our project was aimed at ASL character recog-

nition with CNNs, and hoped to improve performance by
implementing hyperparameter tuning, data augmentation,

and hand landmark detection on two different datasets, one
more complex than the other. After running various mod-
els, we found that our model using the more complex data
with data augmentation had a 98.93% validation accuracy.
However, our full model, which includes hand landmark de-
tection, achieved a test accuracy of 96.42%. Based on our
error analysis, it makes sense that adding data augmentation
on the more complex data improved accuracy, while doing
so on the simpler data worsened accuracy. While we ex-
pected hand landmark detection to improve accuracy on the
complex data, it is likely that further work in hand detection
and position prediction is needed to improve results. Some
future work may include running the model on a greater
number of epochs, further tuning of the minimum detection
confidence parameter for hand landmark detection, tuning
the parameters for data augmentation, and implementing
additional hand detection or coordinate techniques.

7. Contributions & Acknowledgements
All coding and report writing was split equally across

the milestone and the final report. Specifically, Arnav
implemented the baseline models and second input chan-
nel, Anusha did data pre-processing, error analysis, and
augmentation, and Malavi adapted the models to the new
dataset, ran the full models, and collected error analysis
plots.

8



8. Appendices

Figure 12. Losses and Accuracies for Simple CNN, Smaller
Dataset

Figure 13. Losses and Accuracies for Baseline Model, Smaller
Dataset

Figure 14. Losses and Accuracies for Baseline Model, Data Aug-
mentation, Smaller Dataset

Figure 15. Losses and Accuracies for Simple CNN, Larger Dataset

References
[1] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman,

M. A. Bencherif, and M. A. Mekhtiche. Hand gesture recog-
nition for sign language using 3dcnn. IEEE Access, 8:79491–
79509, 2020.

Figure 16. Losses and Accuracies for Baseline Model, Larger
Dataset

Figure 17. Losses and Accuracies for Complete Model, Larger
Dataset

[2] V. Bazarevsky, F. Zhang, A. Vakunov, C.-L. Chang,
and M. Grundmann. Mediapipe hands: On-device
real-time hand tracking. https://github.com/
google-ai-edge/mediapipe/blob/master/
docs/solutions/hands.md, 2019. Accessed:
2024-06-05.

[3] J. Bora, S. Dehingia, A. Boruah, A. A. Chetia, and D. Gogoi.
Real-time assamese sign language recognition using me-
diapipe and deep learning. Procedia Computer Science,
218:1384–1393, 2023.

[4] A. Clark and Contributors. Pillow - the friendly pil fork,
2024. Version 10.3.0.

[5] A. Deep, A. Litoriya, A. Ingole, V. Asare, S. M. Bhole, and
S. Pathak. Realtime sign language detection and recognition.
In 2022 2nd Asian Conference on Innovation in Technology
(ASIANCON), pages 1–4. IEEE, 2022.

[6] R. Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015.

[7] R. R. G. Giulia Zanon de Castro and F. G. Guimarães. Auto-
matic translation of sign language with multi-stream 3d cnn
and generation of artificial depth maps. Expert Systems with
Applications, 215(119394), 2023.

[8] H. Guo, G. Wang, X. Chen, C. Zhang, F. Qiao, and H. Yang.
Region ensemble network: Improving convolutional net-
work for hand pose estimation. 2017 IEEE International
Conference on Image Processing (ICIP), Sept. 2017.

[9] A. Halder and A. Tayade. Real-time vernacular sign lan-
guage recognition using mediapipe and machine learning.
Journal homepage: www. ijrpr. com ISSN, 2582:7421, 2021.

[10] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe,

9

https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/hands.md
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/hands.md
https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/hands.md


P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant.
Array programming with NumPy, 2020. Version 1.26.4.

[11] J. Huang, W. Zhou, H. Li, and W. Li. Sign language recog-
nition using 3d convolutional neural networks. 2015 IEEE
International Conference on Multimedia and Expo (ICME),
pages 1–6, 2015.

[12] R. Kumar, A. Bajpai, and A. Sinha. Mediapipe and
cnns for real-time asl gesture recognition. arXiv preprint
arXiv:2305.05296, 2023.

[13] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2117–2125, 2017.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[15] R. Pathan, M. Biswas, S. Yasmin, M. Khandaker, M. Salman,
and A. Youssef. Sign language recognition using the fusion
of image and hand landmarks through multi-headed convo-
lutional neural network. Nature, 13(16975), 2023.

[16] N. Pugeault and R. Bowden. Spelling it out: Real-time asl
fingerspelling recognition. 2011 IEEE International Con-
ference on Computer Vision Workshops (ICCV Workshops),
pages 1114–1119, 2011.

[17] K. K. R. Rastgoo and S. Escalera. Multi-modal deep hand
sign language recognition in still images using restricted
boltzmann machine. Entropy, 20(11), 2011.

[18] J. Rekha, J. Bhattacharya, and S. Majumder. Shape, tex-
ture and local movement hand gesture features for indian
sign language recognition. In 3rd international conference
on trendz in information sciences & computing (TISC2011),
pages 30–35. IEEE, 2011.

[19] S. T. A. S. S. Shanta and M. R. Kabir. Bangla sign lan-
guage detection using sift and cnn. 2018 9th International
Conference on Computing, Communication and Networking
Technologies (ICCCNT), pages 1–6, 2018.

[20] D. Sau. Asl(american sign language) alphabet dataset, 2022.
[21] S. Shahriar, A. Siddiquee, T. Islam, A. Ghosh,

R. Chakraborty, A. I. Khan, C. Shahnaz, and S. A.
Fattah. Real-time american sign language recognition
using skin segmentation and image category classification
with convolutional neural network and deep learning. In
TENCON 2018-2018 IEEE Region 10 Conference, pages
1168–1171. IEEE, 2018.

[22] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka,
G. Sung, C.-L. Chang, and M. Grundmann. Mediapipe
hands: On-device real-time hand tracking. arXiv preprint
arXiv:2006.10214, 2020.

10


