
Solar Panel Detection on Satellite Images: From Faster R-CNN to YOLOv10

Stefan Elbl Droguett
Stanford Graduate School of Business

selbl@stanford.edu

Camila Nicollier Sanchez
Stanford School of Humanities and Sciences

camilans@stanford.edu

Abstract

In this report, we cover the end-to-end process of our
project that focuses on the detection of solar panels in satel-
lite images. We began by identifying and describing a mean-
ingful problem to solve using computer vision. Then, we
conducted a literature review to explore existing approaches
to similar tasks and their strengths and weaknesses. After-
wards, we conducted an Exploratory Data Analysis (EDA)
to gauge the quality of the chosen dataset and performed
data cleaning. Once the dataset was properly formatted,
we tried different methods to achieve our goal, starting with
a baseline model with a Mask R-CNN architecture, explor-
ing different Convolutional Neural Network (CNN) archi-
tectures and implementing the newly released and state-of-
the-art YOLOv10 model. We tuned the hyperparameters of
our models using the number of false positive and false neg-
atives in the Confusion matrix as our performance metric.
Finally, we present our Conclusions and Future work in the
last section.

1. Introduction
Our project focuses on identifying solar panels on satel-

lite images. Automating solar panel identification is a rel-
evant task in the context of renewable energies, where the
need to keep track of these installations has increased ex-
ponentially and solar developers have little to no tools to
quickly identify existing projects in a specific area. Our mo-
tivation to tackle this problem stemmed from one of the au-
thors, who interviewed over 150 relevant players in this ac-
tion space who constantly mentioned the need to keep track
of new renewable facilities online as an unsolved prob-
lem. That context made us consider the beneficial impact
of achieving a high performance on that task. To that end,
we applied different approaches and state-of-the-art archi-
tectures in order to obtain a high performance.

We used a dataset of satellite solar panel images from
Beijing, China [1], and we implemented both a Mask R-
CNN architecture and the CNN architecture embedded in
the You Only Look Once (YOLO) models [2] as the main

algorithms for our goal. Finally, our model’s output is an
image with a mask or bounding box and a confidence score
(according to the architecture) for the Solar Panel class that
we aim to identify in a satellite image.

2. Related Work
The existing approaches that are relevant to our work can

be grouped into 3 categories: Existing approaches for solar
panel detection in satellite images or similar tasks, Mask-
CNN Architectures, and YOLO models.

Within the solar panel detection in satellite images or
similar tasks category, we find an interesting approach in
SolarX: Solar Panel Segmentation and Classification [3],
which uses a UNet architecture [4] designed in 2015 to
process biomedical images. [3] provides a baseline for
us to compare what the object detection pipeline looked
like 2 years ago. The authors mention in their conclusion
that further exploration of different architectures is recom-
mended, which inspired us to use methods we describe in
further sections. Secondly, Deep-Learning-for-Solar-Panel-
Recognition project [5] also focuses on object detection
on solar panels and expands the dataset that we use by
adding 700 Google Maps images and manually labeling
their masks. The authors use the YOLOv5 architecture and
obtain more favorable results than [3]. We reference their
work for the metrics to measure performance in object de-
tection and instance segmentation. Since they published
their results, YOLOv9 and YOLOv10 were released. This
made us consider these new architectures as an even more
favorable venue for improvement. Finally, Object Detec-
tion in Autonomous Driving Vehicles [6] provided us with
another reference on how to use the YOLO architecture, in
this case, for a different type of task: autonomous driving.

For the second category, related to the Mask-CNN Ar-
chitecture, we referenced the original papers of the Faster
Mask-CNN [7] and the Mask-CNN [8] architectures. The
Faster Mask-CNN algorithm was state-of-the-art in 2015 as
it solved the region proposal computation bottleneck of ex-
isting object detection networks. Mask-CNN was released
in 2017 in order to perform object detection and instance
segmentation simultaneously. It achieved this by adding

1



Figure 1. Example images and their masks

a branch for predicting an object mask in parallel with
the existing branch for bounding box recognition in Faster
Mask-CNN. After familiarizing ourselves with these archi-
tectures, we decided to use Faster Mask-CNN as a baseline
model to compare with the state-of-the-art models in the fi-
nal category.

Finally, we explored YOLO architectures and their evo-
lution. We started by understanding the development time-
line of the YOLO models with A Comprehensive Review of
YOLO Architectures in Computer Vision: From YOLOv1
to YOLOv8 and YOLO-NAS [9]. We finished exploring the
series with the last 2 versions released: YOLOv9 in Febru-
ary 2024 [10] and YOLOv10 in May 2024 [11]. After this
review, we decided to use these two last versions as the core
methods for our tasks, as we understand that this is the cur-
rent predominant paradigm in object detection.

3. Dataset

We use a dataset of solar photovoltaic samples from
satellite and aerial photography taken in Beijing, China [1].
The dataset contains bitmap images collected at the spatial
resolution of 0.8m, 0.3m and 0.1m and the respective bit-
mask of the area in the picture that corresponds to the solar
panel (in case there is one). There are two main categories
of the data that correspond to the background in which the
panel is installed: Ground (and its subcategories of land
use: shrubwood, grassland, cropland, saline-alkali, and wa-
ter surface) and Rooftops (with its subcategories of roof ma-
terial: flat concrete, steel tile, and brick). The richness of the
dataset allows us to detect solar panels in a variety of set-
tings and thus increase the use cases of our model. Figure 1
provides examples of images in our dataset along with their
masks.

Our dataset contains 3480 images, where 2745 have a
ground background and 735 have a rooftop background. Ta-
ble 1 provides a breakdown of the number of images by the
specific type of background.

In the Exploratory Data Analysis, we first transformed
images and masks from bitmap format to .png with a reso-
lution of 256 x 256, and then sanitized the original dataset
by deleting images that did not contain a solar panel.

Ground Rooftop
Not Specified Not Specified

673 90
Cropland Flat Concrete

859 413
Saline Alkali Brick

352 138
Water Surface Steel Tile

625 94
Grassland

117
Shrubwood

119
Table 1. Number of Images by Background Type

3.1. Pre-processing for Mask-CNN baseline model

We applied the following task-relevant augmentations, in
order to increase robustness when training our Mask-CNN
baseline model:

• Resize to 50x50 pixels.

• Resize to 100x100 pixels.

• RandomPerspective with a distortion scale of 0.6 and
a probability of 1.0.

• ColorJitter with a brightness factor of 0.6 and a hue
factor of 0.3.

• GaussianBlur with a kernel size ranging from 5x5 to
9x9 pixels and a sigma ranging from 0.1 to 5.0.

We finally split the original dataset in the following train-
test split, by taking into account that the augmentations are
applied as part of the training process:

• Train: 3415 images

• Test: 65 images

3.2. Pre-processing for YOLO models

For training the YOLO models, we used the same dataset
that consists of 3480 images. It is important to note
that YOLO models include further augmentation processes
which we omit for brevity. The train-val-split is as follows:

• Train: 3360 images

• Validation: 90 images

• Test: 30 images

4. Methods
We explored 2 learning algorithms to perform our object

detection task. The first one is a Mask-CNN architecture,
and the second one is a current state-of-the-art technology

2



Figure 2. Faster R-CNN architecture (taken from [7]
)

for object detection YOLO architecture. Within the YOLO
series, we implemented YOLOv9 and YOLOv10 which are
the most recent versions released.

4.1. Faster Mask-CNN baseline model

As a baseline, we implement a Faster Mask R-CNN
architecture [7], following an official TorchVision tuto-
rial [12]. Faster Mask R-CNN builds upon the Fast R-
CNN framework by introducing Region Proposal Networks
(RPNs) that share convolutional layers with object detec-
tion networks such as Fast R-CNNs. As shown in Figure
2 from the original paper [7], the architecture begins with
a CNN that extracts feature maps from the input image.
Afterward, the algorithm uses a Region Proposal Network,
which is also composed of several convolutional layers, to
generate candidate boxes that undergo a Region of Interest
(RoI) pooling operation that extracts fixed-size feature maps
for each RoI. Finally, the extracted RoI features are fed into
a final classification layer that predicts a bounding box with
Class Probabilities for each class.

4.2. YOLO: You Only Look Once model series

The other learning algorithm we implemented is the
YOLO architecture. We chose this algorithm because of its
outstanding results and recent optimizations [13] that make
it the state-of-the-art model for objection detection. In con-
trast to other architectures that use a pipeline of multiple
models, YOLO is based on a single convolutional network
that performs both detection and classification. Moreover,
YOLO observes the entire image during both training and
prediction, which in turn leads to fewer background errors.

YOLO models segment the input image into a square
grid of S pixels. For each grid, the model predicts a fixed

number B of bounding boxes and for each bounding box
the model predicts: (i) the dimensions of the bounding box
represented by its center and the width and height of the
box relative to the entire image; and (ii) a confidence score
of how likely it is that the predicted box contains and object
as well as how accurate the box is. For multi-class settings,
each grid cell predicts the probabilities of each box con-
taining an object of a specific class conditional on the box
containing an object.

YOLO models combine three different types of losses
([14]), depicted below:

Total Loss = Loc Loss + Conf Loss + Class Loss (1)

Where:

Loc Loss =λcoord

S2∑
i=0

B∑
j=0

1obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2

+(
√
wi −

√
ŵi)

2 + (
√

hi −
√

ĥi)
2

]
(2)

Conf Loss =
S2∑
i=0

B∑
j=0

[
1obj
ij (Ĉij − Cij)

2

+λnoobj1
noobj
ij (Ĉi − Cij)

2
]

(3)

Class Loss =
S2∑
i=0

1obj
i

∑
c∈classes

(pi(c)− p̂i(c))
2 (4)

And:

• (xi, ji) predicted center coordinates of bounding box i
with ground-truth (x̂i, ĵi)

• (wi, hi) predicted width and height of bounding box i

with ground-truth (ŵi, ĥi)

• λk weight term to balance the loss in the event of k

• Cij predicted confidence score for grid-cell i and
bounding box j with ground-truth Ĉij

• 1k indicator function in case event k occurs

• pi(c) predicted probability of class c being present in
grid-cell i with ground-truth p̂i(c)

Having a holistic loss function that combines multiple
objectives helps YOLO to balance the accuracy of object
localization, confidence of object presence and correctness
of object classification.

3



During the project, we use the Ultralytics’ Python API
to implement YOLOv9. Because of how recent YOLOv10
was at the time of conducting our tests, there was no API
from the Ultralytics package. So we cloned the repository
of one of the authors of the pre-print of YOLOv10 [15].

4.2.1 YOLOv9

Building on the previously described architecture, YOLOv9
improves on its predecessors by addressing the information
bottleneck principle: as data passes through more networks
of a model, there is an increased potential for information
loss. By implementing Programmable Gradient Informa-
tion (PGI), introduced in the YOLOv9 paper that makes it
so the target task receives complete input information, the
authors argue that the impact of the bottleneck principle on
YOLOv9 is reduced compared to its counterparts. YOLOv9
also expands on the usage of reversible functions (functions
that can be inverted without loss of information) on its ar-
chitecture, which ensures a reduction in the loss of informa-
tion across layers. [10]

4.2.2 YOLOv10

YOLOv10 addresses two of the developers’ main critiques
with previous versions of the architecture: (i) computa-
tional redundancy which limits the model’s performance;
and (ii) the reliance on the non-maximum suppression (a
technique in object detection that eliminates duplicate de-
tections) for post-processing which impacts the inference
latency and limits the deployment of previous models. The
creators of YOLOv10 show that training without relying
on non-maximum supression along with multiple other ar-
chitectural improvements enhances the computational capa-
bilities of YOLO and achieves new state-of-the-art perfor-
mance [15].

5. Experiments and Results

5.1. Faster Mask-CNN baseline model

Figures 3, 4, 5, 6, 7 and 8 show the evolution of the dif-
ferent types of losses after training our baseline model for 6
epochs with the following hyperparameters:

• batch size = 1

• lr = 0.0005

• momentum = 0.9

• weight decay = 0.0005

• step size = 1

• gamma = 0.1

Figure 3. Overall Loss during training for 6 Epochs with 1820
iterations per epoch

Figure 4. Classifier Loss during training for 6 Epochs with 1820
iterations per epoch

Figure 5. Mask Loss during training for 6 Epochs with 1820 itera-
tions per epoch

We chose these hyperparameters after a manual process
of trial and error because they were the ones that resulted in
a reasonable loss decay over the iterations.

From the figures, we observe that the Overall Loss (Fig-

4



Figure 6. Box Regression Loss during training for 6 Epochs with
1820 iterations per epoch

Figure 7. Objectness Loss during training for 6 Epochs with 1820
iterations per epoch

Figure 8. RPN Loss during training for 6 Epochs with 1820 itera-
tions per epoch

ure 3), Classifier Loss (Figure 4), and Mask Loss (Figure
5) start at 5, 1.0, and 4.0 respectively. Then, they present a
strong decay by iteration 20 and afterward, they continue to
decrease at a slower pace. On the other hand, the Box Re-
gression Loss (Figure 6), Objectness Loss (Figure 7), and

Figure 9. Performance metrics for Epoch 1

Metric IoU Area Max Dets Bbox Segm
AP 0.5:0.95 All 100 0.115 0.086
AP 0.5 All 100 0.219 0.188
AP 0.75 All 100 0.109 0.065
AP 0.5:0.95 Small 100 -1.000 -1.000
AP 0.5:0.95 Medium 100 0.056 0.030
AP 0.5:0.95 Large 100 0.140 0.116
AR 0.5:0.95 All 1 0.208 0.184
AR 0.5:0.95 All 10 0.442 0.350
AR 0.5:0.95 All 100 0.548 0.412
AR 0.5:0.95 Small 100 -1.000 -1.000
AR 0.5:0.95 Medium 100 0.575 0.375
AR 0.5:0.95 Large 100 0.546 0.415

Table 2. Average Precision and Recall by IoU Metric, after training
for 6 epochs

Region Proposal Network Box Regression Loss (Figure 8)
start at 0.12, 0.06, and 0.01 and then present a much noisier
decay with fluctuations over iterations. This is the expected
behavior of the model and it is explained by the fact that we
are using an optimized model that is already good at identi-
fying Regions of Interest and doing inference on them, and
where the main components of the Overall Loss come from
the Classifier and Mask Losses, that are being learned from
the new dataset. We stopped the training process at 6 epochs
because the Losses did not decrease significantly in the last
epochs.

When testing the trained model’s performance on the test
set, we obtain the metrics presented in Table 5.1. We ob-
serve that, for the bounding box creation task, the model has
an Average Precision of 0.115 for IoU 0.5:0.95, with better
performance in IoU up to 0.5 (AP= 0.219) and for larger ob-
jects (AP= 0.140). Besides that, the Average Recall metrics
indicate that the model can correctly create a bounding box
for 55% of the solar panels in the images, when considering
a maximum of 100 detections per image.

Additionally, for the instance segmentation task, the Av-
erage Precision is lower for IoU 0.5:0.95 (AP = 0.086), and

5



we also observe better performance for IoU up to 0.5 (AP=
0.188) and for larger objects (AP= 0.116). In that sense,
the Average Recall values suggest that the model correctly
creates a segmentation mask for 41% of the solar panels in
the images, when considering a maximum of 100 detections
per image.

Finally, as a complement to the presented metrics, we
can find in Figure 9 some examples of the original images
and masks, together with the predicted masks and bounding
boxes in blue and red, respectively. The baseline model is
not as accurate as we need for this task. Even though it
could be further optimized, we decided to use it as a starting
point to increase performance with respect to it, with the
other approach that uses YOLO models.

5.2. YOLO: You Only Look Once model series

In this section, we present the best results obtained after
several iterations of different hyperparameters.

5.2.1 YOLOv9

When we started working on this project, YOLOv9 was the
latest version of the YOLO and, based on the documenta-
tion found in Ultralytics, we chose to implement the 2 most
suitable variants to our task: YOLOv9c and YOLOv9e[16]

• YOLOv9c: As mentioned in [16], the YOLOv9c
model, in particular, highlights the effectiveness of
the architecture’s optimizations. It operates with 42%
fewer parameters and 21% less computational demand
than YOLOv7 AF, yet it achieves comparable accu-
racy, demonstrating YOLOv9’s significant efficiency
improvements.
We trained our optimized model by setting the follow-
ing hyperparameters:

– batch size = 8
– lr = 0.01
– epochs = 30
– patience = 10

Figures 10 and 11 show our training results. In the first
figures, we observe a steady decrease in the train and
validation losses which indicates a good choice for the
learning rate and a healthy learning process. Addition-
ally, we observe that the model reaches a precision of
0.86 and a recall of 0.76 when taking into account the
number of objects detected. We also observe a mAP
0.5:0.95 of 0.69 which is highly superior to the one
obtained using Mask-CNN. Finally, analyzing the F1
score curve, the model achieves an F1 score of 0.82,
which suggests an overall good performance balance
between precision and recall.

Figure 10. Results obtained after training YOLOv9c for 30 Epochs

Figure 11. F1 curve obtained after training YOLOv9c for 30
Epochs

• YOLOv9e: YOLOv9e sets a new standard for large
models, with 15% fewer parameters and 25% less
computational need than YOLOv8x, alongside a in-
cremental 1.7% improvement in AP [16]. We trained

6



this model with the same hyperparameters mentioned
above, for 40 Epochs without early stopping. The re-
sults obtained are presented in Figure 12 and 13. In the
first graphs, we observe similar behavior of the losses
and a precision of 0.88 and a recall of 0.73, which is
slightly higher than the previous model. We also ob-
serve a mAP 0.5:0.95 of 0.74 which is, again, superior
to YOLOv9c. Finally, the model achieves an F1 score
of 0.86. In Figure 14, we observe an example of the
model predicting on the test set.

Figure 12. Results obtained after training YOLOv9e for 40 Epochs

Overall, we observe that with these hyperparameters
YOLOv9e achieves a sufficient performance for the task of
this project, which is superior to Mask-CNN baseline model
and YOLOv9c.

5.2.2 YOLOv10

During the development of our project, Ultralytics released
YOLOv10 on May 25, 2024. Our pursuit of state-of-the-

Figure 13. F1 curve obtained after training YOLOv9e for 40
Epochs

Figure 14. Predictions obtained with YOLOv9e trained for 40
Epochs

art performance led us to test its performance in our task
even though the official API had not yet been released. We
implemented the following 2 variants:

• YOLOv10x: This model is the extra-large version
and it is optimized for maximum accuracy and perfor-
mance [17]. It is important to highlight that we trained
this model for 26 epochs but we only present the re-
sults from the last 6, as we had to train it in multiple
incremental stages. The results obtained in the last 6
epochs are presented in Figure 15 and 16. In the first
graphs, we observe an oscillation of the losses which
is explained by the fact that we are only evaluating the
last 6. The overall trend for the losses is similar to that
presented in YOLOv9. In terms of precision and recall,
we obtained 0.88 and 0.82 respectively. These metrics
are better than those obtained with the YOLOv9 im-
plementations and we were able to achieve them with
only 26 epochs. We also observe a mAP 0.5:0.95 of
0.73 which is close to the YOLOv9e benchmark. Fi-
nally, the model achieves an F1 score of 0.84.

• YOLOv10l: It is important to mention that we also im-

7



Figure 15. Results obtained for the last 6 epochs, after training
YOLOv10x for 26 Epochs

Figure 16. F1 curve obtained for the last 6 epochs, after training
YOLOv10x for 26 Epochs

plemented the YOLOv10l variant, which is the large
version model for higher accuracy at the cost of in-
creased computational resources. We trained for 20

epochs and the results we obtained for this implemen-
tation were similar to the ones presented before for
YOLOv10x.

6. Conclusion and Future Work
We present multiple approaches to perform the task of

detecting solar panels in satellite images. As described in
the Methods and Results section, we chose to use a Faster
Mask-CNN architecture as a baseline and then explored the
YOLO models. For our task and dataset, YOLOv9e pre-
sented the best performance and suitability for the task.

We were also excited to implement YOLOv10 a few days
after its release and, even though we did not have enough
time to optimize it as much as we did with YOLOv9, we
believe that its results are very promising and should set the
base for future work, especially once the API is released
and initial bugs are corrected.

As [3] mentions, there are currently documented ap-
proaches that complete this task using U-Net architecture,
Faster Mask-CNN, and YOLO. However, there is still room
for exploration of other architectures such as Single Shot
MultiBox Detector [18] and RetinaNet [19].

7. Contributions and Acknowledgements
This research project builds on the strong base created

by the cited references and literature. Additionally, the code
for this project was created using the following existing li-
braries: numpy [20], matplotlib ([21]), seaborn ([22]), Ultr-
alytics ([10]) and boto3 [23].

Regarding the division of tasks among the teammates,
each one owned different workstreams, which came with
the responsibility of enforcing the respective deadlines and
we also worked together in weekly sessions. Although we
split the workload, we made sure to be involved with each
other’s tasks as a way to support and learn from each other.
Camila took charge of formatting the dataset for both Fast
R-CNN and YOLO models, training the YOLOv9e archi-
tecture, optimizing hyperparameters to use and constantly
looking for references for our project. Stefan set up the
AWS and Colab environments for training our models and
oversaw the training of the Fast R-CNN, YOLOv9c, and
YOLOv10 models.

References
[1] Liu Yujun Jiang Hou, Yao Ling. Multi-resolution dataset

for photovoltaic panel segmentation from satellite and aerial
imagery (v1.0), 2021.

[2] Ayush Chaurasia View RizwanMunawar, Glenn Jocher. Ul-
tralytics yolo. software, 2024.

[3] Ethan Hellman Spencer Paul, Rodrigo Nieto. Solarx: Solar
panel segmentation and classification. 2022.

8



[4] Thomas Brox Olaf Ronneberger, Philipp Fischer. U-net:
Convolutional networks for biomedical image segmentation.
arXiv preprint arXiv:1505.04597, 2015. Conditionally ac-
cepted at MICCAI 2015.

[5] Deep-learning-for-solar-panel-recognition. Technical report.

[6] Rui Chen Adil Sadik, Qianli Song. Object detection in au-
tonomou driving vehicles. Technical report, 2022.

[7] Ross Girshick Jian Sun Shaoqing Ren, Kaiming He. Faster r-
cnn: Towards real-time object detection with region proposal
networks. arXiv preprint arXiv:1506.01497, 2015. Extended
tech report.

[8] Piotr Dollar Ross Girshick Kaiming He, Georgia Gkioxari.
Mask r-cnn. arXiv preprint arXiv:1703.06870, 2017. Open
source; appendix on more results.

[9] Diana Cordova-Esparza Juan Terven. A comprehensive re-
view of yolo architectures in computer vision: From yolov1
to yolov8 and yolo-nas. Machine Learning and Knowledge
Extraction, 5:1680–1716, 2023.

[10] Hong-Yuan Mark Liao Chien-Yao Wang, I-Hau Yeh.
Yolov9: Learning what you want to learn using
programmable gradient information. arXiv preprint
arXiv:2402.13616, 2, 2024.

[11] Lihao Liu Kai Chen Zijia Lin Jungong Han Guiguang Ding
Ao Wang, Hui Chen. Yolov10: Real-time end-to-end object
detection. arXiv preprint arXiv:2405.14458, 2024.

[12] Torchvision object detection finetuning tutorial. Technical
report.

[13] Khwab Kalra. Yolo: A state-of-the-art object detection
model, 2023. Medium.

[14] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection, 2016.

[15] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jun-
gong Han, and Guiguang Ding. Yolov10: Real-time end-
to-end object detection. arXiv preprint arXiv:2405.14458,
2024.

[16] Chien-Yao Wang and Hong-Yuan Mark Liao. YOLOv9:
Learning what you want to learn using programmable gra-
dient information. 2024.

[17] Lihao Liu et al. Ao Wang, Hui Chen. Yolov10:
Real-time end-to-end object detection. arXiv preprint
arXiv:2405.14458, 2024.

[18] Dumitru Erhan Christian Szegedy Scott Reed Cheng-Yang
Fu Alexander C. Berg Wei Liu, Dragomir Anguelov.
Ssd: Single shot multibox detector. arXiv preprint
arXiv:1512.02325, 2016.

[19] Ross Girshick Kaiming He Piotr Dollár Tsung-Yi Lin,
Priya Goyal. Focal loss for dense object detection. arXiv
preprint arXiv:1708.02002, 2017.

[20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van

Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–
362, September 2020.

[21] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007.

[22] Michael L. Waskom. seaborn: statistical data visualization.
Journal of Open Source Software, 6(60):3021, 2021.

[23] Amazon Web Services. Boto3 documentation. https:
//boto3.amazonaws.com/v1/documentation/
api/latest/index.html, 2024.

9

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

	. Introduction
	. Related Work
	. Dataset
	. Pre-processing for Mask-CNN baseline model
	. Pre-processing for YOLO models

	. Methods
	. Faster Mask-CNN baseline model
	. YOLO: You Only Look Once model series
	YOLOv9
	YOLOv10


	. Experiments and Results
	. Faster Mask-CNN baseline model
	. YOLO: You Only Look Once model series
	YOLOv9
	YOLOv10


	. Conclusion and Future Work
	. Contributions and Acknowledgements

