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Abstract

In this paper, we attempt to incorporate computer Vvi-
sion techniques into the dermatology domain, using various
established Convolutional Neural Network models such as
Residual Network (ResNet), Visual Geometry Group Net-
work (VGGNet), and Mobile Network (MobileNet). The
models are used to classify human skin types into three
classes: oily, dry, and normal. We experiment with three
datasets: a natural dataset in which images come from
actual human skin examples, an Al-generated dataset in
which images are generated using the text-to-image diffu-
sion model Stable Diffusion vi-5, and a mixed dataset that
contains both empirical data and Al-generated images. We
employ transfer learning using the models to accomplish
the skin-type classification task for the datasets. We con-
ducted multiple experiments to enhance skin-type classifi-
cation, compare the performance of various CNN models,
and analyze their effectiveness on real versus Al-generated
data. We found that variations of the ResNet model have
higher accuracy rates across the empirical dataset, while
variations of different models perform strongly on the Al-
generated dataset. Additionally, we found that all three
models tend to perform better on the natural dataset than
the Al-generated dataset. We hope that the results from this
paper will lead to further advancements in image classi-
fication tasks in dermatology and that experimenting with
Al-generated data can be further studied in medical appli-
cations.

1. Introduction

Creating a personalized skincare routine can be challeng-
ing with the multitude of products available. Skincare prod-
ucts often target specific skin types, such as oily or dry, but
many people are still unaware of their correct skin type. As
a result, they use unsuitable products, potentially causing
harm. A new study conducted by dermatology scientists at
the Skin Trust Club found that nearly 2 in every 3 women
do not know their correct skin type. We were inspired by
this fact to experiment with how accurate computer vision
models can be in classifying skin care types. More specif-
ically, we aim to understand better if, and to what capac-
ity, these models can outperform such individuals who in-
correctly classify their skin type. As a result, an accurate
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classification system would facilitate accurate and accessi-
ble skincare recommendations, ultimately improving indi-
viduals’ dermatological health and cosmetic outcomes.

Our project aims to develop a model that classifies skin
types—oily, dry, or normal using skin images as input.
We also address the issue of limited training data in cur-
rent skin classification models by experimenting with Al-
generated images. Specifically, we compare a fine-tuned
model trained on real data with one trained on Al-generated
data to assess the effectiveness of Al-generated images in
skin type classification

We aim to accomplish three goals: improve existing skin
type classification models using Deep Convolutional Net-
works, compare the performance of these models across
various metrics (precision, recall, etc.), and experiment with
Al-generated data for computer vision. To do so, we ex-
plore a variety of Deep Convolutional Networks such as
ResNet50, VGGNetl19, and MobileNet; through transfer
learning, we are able to fine-tune these models on both the
empirical dataset, the Al-generated dataset, and a mixed
dataset, comparing model-wide performance. To further
fine-tune these models, we conduct experiments that test
various hyperparameters, architectures, and optimization
strategies. For example, we compare the performance
of ResNet50 against ResNet50 with dropout and against
ResNet50 with batch normalization, dropout, and dense lay-
ers. We also compare optimization algorithms in models
such as stochastic gradient descent with momentum versus
Adam. Through these experiments, we are able to better
understand the capabilities of such Deep Convolutional Net-
works in the dermatology domain.

2. Related Work

Numerous published works have explored the use of
deep convolutional neural networks in the dermatology do-
main. However, they differ in their application within the
space, and we found that the existing models for the skin
type classification problem have many strengths and weak-
nesses that we could build on through our project.

2.1. Skin Type Classification Work

Firstly, Saiwaeo et al. developed their own skin type
classification model using CNN deep learning algorithms,
and they used transfer learning to test other existing CNN
architectures. The model is trained on microscopic im-



ages of dry, normal, and oily skin, and while this allows
the model to learn more complex features and nuances be-
tween the classes, it is also not consumer-friendly. Simi-
larly, Saidah et al. also use a microscopic image dataset
in order to develop their CNN model. The model con-
sists of three hidden layers with fully connected layers and
softmax activation, incorporating regularization techniques
such as dropout. They used a total of 1600 images to clas-
sify data into three classes: oily, dry, and normal skin, and
they achieved an accuracy rate of 99.5%. However, simi-
lar to Saiwaeo et al., the microscopic skin images are not
accessible to everyday users, and the dataset the model is
trained on is small in size. Lastly, Kothari et al. use CNNs
to classify skin type with additional product recommenda-
tions. The developers used a tiny dataset of 80 skin images
collected by web scraping and classified into oily and dry
categories. These images were then processed to input into
a face detector and facial feature extractor, and the resulting
images (separate images of the forehead, left cheek, right
cheek, and the nose) were inputted into the skin type clas-
sifer. Their developed process of breaking down the input
into various images of facial features to feed into the CNN
classifier is an incredible example of how the skin type clas-
sification problem can be further decomposed to optimize
the model’s ability to learn patterns based on smaller sec-
tions of the face.

2.2. Skin Disease Classification Work

There is also ample impressive work in the particular
task of skin disease classification. For example, Sun et al.
created a benchmark for automatic visual classification of
clinical skin disease images; the authors used the largest
dataset at the time (approximately 6600 images from 198
classes) and performed extensive analyses on the images us-
ing CNNs. They performed two experiments: (1) compare
the influence of different baseline features through classifi-
cation using hand-crafted features and (2) evaluate existing
methods of fine-tuning models using transfer learning. Wu
et al. further explores transfer learning for face skin dis-
ease classification by employing it on five mainstream CNN
algorithms pretrained on ImageNet (ResNet-50, Inception-
V3, DenseNetl21, Xception, and Inception-ResNet-V2).
The authors created a significantly larger dataset of approx-
imately 2700 images assigned to six common skin diseases
and used data augmentation to help support any data imbal-
ances. They found that models pre-trained on other body
part images are generally superior to models only trained
on facial images. Ahmad et al. pioneer a new approach
in the field, namely fine-tuning layers of ResNet152 and
Inception-ResNet-v2 models with a triplet loss function.
Not only do the authors have a large, diverse dataset of
12000 images with labels of 14 classes, but they also use
techniques such as data augmentation, dropout, L2 regu-
larization, and stochastic gradient descent with momentum
to further optimize the models. Also, other work further
applies these models by creating skin-type applications for
users. For example, Velasco et al. build skin disease classi-
fication system on Android applications by applying trans-
fer learning with MobileNet on 7 skin diseases. They use
a significantly large dataset of about 3400 images across

7 classes, and they explore various sampling methods (un-
dersampling versus oversampling) and preprocessing tech-
niques on input data. However, the dataset is imbalanced
and no measures were taken to correct the weights in the
training process.

2.3. Other Skin Classification Work

In the dermatology domain, other work has been done to
explore other skin classification tasks such as human skin
detection, gender classification based on skin tone, and fa-
cial skin image classification. Salah et al. published a novel
approach for human skin detection in which they trained a
patch-based CNN that classifies the data as skin or non-skin,
and then use a skin detection algorithm to scan the whole
image and use a mask to extract and evaluate skin detec-
tion. For their input data, they created a new dataset from
an existing, established dermatology dataset (SFA) and uti-
lized diverse images with single and multiple objects. Ad-
ditionally, Mustapha et al. improve the accuracy of gen-
der classification based on skin tone using transfer learning
on CNNs. They use a large dataset from FaceARG (ap-
proximately 6250 images) and divide the dataset into four
classes: bright skin tone and female, bright skin tone and
male, dark skin tone and female, and dark skin tone and
male. They apply transfer learning and fine-tuning meth-
ods to the MobileNetV2 model, and the authors found that
the dark experiment achieved the highest accuracy on the
training dataset while the bright experiment scored the high-
est accuracy on the test set. While they discovered that the
model performs significantly better with fine-tuning, there
are extensive limitations to the lack of inclusivity in the
classes. Lastly, Chin et al. explored facial skin image clas-
sification tasks using CNNs. The team used three varying
CNN architectures: a two-layer CNN, a three-layer CNN,
and transfer learning with LeNet-5. They classified the in-
put data into three classes: good facial skin quality, bad fa-
cial skin quality, and face makeup. It was discovered that
the three-layer CNN architecture has the highest recogni-
tion rate, but such model is trained on a relatively small
dataset (approximately 300 images).

3. Dataset and Metrics
3.1. Datasets

In order to train our models via transfer learning, we
searched for a publicly available dataset that contained ac-
curate, realistic images of human skin across oily, normal,
and dry types. We also wanted the dataset to be as diverse
as possible with varying genders, races, and ages. While we
were able to find a dataset through Kaggle, it is limited in its
size. However, in the scope of the medical domain, access
to relevant data is limited due to patient privacy regulations.
This limitation prompted us to consider using Al-generated
images as a complimentary dataset when comparing model
performance. Note that all datasets use the same test set
coming from the empirical dataset.



3.1.1 Empirical Dataset

As mentioned previously, we found a publicly available
dataset of human skin on Kaggle called ”Oily, Dry and
Normal Skin Types Dataset” developed by Shakya Dis-
sanayake. Originally, the dataset contained approximately
3150 images (Table 1). However, we decided to process
the data further by removing ambiguous images. For exam-
ple, if images contained skin care products, were blatantly
edited, or contained non-human faces, we would remove
them. After processing the dataset, we scraped the inter-
net for free-to-use images for each class. We chose various
images from microscopic skin, skin-care promotional pho-
tos, to pictures of friends. We added these images through-
out the test, train, and validation sets to produce our cur-
rent iteration of the dataset of about 2400 images (Table
2). As seen in Table 2, we have significantly less images
for the dry class among the test, train, and validation sets.
We resolve this data imbalance by applying weights to the
classes throughout training. To further expand our dataset,
we also experimented with incorporating Al-generated im-
ages to see its effects on our evaluation metrics.

Skin Type | Training Set | Validation Set | Test Set
Dry 652 71 35
Normal 1104 111 59
Oily 1000 80 40

Table 1. Unprocessed Kaggle Dataset Sizes by Skin Type and Set

Skin Type | Training Set | Validation Set | Test Set
Dry 280 35 32
Normal 723 100 96
Oily 893 102 109

Table 2. Processed Kaggle Dataset Sizes by Skin Type and Set

3.1.2 AI-Generated Dataset

In the medical field, one of the main challenges for com-
puter vision models is the limited access to high-quality
data. Privacy regulations and patient confidentiality often
restrict access to accurately labeled data from professionals.
While our current empirical dataset is larger than many ex-
isting datasets for the skin-type classification problem, we
aimed to explore the use of Al-generated images as a po-
tential solution to this widespread data limitation in med-
ical computer vision. To do so, we set up a pipeline to
generate images using Hugging Face’s Stable Diffusion v1-
5 Model. The Stable Diffusion v1-5 Model developed by
Hugging Face is a text-to-image generative model that uses
diffusion processes to iteratively refine a noisy image into
a coherent image based on text-input prompts. The model
takes as input a text prompt, the number of images to gen-
erate, the number of images per prompt, and a guidance
scale. The guidance scale represents the degree of freedom
the model has to generate images. The model is trained on
a vast dataset of images and their corresponding captions,
and it is excellent at capturing important details specified in
the prompts. For each class (dry, normal, and oily), we ex-
perimented with various combinations of prompts and guid-
ance scales in order to produce realistic images. One issue
that we encountered was the instability of the model itself;

many times it would generate images that are completely ir-
relevant to the prompt. As a result, we manually processed
the dataset, discarding any images that were completely ir-
relevant, contained skin care products or non-human faces,
as well as features that were too exaggerated/not realistic to
human skin. For example, for many of the images in the
dry class, we saw Al-generated images of skin that was ex-
cessively cracked, depicting an extreme and unnatural rep-
resentation of dryness. We compare the distributions of the
dataset before and after processing in Table 4 and 5 respec-
tively.

Skin Type | Training Set | Validation Set
Dry 1000 160
Normal 1400 200
Oily 1300 160

Table 3. Unprocessed AI-Generated Dataset Sizes Before by Skin
Type and Set

Skin Type | Training Set | Validation Set
Dry 617 96
Normal 738 77
Oily 641 64

Table 4. Processed Al-Generated Dataset Sizes Before by Skin
Type and Set

3.1.3 Empirical and AI-Generated Dataset

An additional experiment we will conduct is applying trans-
fer learning through a dataset that is mixed with empirical
data and Al-generated images. Again, we hope to combat
the ongoing roadblock of inaccessible medical data by ex-
tending existing datasets with computer vision techniques
such as Al-image generation. The size of this dataset, ap-
proximately 4900 images, is significantly larger than our
previous two datasets. The exact distribution is noted in Ta-
ble 6.

Skin Type | Training Set | Validation Set
Dry 1018 63
Normal 1684 86
Oily 1745 88

Table 5. Empirical and AI-Generated Dataset Sizes Before by Skin
Type and Set

3.2. Evaluation Metrics

Since we are implementing a classification task, our eval-
uation metrics will include precision, recall, and F1 scores.
Such evaluation metrics will be reported across the varying
models and datasets so that we will have a better under-
standing of the model’s performance.

3.2.1 Precision

Precision is a measure of the accuracy of positive predic-
tions made by the model. More specifically, it is the frac-
tion of correctly predicted positive classifications to the to-
tal predicted positives. In the context of our project with the
skin-type classification task, precision represents the pro-
portion of correctly predicted instances among all instances
that were predicted as particular skin type by the model.



TP
TP+ FP
e TP (True Positives) are the correctly predicted posi-
tive samples.
e F'P (False Positives) are the incorrectly predicted pos-
itive samples.
A high precision score for a particular class suggests that
the when the model predicts a certain skin type, it is usually
correct. It will be important to record precision rates across
classes to see if there are any biases in the training data.

Precision =

3.2.2 Recall

Recall is the ratio of correctly predicted positive observa-
tions to all observations in the actual class. In the skin-type
classification task, the recall metric measures how well the
model identifies all the samples of a particular skin type.

Recall = ———
= TPYFN

e TP (True Positives) are the correctly predicted posi-
tive samples.

* F'N (False Negatives) are the actual positives that were
not correctly identified by the model.

A high recall score for a particular class means that the
model can identify most of the samples for that skin type.

3.2.3 F1 Score

F1 scores are the harmonic mean of precision and recall.
We use it as a way to balance both precision and recall,
especially since we have an uneven class distribution. The

formula for calculating F1 scores are:
Precision x Recall
F1=2x

Precision + Recall”
In this context, the F1 score represents a combined measure
of the model’s ability to identify each skin type accurately
while also minimizing false positives.

4. Methods
4.1. Overall Approach
4.1.1 Image Preparation

a. For the real image dataset, we shuffled our modified
Kaggle dataset containing labeled skin-type images
and divided it into segments of 80% for training, 10%
for validation, and 10% for testing.

b. For our Al image dataset, we created a training and
a validation set from our generated images. Since
we were using our test set from our real dataset, we
matched the size of the Al validation set to the real test
set, leaving the rest of the generated images to make
up the training set.

c. For our real and Al combined dataset, we kept our test
set from our real dataset. To create the train and valida-
tion sets, we shuffled our real and Al datasets together,
removed any images that overlapped with those in our
test set, and then created a validation set to match the
size of our test set. The rest of the images were then
put into the training set.

4.1.2 TImage Pre-Processing

For all three datasets, we followed the same image pre-
processing approach, which included image resizing, nor-
malization, and random flips during training.

4.1.3 Evaluation Metrics

In addition to evaluating the classification accuracy on the
validation set, we evaluated class-wise accuracy, class-wise
precision, class-wise recall, and class-wise F1 score. These
metrics help us measure the performance of the model on
each class, giving insights into its ability to identify posi-
tive instances for each class and make correct positive pre-
dictions.

4.14 Model Building

Loss Function We decided on cross-entropy loss because
it is widely recognized to be well-suited for neural network
classification problems. It effectively handles probabilistic
outputs and is sensitive to misclassification. Cross-entropy
loss quantifies the difference between the predicted prob-
ability distribution and the true distribution, helping our
model learn to output probabilities that closely match the
actual distribution of the data. For our skin type classifica-
tion problem, our loss function is the following:

N C
L==>" yiclog(pic) @)
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To account for class imbalances, we calculated class
weights from the training sets to give more importance to
underrepresented classes during training. The weight for
each class is calculated as the inverse of its frequency:

N
w; = — @)
i
where IV is the total number of samples in the training
set. These weights are then normalized so that their sum
equals 1:

w;

Zj wj

For the loss function, using cross-entropy loss as an ex-
ample, the implementation of class weights would modify
the original function from (4) to (5):

3)
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N
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effectively adjusting the loss contribution from each class.



4.2. Transfer Learning

The real image dataset was used to test different trans-
fer learning models with respective modifications to deter-
mine the best one at classifying skin types. The three differ-
ent pre-trained models we used for transfer learning were
ResNet50, VGG19, and MobileNet. We followed a pytorch
tutorial, and modified functions we wrote in class problem
sets to set up transfer learning. For all of the different model
architectures we tested, we used the versions pre-trained
on ImageNet as a starting point, hoping to leverage well-
learned features for our skin type classification task.

4.2.1 ResNet50

We chose ResNet50 as one of our models to test since it is
widely used for image classification and considered one of
the most effective architectures.

ResNet 50 is a deep convolutional network (CNN). The 50
layers of ResNet50 comprise convolutional layers, batch
normalization layers, ReLU activations layers, and fully
connected layers. In addition to those layers, ResNet50 em-
ploys residual blocks to solve the common vanishing gra-
dients problem in deep networks. In residual learning, the
network learns a residual function instead of directly try-
ing to learn underlying mappings. The residual blocks that
facilitate this contain a few convolutional layers where the
input to each layer is added to the output of the block, form-
ing a skip connection that helps with gradient backpropaga-
tion. To modify the network for our skin type classification
problem, we modify the final fully connected layer.

4.2.2 VGG19

We chose VGG19 to test because it is a relatively sim-
ple model that is less computationally expensive, and we
wanted to see how it would perform against a deeper model
like ResNet50.

VGGI19 is a deep convolutional neural network (CNN).
Compared to ResNet50, VGG19 is much more simple with
only 19 layers broken down into 16 convolutional layers and
3 fully connected layers. Furthermore, VGG19 uses small
3x3 convolutional filters throughout the network. VGG19 is
characterized by its uniform design where repeating blocks
of 3x3 convolutional layers stacked on top of each other
followed by a max-pooling layer make up the network. The
network ends with 3 fully connected layers, and we modify
the last fully connected layer to match our skin type classi-
fication problem.

4.2.3 MobileNet

We chose MobileNet to test because it is specifically de-
signed for resource-constrained environments, and given
our resource constraints, we wanted to see how it would
stack up against the other networks.

MobileNet is a class of efficient deep neural networks de-
signed for mobile and embedded vision applications. A key
feature of MobileNet is its use of depthwise separable con-
volutions, which are standard convolutions factorized into a
depthwise convolution and a pointwise convolution. This

feature reduces the number of parameters and computa-
tional cost. Similar to the other 2 networks, MobileNet ends
with fully connected layers, and we modify the last one to
suit our skin type classification problem.

For each of the three different models, we implemented
2 additional modifications to create a total of 9 models. The
first modification was to add a dropout layer to help prevent
overfitting. Dropout involves randomly setting a fraction of
the input units to zero during each training cycle to force the
model to learn more robust features. We decided to imple-
ment this modification since none of the models above have
dropout layers in their architecture. The second modifica-
tion was to add a series of dense layers consisting of batch
normalization, ReLU, and dropout layers on top of the ex-
isting architecture to facilitate fine-tuning for out specific
problem.

4.3. Optimizer Testing

We first evaluated two optimization algorithms we found
the most effective from our coursework, stochastic gradient
descent and Adam.

4.3.1 Stochastic Gradient Descent

SGD is a variant of traditional gradient descent, and is ef-
fective for large-scale problems. SGD updates parameters
based on the gradient of the loss computed from randomly
sampled batches. The update rule for SGD is the following:
0 = 0 —nVyL(0). With SGD, we also implemented modi-
fications such as momentum and learning rate scheduling to
improve the performance and convergence of the model.

4.3.2 Momentum

Momentum adds a fraction of the previous update to the cur-
rent update to smoothen oscillations and prevent SGD from
getting stuck at local minimums. To incorporate momen-
tum into SGD we calculate v; = SBv;_1 + (1 — 5)VoL(0),
where f is the momentum factor, and the update rule be-
comes 0 = 0—nv,. We tested multiple values of momentum
factors during training.

4.3.3 Learning Rate Scheduling

Learning rate scheduling allows us to adjust the learning
rate during training to improve convergence, we tested out
different step sizes and gammas where the learning rate
would decrease by a factor of gamma for every step size.

434 Adam

Adam (Adaptive Moment Estimation) is a further extension
of SGD that computes adaptive learning rates for each pa-
rameter. It essentially maintains two moving averages to
adaptively adjust the learning rate for each parameter.

The first moment m; = Symi—1 + (1 — 51)VgL(0) repre-
sents the exponential moving average of the gradients, and
the second moment v; = fBov;_1 + (1 — B2) (Vg L(0))? rep-
resents the exponential moving average of the squared gra-
dients. Before performing the updates we then performing

bias correction, m; = 17_’”,, and v; = 12‘6,,. Then finally
1 2
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For the two optimizers, we tested them out on all 9 mod-
els on our real image dataset to find the best model before

fine-tuning.

4.4. Fine-tuning

For fine-tuning we tested different values for our hyper-
parameters on the real image dataset. The parameters we
toggled included the learning rate, regularization constant,
dropout keep ratio, learning rate decay factor (gamma),
learning rate decay step size, and the number of epochs.

4.5. Model Evaluation and Visualization

With our best model and best hyperparameters, we
trained three separate models on our three datasets, and ex-
tracted test accuracy on unseen data consisting of real im-
ages. Furthermore, we generated saliency maps to visualize
our models’ learned features.
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Figure 1. Our overall approach to the skin-type classification task.

5. Results
5.1. Model Architecture

5.1.1 Testing Optimizers

As explained in the methods section, we set up 9 different
transfer learning models, 3 variations of each pre-trained
model from ResNet50, VGG19, and MobileNet. In order to
determine whether Adam optimizer or SGD optimizer was
more suitable for our skin type classification task, we tested
the performance of both optimizers using a learning rate of
0.1, and a weight decay of 1e~* which we found to be good
starting points. The experiments were performed on our real
image dataset. The results are displayed in figures 2 and 3.
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Figure 2. Model performance using Adam Optimizer.

Figure 3. Model performaﬁce using SGD Optimizer.

As seen from the graphs, the SGD optimizer performed
better on most models, achieving an accuracy of over 80%
for its best-performing model while Adam only achieved an
accuracy of around 70% for its best-performing model. As
aresult, we decided to use SGD optimizer for our following
experiments.

5.1.2 Testing pre-trained models

With SGD as our optimizer, the top 3 performing mod-
els were all variations of the pre-trained ResNet50 model.
Their respective best validations accuracies along with the
other models following 20 epochs of training are displayed
in table 7.

Model variation Val Accuracy (%)
ResNet50 (rn50) 86.5
ResNet50 + dropout (rn50d) 88.19
ResNet50 + dense layers (rn50dbd) 84.81

Table 6. Model variations performance on validation set.

We then proceed with hyper-parameter tuning on our
best model which is ResNet50 + dropout. These experi-
ments were conducted on the real image dataset.

5.1.3 Hyper-parameter fine-tuning

To obtain a higher validation accuracy for our ResNet50 +
dropout model, we added a learning rate scheduler, regular-
ization, and momentum updates to SGD. As our parameters
for fine-tuning, we tested out different learning rates, reg-
ularization constants, dropout keep ratios, learning rate de-
cay factors, learning rate decay step sizes, and epochs. Due
to computational constraints, we could only test a limited
combination for these parameters. Our results are in table
7.

5.1.4 Model Training on all Datasets

Using our ResNet50 + dropout model and the hyper-
parameters from testing, we trained on our 2 additional
datasets, our Al images dataset, and our Al + real dataset.
The results are shown in table 8.

Train Dataset | Val Accuracy (%) | Test Accuracy (%)
Real 91.56 89.45
Al 81.52 30.80
Mixed 61.60 81.01

Table 8. Models trained on different datasets performance on the

validation set and test set.




Iteration | Epochs | LR | -ndecay | LR | Regularization Val Class-wise F1 score
factor step size constant Accuracy (%) [dry, normal, oily]

1 13 | 0.00012 | 0.04267 1 0.34266 0.89451 [0.7879, 0.8780, 0.9261]

2 11 | 000001 | 0.01714 4 0.00626 0.8861 [0.8000, 0.8718, 0.8879]

3 17 0.00026 0.00264 6 0.0991 0.89451 [0.7692, 0.8687, 0.9005]

4 15 | 0.00009 | 0.00357 7 0.282 0.9156 [0.8696, 0.9261, 0.9208]

5 12 0.00005 | 0.01706 3 0.55391 0.8819 [0.7879, 0.8780, 0.9261]

Table 7. Iterations of hyperparameter fine-tuning.

5.2. Qualitative Results

In addition to classification accuracy, we generated pre-
dictions and saliency maps to visualize our results. Saliency
maps visualize the regions of an input image that our model
considers most influential for making predictions. In the
following sections, we will provide examples of saliency
maps per class and per dataset to understand potential dif-
ferences in the model’s learned patterns/features.

5.2.1 Saliency Map for Model Trained on Real Dataset

In the saliency map of the image with dry skin, the model
highlights flakey and dry skin patches, and when overlayed
with the original image, we see that the model correctly
highlights the relevant portions of the image (Figure 4). For
the normal image, the saliency map highlights on the man’s
entire face which makes sense as there are no relevant dry
or oily patches in the image (Figure 5). The saliency map
of the image with oily skin correctly emphasizes the oily
parts of the woman’s face, namely the chin, around the
nose/cheeks, and the forehead (Figure 6).

| = |
Figure 6. Saliency map on oily image.

5.2.2 Saliency Map for Model Trained on AI Dataset

We generated new saliency maps for the same images as
before, but now for the model that was trained on the Al
dataset alone. In the image of the dry skin, the saliency map
does not highlight a significant portion of the dry patches,
supporting our belief that the Al-trained model does not
generalize well to real images (Figure 7). The saliency map
for the image of normal skin focuses on the man’s face but
also some of the background (Figure 8). The model also
correctly highlights the oily patches of the skin in the oily
image (Figure 9).
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Figure 9. Saliency map on oily image.

5.2.3 Saliency Map for Model Trained on Mixed
Dataset

Lastly, we provide examples of saliency maps for the model
trained on the mixed dataset. Across all the images, we
found that the highlighted areas are more concentrated than
those of the previous saliency maps. For example, in the
oily image, we see that the model solely highlights oily
patches whereas the other models would capture less con-
centrated patches across the entire image (Figure 12). This
is also prevalent in the normal image as well, the model only
significantly highlights a few portions of the face (Figure
11). However, in the dry image, the model fails to identify
key dry patches in the image (Figure 10).

Figure 11. Saliency map on normal image.
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Figure 12. Saliency map on oily image.

5.2.4 Predictions of Model Trained on Real Dataset

We have provided examples of images in which the model
trained on the real dataset correctly classifies the class.

Actual: oily, Predicted: oily ~Actual: normal, Predicted: normal

Figure 13. Model predictions.
5.2.5 Predictions of Model Trained on AI Dataset

In the following figure, we showcase instances where the
model trained on the AI dataset accurately identifies and
misclassifies skin types.

Actual: dry, Predicted: dry Actual: oily, Predicted: dry

Figure 14. Model predictions.

5.2.6 Predictions of Model Trained on Mixed Dataset

Lastly, for the model trained on both real and Al-generated
images, we provide two examples where the model cor-
rectly identifies the skin type.

Actual: normal, Predicted: normal  Actual: dry, Predicted: dry

Figure 15. Model predictions.

6. Conclusion and Future Works

In this project, we evaluated the performance of vari-
ous models on a skin-type classification task using different
datasets, deep learning techniques, and hyperparameters.
We used three datasets including real images, Al-generated
images, and a mixed dataset containing both types of pho-
tos. To reiterate, we aimed to (1) improve existing skin
type classification models using CNNs, (2) compare the
performance of these models across varying metrics (pre-
cision, recall, etc.), and (3) experiment with Al-generated

data. In terms of improving existing skin type classifica-
tion models, after experimenting with and fine-tuning dif-
ferent models such as ResNet50, VGG19, and MobileNet,
we were able to obtain a validation accuracy of 91.56% and
a testing accuracy of 89.45% with ResNet50 (Table 7, Table
8). More specifically, we applied regularization techniques
like incorporating dropout layers and fine-tuned the model’s
hyperparameters to achieve such accuracy rates. Experi-
menting with Al-generated data allowed us to better un-
derstand the capacity to which these images can augment,
or even replace, real data in the training stages. Models
trained solely on Al-generated images struggled to gener-
alize to real-world data, reflecting that Al images are not
yet a viable substitute for real images in the dermatology
domain. However, we saw improvements with the mixed
dataset; while the mixed model did not perform as well as
the model trained on real images, it still demonstrated rea-
sonably high test accuracy of about 81.01%. This suggests
that Al-generated images could potentially be used to sup-
plement training data, creating a more robust model by in-
troducing variability akin to noise. Despite attempts to ex-
pand our current iteration of the datasets, we believe that the
size of these datasets needs to be larger for future work. Ex-
panding the datasets with more diverse and representative
images could further enhance the models’ performance and
generalization. Additionally, for future work, we would like
to further explore the ability of Al-generated images to sup-
plement training data; future work could focus on improv-
ing the realism of Al-generated images or exploring the op-
timal ratio of real to Al-generated images to maximize the
model’s performance. Overall, our study significantly im-
proved our understanding of not only sophisticated CNNs,
but also the potential to use Al-generated images in a do-
main where data is sometimes inaccessible.
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