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Abstract

Vision transformers have rapidly advanced the state of
the art in computer vision, yet their deployment is often
limited by significant computational and memory demands.
To address these challenges, this paper introduces Slice-
ViT, a novel post-training pruning technique adapted from
the successful SliceGPT method used in language mod-
els. SliceViT effectively reduces the embedding dimension
and overall model size by slicing rows and columns from
each weight matrix. Through comprehensive experimen-
tation, we demonstrate that SliceViT can eliminate up to
30% of the parameters in Google ViT Base and Large mod-
els while preserving 91% and 95% of the original top-5
accuracy, respectively, in image classification tasks. No-
tably, our pruned models enhance deployment on resource-
constrained devices such as smartphones and tablets, im-
proving inference speed by 6.6% and 18% on an iPad
Pro with an M2 processor, without the need for addi-
tional code optimizations. The implementation of SliceViT
is made publicly available at: https://github.com/
sndre/pytorch—image—models.

1. Introduction

In recent years, the computational expense associated
with training and deploying vision models has increased
significantly, prompting the research community to ex-
plore efficient model compression techniques. These tech-
niques have proved useful in deploying advanced Al mod-
els on resource-constrained devices such as smartphones
and tablets. Among the prevalent model compression meth-
ods—distillation, tensor decomposition, pruning, and quan-
tization—this work focuses on pruning. Specifically, it
adapts the ”SliceGPT” method [3], originally developed for
large language models (LLMs), to vision transformers. The
SliceGPT approach is particularly compelling because it
eliminates entire rows and columns of a model’s weight ma-
trix without necessitating recovery fine-tuning, which tradi-
tionally poses a challenge in model compression.

Furthermore, SliceGPT enhances computational effi-

ciency by reducing the embedding dimensions of feature
representations, thereby lowering the computational over-
head required during inference. The method’s ability to
maintain model performance while significantly cutting
down computational demands makes it a promising candi-
date for real-time Al applications on mobile devices.

This paper contributes to the field by:

1. Adapting the SliceGPT method, initially designed for
text-based models, to the domain of vision transform-
ers.

2. Modifying the original method to enable selective
pruning of transformer blocks and to apply incremen-
tal PCA computations.

3. Conducting extensive experiments to evaluate the
accuracy-performance trade-offs introduced by this
method. These experiments are specifically tailored
to measure the method’s performance on Apple’s M2
processors, setting a benchmark for its feasibility in
real-time applications.

We call our method SliceViT. The following sections
will expand on the methodology, experimental setup, re-
sults, and implications of applying the SliceViT to vision
transformers, emphasizing its potential to impact mobile-
based Al applications.

1.1. Problem Statement

Reduce the inference time and computational load of
Vision Transformer models without significantly compro-
mising accuracy for their use in real-time applications
on resource-constrained devices such as smartphones and
tablets.

Inputs and Outputs

 Input: The method takes as input a pre-trained vision
transformer (ViT) model designed for image recogni-
tion tasks, specifically trained or fine-tuned on the Im-
ageNet 1k dataset.

e Qutput: The output is a pruned vision transformer
model that maintains acceptable levels of accuracy
while reducing the computational requirements and
memory footprint.
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Baseline Method

The baseline method involves measuring both top-1 and
top-5 accuracy, as well as runtime latency, of a non-pruned
vision transformer model. This model serves as a bench-
mark for evaluating the effectiveness of the SliceViT prun-
ing method in reducing model size and computational com-
plexity while attempting to preserve the accuracy levels nec-
essary for practical applications.

2. Background and Related Work

There are four main categories of model compression
techniques: distillation, tensor decomposition, pruning, and
quantization ([1 1], [7], [21], and [8]). In this work, we focus
on pruning, specifically applying the SliceGPT method [3]
to Vision Transformers [6].

2.1. Vision Transformer Networks

Vision Transformers [6] are a class of neural networks
that adapt the transformer architecture [ 18], used for natural
language processing, to handle computer vision tasks. The
ViT architecture treats image patches as the equivalent of
tokens in NLP, processing these patches through a series of
transformer encoder layers. Each encoder is composed of
multi-head self-attention mechanisms followed by a feed-
forward neural network (FFN), which are normalized by a
LayerNorm operation.

Embeddings: Let D be the dimension of each image
patch embedding, and N be the total number of patches
derived from splitting the image. The Vision Transformer
takes a flattened list of patch embeddings as input, where
each patch embedding is generated by linearly projecting a
fixed-size portion of the input image. Additionally, a posi-
tional embedding is added to the patch embeddings to retain
positional information.

LayerNorm: After the embedding stage, the signal ma-
trix undergoes a LayerNorm [4] operation, which normal-
izes the data by subtracting the mean and dividing by the
standard deviation of each layer’s inputs. The LayerNorm
operation is given by:

LayerNorm(X) = RMSNorm(X M)diag (o) VD 4+ 1587

where RMSNorm [20] applies 2 + z/||z|| to each row of
X. The parameters « and 3 are learned separately for each
LayerNorm instance in the network. The constant matrix
M=1- %HT isa D x D matrix which is a matrix-form
expression for subtracting the mean of X from each row of
X.

Attention Blocks: The core of the Vision Transformer
is its attention mechanism, where the input matrix X is pro-
jected into queries @), keys K, and values V/, each obtained
by multiplying X with corresponding learned weight matri-
ces. The self-attention mechanism computes the relevance

of different patches to one another and aggregates this in-
formation to form the output matrix.

FFN Blocks: Each attention block is followed by a feed-
forward network, consisting of two linear transformations
with a GeLU [10] activation in between.

Forward Pass: In the ViT, the image passes sequentially
through the transformer blocks, where each block updates
the representation of the image patches. This sequence of
operations transforms the initial patch-based representation
into a more abstract representation that captures both indi-
vidual and relational features of the patches, which is then
used for classification or other vision tasks.

2.2. SliceGPT

The SliceGPT method represents a promising advance-
ment in the compression of transformer-based models, par-
ticularly focusing on maintaining computational invariance
while reducing model complexity through a targeted prun-
ing approach [14].

Computational Invariance in Transformers

An invariant function is one for which a transformation
to the input does not result in a change to the output. Let @
denote an orthogonal matrix, for which Q7 Q = QQ” = I.
Note that multiplying a vector = by @) does not change the
norm of the vector, since:

Q]| = V2T QTQr = VaTz = [lz].

This invariance property can be used to prove the following
expression:

RMSNorm(XQ)QT = RMSNorm(X).

Since each Attention or FFN transformer block has linear
operations on both the input and output, we can integrate the
orthogonal transformations () into the linear layers of these
blocks. This foundational insight enables the application of
pruning based on computational invariance, as described in
the next section.

Pruning Method
The key steps of SliceGPT method are outlined below:

1. Conversion from LayerNorm to RMSNorm: This
transformation is achieved by absorbing the scaling
matrix diag(«) into the linear layer that follows the
LayerNorm, and the mean-subtraction matrix M into
the linear layer that precedes it.

2. Computation of Orthogonal Matrices: The orthog-
onal matrices () are computed using Principal Com-
ponent Analysis (PCA) [9] on the covariance matrix
XTX of the signals. These signals are typically the
inputs and outputs of the Attention and FFN blocks
within the transformer and are projected onto their
principal components.
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Figure 1. A pruned transformer block using SliceGPT method
based on computational invariance (adapted from [3]).

3. Applying Orthogonal Transformations: The input
linear layers of the Attention and FFN blocks are pre-
multiplied by Q7', and the output linear layers are post-
multiplied by (). In the residual connections a new lin-
ear layer Q7 Q1 is introduced.

4. Pruning via Row and Column Deletion: The final
step is the actual pruning, where rows of the input and
columns of the output linear layer weights are deleted.
Additionally, both rows and columns of the matrix
QITQIH in the residual connections are also removed.

Fig. 1 illustrates this entire process, demonstrating how
the transformations and deletions lead to a compressed yet
effective model architecture.

2.3. Hardware-specific Optimizations

In addition to model pruning, another avenue for im-
proving inference speed lies in hardware-specific optimiza-
tions. Such optimizations take advantage of the unique ar-
chitecture of target hardware to maximize computational ef-
ficiency. Apple Inc. has explored this domain extensively in
[2] and [ 1], providing insights into how models can leverage
Apple Neural Engine features effectively. Through our ini-
tial investigations into these optimizations, we have found
that while the scope for novel contributions might be lim-
ited due to the comprehensive work already done by Ap-
ple, these techniques can nonetheless be combined with our
SliceViT methodology. The integration of model pruning
via SliceViT with hardware-specific optimizations is out of
scope for this work however.

3. Method

3.1. SliceViT: Transformation and Optimization of
Patch Embedding Layers

In the standard Vision Transformer architecture, the ini-
tial embedding of image patches is typically performed us-
ing a convolutional layer. This layer, denoted as a 2D con-
volution (Conv2D), maps input image patches into a la-
tent space conducive to subsequent attention mechanism.
Unlike linear layers, convolutional layers cannot directly
undergo orthogonal transformations due to their structured
kernel operations. Therefore, a transformation approach is
necessary to integrate these layers into the SliceViT frame-
work, which involves orthogonal transformations and prun-
ing.

Conversion of Conv2D to Linear Layer

The conversion process starts by reshaping the weights
of the pre-trained Conv2D layer to form a linear layer
(Linear). Given a convolutional layer with parameters
W ony and biases b¢ony, the transformation to a linear layer
is mathematically represented as:

1. Weight Reshaping:
Wiinecar = reShape(Wconw (leta Cin x Kp x Kw))

Where Ci,, Coy are the number of input and output
channels, and K}, K, are the heights and widths of
the convolutional kernel.

2. Bias Transfer:

blinear = bconv

This process ensures that the newly formed linear layer
retains the functional characteristics of the original convo-
lutional layer but in a form amenable to further transforma-
tions.

Orthogonal Transformation and Pruning

Upon converting the convolutional layer to a linear for-
mat, the next steps involve applying orthogonal transforma-
tions and slicing to reduce the dimensionality while preserv-
ing essential features:

1. Rotation:
Wrotated = QT . Wlinear

brotted = QF - biinear (if biases exist)

Here, Q is an orthogonal matrix derived from PCA
method, ensuring that the transformation maintains the
representational capacity of the embeddings.



2. Slicing:
Wiced = Wrotated[: d/; :]

byliced = brotated|: d'] (if biases exist)

Where d’ is the new reduced dimensionality of the
output features, effectively pruning the less significant
components.

These steps ensure that the patch embeddings are pre-
pared for subsequent integration into the Vision Trans-
former where remaining blocks are rotated and sliced using
SliceGPT method described in Sec. 2.2.

3.2. Incremental PCA Computation

The original SliceGPT method used between 128 and
2048 samples from the training set of the calibration dataset
to calculate orthogonal matrices using PCA. However, there
is strong evidence validated in Sec. 4.4 suggesting that us-
ing the entire training dataset may result in a more ro-
bust PCA calculation. PCA aims to find directions (princi-
pal components) that maximize the variance in the dataset.
With more data, the calculated directions are more likely to
represent the true underlying patterns in the entire dataset.

However, the entire ImageNet 1k training dataset does
not fit into available RAM, which necessitates converting
the original SliceGPT PCA calculation to an incremental
PCA to manage memory usage effectively.

The PCA calculation algorithm used in SliceGPT is de-
tailed in Tab. 1.

Step  Operation

1 Load samples from dataset to inputs array

2 Use inputs array to calculate orthogonal matrix @
3 Rotate & prune embeddings

4 For each transformer block:

4.1. Rotate & prune attention input layer
4.2. Use inputs to compute attention outputs
4.3. Use attention outputs to calculate orthogonal
matrix @
4.4. Rotate & prune attention output layer
4.5. Rotate & prune MLP input layer
4.6. Use attention outputs to compute MLP outputs
4.7. Rotate & prune MLP output layer
5 Rotate & prune LM head layer

Table 1. SliceGPT PCA calculation algorithm

To address the memory constraints, the PCA calculation
in SliceViT was adapted to an incremental approach, as de-
scribed in Tab. 2.

3.3. Implementation Details

The implementation of this project is based on the
PyTorch Image Models provided by the repository avail-
able at https://github.com/huggingface/

Step  Operation

1

W

5

Calculate orthogonal matrix () using incremental PCA with
model inputs
Rotate & prune embeddings
Rotate & prune patch embeddings
For each transformer block:

4.1. Rotate & prune attention input layer

4.3. Calculate orthogonal matrix @ using incremental
PCA with attention outputs

4.4. Rotate & prune attention output layer

4.5. Rotate & prune MLP input layer

4.6. Calculate orthogonal matrix () using incremental
PCA with MLP outputs

4.7. Rotate & prune MLP output layer
Rotate & prune LM head layer

Table 2. SliceViT Incremental PCA calculation algorithm

pytorch-image-models. We integrated the SliceGPT
code from Microsoft’s Transformer Compression GitHub
repository at https://github.com/microsoft/
TransformerCompression/tree/main/src/
slicegpt into it to enable efficient pruning and valida-
tion operations.

The Vision Transformer model structure is crucial for

understanding how to apply the pruning algorithm. The
model structure is as follows:

VisionTransformer (

)

(patch_embed ): PatchEmbed/(
(proj): Conv2d(...)
)
(blocks): Sequential (
(0-11): 12 x Block(
(norml): LayerNorm (...)
(attn): Attention (
(gkv): Linear (...)
(proj): Linear (...)
)
(norm2): LayerNorm (...)
(mlp): Mlp(
(fcl): Linear (...)
(act): GELU(...)
(fc2): Linear (...)
)
)
)
(norm):
(head):

LayerNorm (...)
Linear (...)

The pruning algorithm is applied as follows:

1. Conversion of Patch Embeddings Convolutional
Layer to Linear Layer: The patch_embed.pro
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layer, originally a Conv2d layer, was converted into a
linear layer. This was necessary to allow for the appli-
cation of orthogonal transformations. The conversion
process is desribed in Sec. 3.1.

2. Fusing LayerNorm Operations: The centering and
scaling operations performed by LayerNorm in each
block were fused into adjacent linear layers to enable
the network pruning:

* The centering operation (mean subtraction)
was fused into the projection linear layers
(attn.proj and mlp.fc2) of the attention
and MLP blocks.

* The scaling operation (multiplication by learned
weights) was integrated into the input layers
(attn.gkvand mlp. fcl), as well as the final
classifier head (head).

3. Orthogonal Transformations and Pruning:

* Projection Layers: The projection linear lay-
ers patch_embed.proj, attn.proj, and
mlp.fc2 were rotated by pre-multiplying by
QT and pruned.

* Input Layers: Embedding layers cls_token
and pos_embed (not shown in the model
structure) and input linear layers attn.qgkv,
mlp.fcl, and head, were rotated by post-
multiplying by @) and pruned.

4. Model and Layer Adapters: SliceGPT pro-
vides plug-in model for pruning transformers. We
implemented ViT model and layer adapters in
CompressedBlock, VitModelAdapter, and
VitLayerAdapter within vit_adapter.py.
We modified layernorm_fusion.py to cen-
ter and scale ViIT specific embedding layers
and rotate.py to rotate and prune patch
embedding layer. We also implemented the
optimized.rotate_and.slice_sequential
function in rotate.py, which uses the Incremental
PCA calculation algorithm described in Sec. 3.2.

To validate the correctness of our fusion, rotation, and
pruning implementation, we performed pruning with 0%
sparsity on the Google ViT base model, which yielded ac-
curacies matching the baseline established in Sec. 4.3.

We used the CoreML Tools [12] Python framework to
convert PyTorch [16] models to CoreML format and mea-
sured runtime performance using the performance evalua-
tion tool built into Xcode.

4. Experimental Validation
4.1. Computing Environment

Our experiments were conducted using the Google Co-
lab platform. The specific configurations utilized were

NVIDIA Tesla T4 GPU with 15GB of GPU RAM for gen-
eral less resource-intensive tasks and NVIDIA A100 GPU
with 40GB of GPU RAM for more demanding computa-
tions and larger dataset processing needs.

Despite the sufficient hardware support, a notable limi-
tation of this computing environment was the performance
impact at the beginning of each session—a noticeable lag
was observed due to the time required to download neces-
sary dataset images from an attached Google Drive. This
was particularly evident when large volumes of data were
used.

4.2. Dataset

For the experiments conducted in this study, the Ima-
geNet 1k dataset [5] was utilized both for calculating PCA
and for evaluating model performance. Specifically, the
PCA was computed using the ImageNet 1k training dataset,
which consists of over 1.2 million images spanning 1000
different classes. This extensive dataset provides a compre-
hensive and diverse range of visual features necessary for
effective PCA computation.

Model evaluations were performed using the ImageNet
1k validation dataset, which includes 50,000 images. This
separate dataset ensures that the pruning method’s perfor-
mance is assessed on unseen data, providing a reliable mea-
sure of its generalization capabilities.

4.3. Baseline

For establishing a baseline performance, two types of
pre-trained Vision Transformer models provided by Google
were used. These models are available via PyTorch Image
Models as:

* Google ViT base:
vit_base_patchl6.224.0orig-in21k_ft_inlk

* Google ViT large:
vit_large_patch32_384.orig-in21k_ft_inlk

Accuracy Benchmarking

The baseline performance of these models was measured
in terms of top-1 and top-5 accuracy on the ImageNet 1k
validation dataset. The results are summarized in the table
below:

Model Acc@1 (%) Acc@5 (%)
Google ViT base, dense ~ 81.718 (18.282) 96.134 (3.866)
Google ViT large, dense  81.546 (18.454) 96.082 (3.918)

Table 3. Baseline accuracy results on ImageNet 1k validation
dataset

Performance Evaluation

Further, both models were converted to CoreML format
to assess their performance on an iPad equipped with an M2



processor. The evaluation focused on inference time, with
results detailed in the following table:

Model Inference Time (ms)
Google ViT base, dense 128.06
Google ViT large, dense 752.32

Table 4. Baseline performance results on iPad with M2 processor

These benchmarks establish a solid baseline for further
experiments applying SliceViT pruning method to these
models.

4.4. Impact of Data Volume on PCA Robustness and
Accuracy of Pruned Vision Transformers

To validate the assumption that using a larger dataset
might yield more robust PCA calculations as alluded to in
Sec. 3.2, we used the ImageNet 1k validation dataset for
both PCA calculation and accuracy evaluation. This ap-
proach was taken to gauge the potential upper bound of
accuracy when PCA is “overfit” to a specific dataset. By
calculating PCA with different subsets of this validation
dataset and subsequently evaluating accuracy on the same
dataset, we aimed to understand how variations in the PCA
input size affect model performance. The experiment in-
dicated that the more batches used in PCA calculation, the
higher the accuracy achieved, as summarized in Tab. 5.

Batch Configuration Acc@1 (%) Acc@5 (%)

1 batch, Dense
1 batch, 25%

10 batches, 25%
50 batches, 25%
75 batches, 25%

81.718 (18.282)
71.310 (28.690)
71.736 (28.264)
73.758 (26.242)
73.790 (26.210)

96.134 (3.866)
90.860 (9.140)
90.568 (9.432)
91.766 (8.234)
91.512 (8.488)

All 196 batches, 25%  77.078 (22.922)  94.396 (5.604)

Table 5. Accuracy results across different batch configurations

4.5. Using ImageNet 1k Training Dataset for PCA
Calculation

Despite the promising evidence presented in Sec. 4.4
suggesting that using more data for PCA computation
should result in higher accuracy of the pruned model, our
experiments with the entire ImageNet 1k training dataset,
which consists of 934 batches, did not yield better results
compared to using significantly fewer batches. Specifically,
using the entire dataset yielded the same level of accuracy
as using as few as 29 batches. The accuracy results are de-
tailed in the table below:

Please refer to Appendix A.1 where we explored poten-
tial reasons for this in greater detail.

Batch Configuration Acc@1 (%) Acc@5 (%)

29 batches 73.258 (26.742)  91.506 (8.494)
58 batches 73.272 (26.728) 91.534 (8.466)
116 batches 73.268 (26.732) 91.612 (8.388)
All 934 batches 73.266 (26.734) 91.524 (8.476)

Table 6. Accuracy results across different training batch configu-
rations when used with Random Sampler and 25% Sparsity Level

4.6. Effects of Different Sparsity Levels on Pruned
Model Accuracy

The impact of varying sparsity levels on the accuracy of
pruned Vision Transformer models was systematically eval-
uated. The results for both the Google ViT base and large
models with different sparsity levels are shown in Tab. 7.

Model and Sparsity Acc@1 (%) Acc@5 (%)

81.718 (18.282)
75.960 (24.040)
73.258 (26.742)

Google ViT Base, Dense
Google ViT Base, 20%
Google ViT Base, 25%

Google ViT Base, 30% 67.872 (32.128) 87.684 (12.316)
Google ViT Large, Dense  81.546 (18.454)  96.082 (3.918)
Google ViT Large, 20% 78.228 (21.772)  94.546 (5.454)

Google ViT Large, 25% 76.110 (23.890)
Google ViT Large, 30% 72.882 (27.118)

96.134 (3.866)
93.178 (6.822)
91.506 (8.494)

93.592 (6.408)
91.438 (8.562)

Table 7. Accuracy results for Google ViT models at various spar-
sity levels

To better visualize these findings, we plotted Fig. 2 that
helps to illustrate the trade-off between model compactness
and accuracy retention.

Accuracy vs. Sparsity for Vision Transformer Models
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Figure 2. The effect of sparsity on Acc@1 and Acc@5 for Google
ViT Base and Large models.



The Google ViT Large model consistently demonstrated
an ability to retain higher accuracy compared to the ViT
Base model under equivalent sparsity conditions. This can
be observed in the lesser decline of accuracy metrics as
sparsity increases. Moreover, the rate at which accuracy
decreases as sparsity levels increase is smaller for the ViT
Large model compared to the ViT Base model. This sug-
gests that the ViT Large model’s architecture is better at
coping with the loss of parameters.

These findings underscore the importance of model ar-
chitecture in the context of pruning. The inherent advan-
tage of having more weights allowed the ViT Large model
to handle reductions in model complexity more gracefully.

4.7. Effects of Different Sparsity Levels on Pruned
Model Runtime Performance

An analysis was conducted to evaluate the impact of
varying sparsity levels on the runtime performance of
pruned Google ViT Base and Large models. Measurements
focused on inference time reductions as a result of increased
sparsity.

Tab. 8 shows inference times and parameter counts for
models at different sparsity levels:

Model and Sparsity Parameters  Inference (ms)
Google ViT Base, 0% 86,529,256 128.06
Google ViT Base, 20% 78,136,872 122.63
Google ViT Base, 25% 73,768,552 120.11
Google ViT Base, 30% 68,374,392 119.62
Google ViT Large 0% 306,532,328 752.32
Google ViT Large, 20% 277,494,088 651.96
Google ViT Large, 25% 259,755,496 604.79
Google ViT Large, 30% 239,334,200 616.83

Table 8. Runtime performance and parameter counts for Google
ViT models at various sparsity levels

To better visualize the relationship between sparsity and
runtime performance, we plotted Fig. 3.

The analysis shows diminishing returns in runtime per-
formance gains when sparsity exceeds 25%. A possible ex-
planation is the effect of additional shortcut matrix multi-
plications in the network, which become more significant
as the model size decreases. These operations might off-
set the computational savings from reducing the number of
parameters as seen in Fig. 3, especially at higher sparsity
levels.

4.8. Effects of Different Sparsity Levels on Pruned
Model Efficiency Score

The efficiency of pruned models is quantified using an
efficiency score that integrates reductions in accuracy and
inference speed. This score helps to understand the trade-
offs between maintaining model accuracy and enhancing

Inference Time vs. Sparsity for Google ViT Models
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Figure 3. The effect of sparsity on inference time for Google ViT
Base and Large models.

operational efficiency through faster inference times. The
efficiency score is computed as follows:

Efficiency Score = v x (1 + f)

where « indicates how much accuracy pruned model retains
compared to the base model and 5 — reduction in inference
time. A higher score indicates a better balance of accuracy
retention and inference speed improvement.

Fig. 4 illustrates the variation of efficiency scores with
sparsity levels, highlighting the differences between the
Google ViT Base and Large models.
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Figure 4. The effect of sparsity on efficiency scores for Google
ViT Base and Large models.



The Google ViT Large model consistently demonstrates
superior efficiency scores across various sparsity levels
when compared to the Google ViT Base model. This pat-
tern indicates that larger models may possess a greater ca-
pacity to retain operational efficiency—even as significant
portions of their parameters are pruned.

4.9. Effects of Selective Transformer Blocks Prun-
ing on Model Accuracy

This section examines the impact of selective pruning
on the accuracy of Google ViT Base model, based on the
hypothesis that some transformer blocks may be more ro-
bust to pruning than others. We tested this by progressively
pruning both the initial (head) and final (tail) blocks of the
transformer to observe how it affects the model accuracy.
Head pruning hypothesizes that early transformer blocks
are more robust to pruning, and tail pruning assumes that
the last transformer blocks, responsible for understanding
higher-level concepts, may be more susceptible to accuracy
loss. The results are provided in Tab. 9 and Fig. 5.

Effect of Selective Pruning on Model Accuracy

Pruning Configuration Top-1 Acc (%) Top-5 Acc (%)

Baseline (Dense Model) 81.718 96.134
Head Pruning
Prune 0-6 blocks 80.418 95.502
Prune 0-7 blocks 79.398 95.000
Prune 0-8 blocks 77.654 94.224
Prune 0-9 blocks 75.768 93.260
Prune 0-10 blocks 73.776 91.962
Tail Pruning
Prune 11 block 81.178 95.818
Prune 10-11 blocks 79.280 94.778
Prune 9-11 blocks 77.224 93.746
Prune 8-11 blocks 75.830 93.056
Prune 7-11 blocks 74.958 92.650
Prune 6-11 blocks 74.320 92.194

Table 9. Accuracy results for selective pruning of Google ViT Base
model

This experiment yielded a few interesting observations:

* Pruning the first nine blocks (blocks 0-8) yields similar
accuracy (around 77% top-1) as pruning the last three
blocks (blocks 9-11) while allowing for the removal of
approximately 5 times more parameters.

* A more pronounced drop in accuracy is observed when
pruning beyond the 8th block, indicating that the 9th
block may be where the model begins to learn high-
level features and thus becomes less robust to pruning.

* An interesting observation is that pruning the first 8
blocks affects the top-5 accuracy by only 1% as op-
posed to 5% loss when pruning all 12 blocks, suggest-
ing that such pruning comes with minimal loss to top-5
accuracy, effectively being “almost free.”
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Figure 5. Plot showing the effects of head and tail pruning on
Google ViT Base model accuracy. As a starting point, note how
pruning the last 1 block yields the same top-1 and top-5 accuracies
as pruning the first 5 blocks.

5. Conclusions and Future Work

This study has demonstrated that the SliceViT method
of pruning yields notably higher efficiency for larger vi-
sion models, leveraging their extensive parameter sets to
maintain performance while achieving significant reduc-
tions in model complexity. Our experiments with selec-
tive pruning further underscore the nuanced potential of this
approach; particularly, pruning early blocks can substan-
tially reduce parameter counts with minimal impact on ac-
curacy, showcasing the method’s capability to fine-tune per-
formance trade-offs. For smaller models, where accuracy is
not the paramount concern, SliceViT provides an effective
means to improve inference speed, albeit at the expense of
greater accuracy loss. This trade-off highlights the impor-
tance of adjusting optimization strategies to specific appli-
cation needs.

Future investigations might explore pruning vision-
language models such as CLIP [17], ALIGN [13], and
Florence [19] using a combined approach of SliceViT and
SliceGPT. We believe it holds substantial promise. CLIP
models are designed to map both images and text into a
shared embedding space. This unique characteristic might
lend itself well to a pruning strategy aimed at maintain-
ing the alignment between these embeddings. Since both
modalities contribute to the same final task (contrastive
learning), the impact of pruning might be similar across
both pathways, allowing for consistent reductions in param-
eters without disproportionately affecting one side of the
model.
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A Appendix

A.1l. Impact of Training Data Volume on PCA
Robustness and Accuracy of Pruned Vision
Transformers

As mentioned in Sec. 4.5, using the entire training
dataset, which consists of 934 batches, for PCA computa-
tion yielded the same level of accuracy as using as few as
29 batches.

Moreover, the computation of () on the entire ImageNet
1k training dataset took approximately 60 hours on Nvidia
A100 compared to about an hour on Nvidia T4 when us-
ing 29 batches. This significant increase in computation
cost did not correlate with a proportionate improvement in
model accuracy.

The invariant accuracy observed across varying batch
sizes during PCA calculations may be attributed to the in-
trinsic properties and limitations of the PCA method when
applied to complex, high-dimensional data like images.
The initial gains in accuracy with small increases in batch
size suggest that a critical amount of variance is captured
quickly, which is essential for pruning efficiency. However,
as more data is added, the marginal increase in the captured
variance diminishes, possibly because the additional data
are highly correlated with what has already been captured or
because the added variance does not significantly influence
the principal components relevant for model performance.

This phenomenon can also be influenced by overfitting
during PCA computation. When PCA is calculated on the
entire training dataset, it might be overfitting to nuances in
the training data that do not generalize well to unseen data.
This overfitting could explain why the application of PCA
on the entire training set does not lead to better accuracy
compared to using a smaller, yet statistically significant,
subset of the training data.

To investigate whether overfitting during PCA computa-
tion impacts the efficiency of model pruning, an additional
experiment was conducted using a stratified sampling ap-
proach [15]. This method aimed to ensure that each batch
used for PCA calculation more evenly represents the en-
tire dataset, potentially avoiding the overfitting to specific
characteristics that might be prevalent in randomly selected
batches.

The stratified sampling technique was employed to select
batches for PCA computation, ensuring a diverse and rep-
resentative selection of the dataset’s variability. The exper-
iment was conducted with three different batch sizes, and
the results are summarized in the table below:

The results from the stratified sampling approach reveal
only marginal improvements in accuracy with increased
batch sizes, similar to the findings when using traditional
random sampling. This consistency across different sam-
pling methods and batch sizes suggests a fundamental lim-
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Batch Configuration Acc@1 (%) Acc@5 (%)

29 batches 73.146 (26.854) 91.512 (8.488)
58 batches 73.256 (26.744)  91.566 (8.434)
116 batches 73.352 (26.648) 91.534 (8.466)

Table 10. Accuracy results across different training batch configu-
rations when used with Stratified Sampler and 25% Sparsity Level

itation in the application of PCA for pruning Vision Trans-
formers. The marginal gains indicate that while PCA is ef-
fective at capturing major variations, its ability to leverage
incremental variance from larger or more diverse datasets is
limited.

This observation points to a potential ceiling effect
where the principal components derived from a subset of
the data are already capturing most of the critical informa-
tion necessary for the model. Further increase in data vol-
ume does not contribute significantly to discovering new or
more effective principal components that could enhance the
model’s performance post-pruning.



