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Abstract
Colorectal cancer is the second deadliest cancer in the

U.S [6]. Effective treatment of cancers such as colorec-
tal cancer (CRC) is limited by the intrinsic heterogeneity
of tumors, particularly between patients. Understanding
the heterogenous distribution of cell types within tumors is
an important clinical problem in developing personalized
treatment options. Towards this goal, spatially-resolved
transcriptomics (SRT) has emerged as an important method
for visualizing the spatial distribution of RNA transcripts
within tissues and cells, thus allowing for cell-type identifi-
cation.

Our project aims to improve upon the existing method-
ology of the SpaGCN model, which integrates spatial tran-
scriptomics and gene expression data along with histology
images to predict clusters within tissue samples. In addi-
tion to a baseline model that harnesses SpaGCN for CRC
tumor tissue clustering, we implement several downstream
extensions that improve upon SpaGCN: (1) modifying the
loss function by harnessing a JS Divergence rather than
KL Divergence, (2) implementing a distance decay function
for the weight of pixel values in histology images, and (3)
integrating pathologist annotations into a semi-supervised
learning model.

We find that our JS Divergence models outperforms or
perform equivalently to SpaGCN on 7/14 samples, and our
distance decay function outperforms or perform equiva-
lently on 4/14 samples, demonstrating improvement over
the baseline and potential for expansion to additional ar-
chitectural modifications.

1. Introduction

Colorectal cancer tumors can exhibit significant genetic,
epigenetic, and morphological heterogeneity, making per-
sonalized treatment difficult and leading to drug resistance.
Further, it is extremely time- and cost- intensive to identify
heterogenous components manually via methods such as
pathologist annotation of cell types. Thus, automatic iden-
tification of differential expression of genes or pathways in
tumor microenvironments (TME) is an important problem

that remains to be solved in cancer treatments.
One emergent method that can be applied towards

solving this problem is spatially-resolved transcriptomics
(SRT), which enables the localization of RNA transcripts
within spatial domains such as tissue samples [4]. Through
methods such as next-generation sequencing (NGS), one
is able to precisely identify coordinates for transcriptomic
data obtained from existing methods such as single-cell
RNA sequencing (scRNA-seq). Knowing the exact location
of differential gene expression is important towards target-
ing specific genes or pathways in treatment development.

In approaching this problem, Hu et al. developed
SpaGCN, a multimodal graph convolutional network that
integrates three data components: (1) gene expression data,
(2) spatial location of gene expression, and (3) histology
images (microscopic images of disease tissues) [3]. We fur-
ther describe the architecture for SpaGCN below. SpaGCN
harnesses a clustering algorithm to identify clusters of sim-
ilar spots within the histology images, each of which cor-
responds with certain differential gene expression. In order
to identify these genes, SpaGCN also enables identification
of spatially-variable genes (SVGs) expressed within each
cluster.

We harnessed SpaGCN as a baseline to identify spatial
clusters for 14 colorectal cancer tumor samples. SpaGCN
trains on a single sample at a time. The inputs to our model
were spatial gene expression data in the form of a matrix
indicating gene expression at every location in the histol-
ogy image, along with the histology image itself. Apply-
ing SpaGCN resulted in several spatial clusters, where each
location or spot in the histology image is assigned to a do-
main. Downstream, these domains assignments are used to
identify spatially-variable genes associated with each clus-
ter, essentially indicating which genes of interest are most
expressed in each cluster.

Following our baseline, we implemented several im-
provements to the SpaGCN model, which are described in
close detail in Methods. For our first extension, we aimed
to modify SpaGCN’s vision component, which calculates
similarity of locations by comparing pixel values. We im-
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plemented a distance decay function that weights pixel val-
ues based on how far away they are from the current loca-
tion. At a high level, our second extension involved mod-
ifying the loss function to harness Jensen-Shannon Diver-
gence rather than Kullback-Leibler Diveregence. Lastly, we
also trained a semi-supervised learning model to incorpo-
rate pathologist annotations of each location as a “ground
truth.”

2. Related Works
Previously, Wang et al. showed the importance of chart-

ing TME for colorectal cancer using SRT, given the degree
of heterogeneity uncovered [7]. Here, we discuss additional
previous works in related domains.

Hunter et al. harness SRT to identify an “interface”
where melanoma tumor cells contact neighboring tissues;
they succesfully demonstrate enrichment in cilia genes and
proteins at the tumor boundary, which could be targets for
melanoma treatment development [4]. For CRC specifi-
cally, Wood et al. evaluated SRT data, finding enrichment
of immune cell populations (regulatory T cells and neu-
trophils) in patients with poor prognoses, demonstrating the
significant clinical relevance of this type of analysis [8].
One exemplary paper in this category is that of Valdeolivas
et. al, who harness SRT data for CRC to cluster cell popu-
lations within tumor slices, making use of SRT data as well
as histology image slices [6]. Valdeolivas et al., unlike their
peers, perform cell-type clustering based on gene expres-
sion, comparing these clusters with pathologist annotations
of tumor components, thus inspiring our use of pathologist
annotations as described in Methods below [6].

However, one limitation of the previous papers is that
they do not harness deep learning or computer vision meth-
ods to analyze the images themselves in conjunction with
SRT data. As discussed by Toninelli et al., it is impor-
tant to harness both SRT data and image data, as image-
based algorithms perform clustering based on segmentation
of cell or nuclear boundaries, but physical features alone
are not enough to identify complex cell-to-cell interactions
[5]. Conversely, computer vision/deep learning methods
have the potential to identify patterns in gene expression or
physical features that are important towards understanding
differential gene expression patterns at various locations.

In this vein, various architectures have begun to emerge,
such as SpaGCN from Hu et al. as mentioned above [3].
Similarly, Xu et al. develop SPACEL, a deep learning-
based architecture for spatial domain identification harness-
ing a similar graph convolutional network approach [9].
Though this is a similar SOTA approach, SPACEL’s sequen-
tial modularity can be a limitation, with distinct modules
for handling cell type deconvolution, spatial domain iden-
tification, and 3D alignment. Additionally, SPACEL fo-
cuses on a different task, constructing 3D tissue architec-

tures, while SpaGCN is tailored towards identifying spatial
domains within individual histology images.

Zhao et al. also introduce TransformerST, a model har-
nessing a transformer architecture to discern latent image-
gene representations, using multi-head attention to build a
spatial graph from the feature set [1]. One strength of Trans-
formerST is that it achieves super-resolved gene expression
without scRNA-seq data; however, it also has a much larger
computational overhead than SpaGCN, and is better suited
for tasks with larger/more complex datasets.

Uniquely, Fatemi et al. harness Inceptionv3 to predict
gene expression from local histology image patches; how-
ever, this presents a separate prediction task that could be
an interesting exploration if we did not have access to gene
expression data already [2]. Finally, Xu et. al also intro-
duce SEDR, harnessing a deep autoencoder along with self-
supervised learning for the same task as Zhao et al., Xu et
al., and Hu et al.; though they achieve good latent represen-
tations, these are solely based off of SRT data, and do not
harness histology images in a computer vision sense [10].

3. Methods
For our baseline, we use SpaGCN to cluster spots into

spatial clusters and generate spatially-variable genes within
each domain. Relevant to our ablation tests, this baseline
model uses just the Kullback-Leibler Divergence as the loss
function with an averaging window to capture the 3rd di-
mension of the histological (image) information.

3.1. Histology Image Averaging Modifications

In the original SpaGCN paper, the authors use a Graph
Convolutional Network (GCN) which naturally entails the
construction of an undirected weighted graph G = (V,E)
(where each vertex v ∈ V is a spot) for their spot data,
which comes in the form of gene expressions and a his-
tology image [3]. This graph is fully connected, and the
weights on the edges between any two vertices in V is cal-
culated based on the physical locations as well as the his-
tological information of the two vertices. The weights are
meant to measure "the degree of relatedness between spots
u and v and is negatively associated with their distance" [3].

The physical locations are used to determine how far the
spots are from each other, while the histological informa-
tion is used to capture the differences in the average RGB
values around a spot, i.e. how much one spot’s surrounding
image window differs visually from another’s. This averag-
ing involves constructing a square window (with the center
pixel being the spot they are creating the representation for)
and calculating the mean of the RGB values. This is analo-
gous to average pooling, but without a sliding window. In-
stead, the window is centered on each individual spot. Im-
portantly, this means that an pixel at the top left is weighted
the same as a pixel right next to the center pixel.
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Thus, we concerned ourselves making modifications
to the histological information when calculating the edge
weights of G, because this measurement is not punishing
the distance pixels are from the central spot. A key assump-
tion of spatial transcriptomics analysis is that spots or cells
closer to each other should have a greater affect on neigh-
boring biological processes. This phenomena is not cap-
tured in the current integration of histological information,
thus we propose an alternative averaging of this window.
Specifically, we propose a square root decay for this win-
dow to penalize the influence of spots that are further away.

We wanted the window to scale to the quality of the im-
age, so that the window would better capture the physical
distance between the spots, since, for example, the distance
between pixels for an image with an area of 100 pixels and
an image with 10000 pixels, where both images capture
the exact same real-world area, differs significantly. So,
we defined a "spotlight of interest" such that the area of
this circular spotlight is approximately 0.3% the area of the
entire histology image. Any pixels outside of this "spot-
light" would not contribute to the pixel at the center, i.e. the
weight of these outer pixels would be 0. This was chosen
so that the area of the inscribed square (our alternative win-
dow) would have approximately 0.2% the area of the entire
histology image. The math for this can be seen in the Ap-
pendix. Within this spotlight, the further away from the cen-
ter of the circle a point is, the less weight is assigned to its
RGB values when determining the average, where the min-
imum and maximum weights are 0 and 1. This allows for
distance within the image window itself to be captured and
downweighted appropriately. This also allows for the in-
scribed square to have a sidelength of n = 85, whereas the
suggested window size in the SpaGCN paper had a side-
length of n = 50 [3]. We included this sidelength as a
hyperparamter for our model, beta, but having a sidelength
larger than the slidelength of the inscribed square is not ad-
vised, since the outer pixels would then have a weight of
0.

The formula for the weight of pixel pi using decaying
average is as follows:

Di =
r

1
2 − ||ps, pi||

1
2
2

r
1
2

(1)

where r is the radius of the "spotlight of interest," ps is the
center pixel (the spot), and the distance metric is L2 dis-
tance. To get the alternative decaying average of a window,
we sum up all of the weighted pixels,

∑n2

i Dipi and di-

vide by the the sum of the weights (to normalize),
∑n2

i Di,
where n2 is the total number of pixels in the window.
3.2. Loss Function Modifications

In the original SpaGCN paper, the authors used
Kullback-Leibler (KL) Divergence as their loss function.
This is because SpaGCN conducts an unsupervised cluster-

ing task, so they iteratively constructed 2 distributions for
each spot and passed them into KL Divergence [3]. The
predicted distribution q is constructed as follows:

qij =
(1 + hi − µ2

j )
−1∑K

j′ (1 + hi − µ2
j )

−1
(2)

where qij is the predicted probability of assigning spot i to
cluster j, hi is the embedding of spot i and µj is centroid
µj [3]. The target distribution p is constructed as follows:

pij =

q2ij∑N
i′ qi′j∑K

j′
q2ij∑N
i′ qi′j

(3)

Note that p is constructed from q [3].
For background, KL Divergence of two probability dis-

tributions pi and qi for a single spot i is as follows:
DKL(pi, qi) =

∑
j∈K

pij log(
pij
qij

) (4)

where K is all possible clusters and pij /qij is the proba-
bility of spot i being in cluster j for pi/qi respectively. KL
Divergence of p and q measures how different q is from p,
where the minimum value is 0 (if p = q) and the maximum
is ∞ (for example, consider an arbitrary qij ≈ 0) [11]. The
specific loss function they use is:

LKL = DKL(P,Q) =

N∑
i

K∑
j

pij log(
pij
qij

) (5)

where N is the # of spots, both P and Q are the probabil-
ity distributions p and q, respectively, for all N spots, and
everything else is as defined previously. The dimensions of
both P and Q are NxK. Importantly, the authors frame qi
as the predicted distribution and pi as the target or "ground-
truth" distribution for a spot i, and thus want to improve qi
(the predictions) by shrinking its differences from pi.

Jensen-Shannon Divergence Our modification involved
changing this loss to Jensen-Shannon (JS) Divergence. For
background, JS Divergence of two probability distributions
pi and qi for a single spot i is as follows:

DJS(pi, qi) =
1

2
(DKL(pi,mi) +DKL(qi,mi)) (6)

mi =
1

2
(pi + qi) (7)

JS Divergence measures the similarity between pi and qi
using the mixture distribution of the two probability distri-
butions, mi, by averaging the KL dDvergence of the two
distributions with mi. For JS Divergence, the minimum
value is 0 (if p = q) and the maximum is 1 [11]. In this
way, JS Divergence instead frames both pi and qi as both
predictions and ’ground-truth’ targets.

We decided to modify the architecture in this way, be-
cause, as noted above, the construction of pi doesn’t come
any ground-truth information (since this is unsupervised
learning). Thus, we thought treating both pi and qi as tar-
get distributions, in a sense, could inform a better clustering
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than assuming pi to be the true distributions of the spots into
various clusters. We define the JS Divergence loss function
to be:

LJS = DJS(P,Q) =

N∑
i

DJS(pi, qi) (8)

where everything is as defined previously. In general, we
define LD to be the loss term responsible for the specific
Divergence measurement. Thus, LD ∈ {LKL, LJS}

3.3. Semi-Supervised Learning: Pathologist Anno-
tation

The baseline model relies completely on unsupervised
learning to cluster the SRT data into spatial clusters. How-
ever, our dataset also contains pathologist annotations label-
ing each spot with the tissue region at that location. These
annotations show that certain cell types and regions cluster
with other cell types and regions in a spatially dependent
manner. In the real world, there are often some patholo-
gist annotations of tumor slices available to reference when
analyzing the heterogeneity of tumors. In order to capture
this additional information in our model, we modified the
SpaGCN architecture to have the option of using pathologist
annotations during training in a semi-supervised manner.

Using the pathologist annotations as the ground truth la-
bels for each spot, we added an additional cross entropy
loss to LD capturing the unsupervised learning. We as-
sumed that within a given cluster, each spot’s annotation
can be drawn from the same probability distribution. Thus,
given K spatial domains identified by SpaGCN, we cre-
ate k-dimensional logit vectors for each spot by counting
the abundance of each type of annotation within that spatial
cluster. Our semi-supervised loss function follows as such,

LS = LD + CE = LD −
∑M

i=1

∑K
j=1 log(

esl∑K
z esz

)(9)
Where M is the number of labeled samples,sz is the count
of annotation type z, with l being the positive annotation
class, and everything else is as defined previously.

4. Dataset and Features
At a high level, our dataset consisted of 14 samples of

tumors from colorectal cancer patients (7 patients, 2 sam-
ples per patient). The average image resolution was 1973
x 1985. These samples were obtained from the paper by
Valdeolivas et al., who made their data publicly available
[6]. Each of the 14 samples consisted of an annotated data
matrix mapping gene expression data to “spots,” which are
essentially spatial locations. These spots are defined by
10x Genomics VISIUM, a spatial transcriptomics technol-
ogy outputting a mapping from genes to spatial locations.
Each spot has an associated coordinate in the histology im-
age, and gene expression for each gene is defined in the
matrix at every spot (Figure 1). Along with this matrix, we

Figure 1: Spatial transcriptomics data. D can be in 2 or 3
dimensions

had access to all 14 original histology images of the tumors
(Figure 2a). Lastly, we also had access to annotations made
by a pathologist for every spot defining which tissue region
each spot belongs to (Figure 2b).

(a) Tumor slice imaged on H&E
stained slide

(b) Tumor slice overlayed with
pathologist annotations

Figure 2: Histology Input Data

We took several preprocessing steps for our data. First,
we filter out cells that have fewer than 200 genes detected,
as low gene counts are often indicative of dead of poor-
quality cells that simply introduce noise. Next, we filtered
out genes that are detected in fewer than 3 cells, as genes
that are not widely expressed are likely not biologically rel-
evant, and similarly only function to introduce noise into the
detection of spatially variable genes. We then proceeded to
normalize the gene expression matrix, where gene expres-
sion is indicated by counts of mRNA transcripts for a gene.
We normalized the counts to sum to 10,000 to account for
variations in sequencing depths between cells, and finally
applied a log normalization to make the data normally dis-
tributed and account for variance.

5. Experiments/Results/Discussion
First, we performed hyperparameter selection using grid

search for the hyperparameters defined in Table 1 below.
‘s’ is a hyperparameter defined by SpaGCN controlling the
relative importance of histology information. ‘beta’ defines
the side length of an image patch used to calculate z, the 3rd
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Hyperparameter Name Grid Search Values
s [0.5, 1.0, 1.5, 2]

beta [25, 35, 45, 50, 55, 65, 75]
p [0.5, 1]

init [’louvain’, ’kmeans’]
resolution [0.2, 0.4, 0.6, 0.8, 1.0]

num neighbors [5, 10, 15, 30, 50, 70, 90]
num clusters [5, 9, 11, 13, 15]
learning rate [1e-2, 1e-3, 1e-4]
weight decay [0, 1e-1, 1e-3, 1e-5]

Table 1: Hyperparameters used in grid search

dimension from histology, as described in Methods above.
‘p’ is the percentage of total expression controlled by the
neighboring domains. ‘init’ defines whether K-means or
the Louvain method are used for clustering; if Louvain is
used, ‘resolution’ defines how fine-grained the clusters are
and ‘num neighbors’ defines whether a more global or local
structure is captured. if K-means is used, ‘num clusters’ de-
fines how many clusters should be created. Finally, learning
rate and weight decay (for the optimizer) maintain their tra-
ditional definitions. This grid search was conducted on the
baseline model, but these hyperparameters were used across
all model types due to compute/time constraints.

For our evaluation metrics, we primarily used Adjusted
Rand Index (ARI) to evaluate the clustering and Moran’s I
(M.I.) to evaluate the SVG generation. ARI measures agree-
ment between predicted clusters and ground truth clusters;
for our purposes, we defined ground truth using the pathol-
ogist annotations of tumor subregions. ARI ranges from a
scale of 0 to 1. Moran’s I is a metric for evaluating spatial
autocorrelation, measuring how similar or dissimilar spots
are to neighboring spots. Moran’s I ranges from -1 (perfect
dissimilarity) to 1 (perfect similarity). We used Moran’s I
to evaluate the extent of spatial autocorrelation of gene ex-
pression at spots, thus validating our selection of spatially-
variable genes.

The Adjusted Rand Index (ARI) is calculated by first cal-
culating the rand index (RI) and then applying an adjust-
ment:

RI =
TP + TN

TP + FP + FN + TN
(10)

ARI = RI − E[RI]
max(RI)

− E[RI] (11)

where (let P = predicted clustering and GT = ground truth
clustering):
TP: True Positives (# of pairs of elements in the same clus-
ter in both P and GT).
TN: True Negatives (# of pairs of elements not in the same
cluster in both P and GT).
FP: False Positives (# of pairs of elements in the same clus-

ter in P but not in GT).
FN: False Negatives (# of pairs of elements not in the same
cluster in P but in GT).

For Moran’s I (M.I.):

M.I. =
N

∑
i,j(xi − x̄)(xj − x̄)∑

i,j dij
∑

i(xi − x̄)2
(12)

where:
xi and xj : Gene expression values at spots i and j.
x̄: Mean gene expression value across all spots.
dij : Distance between spots i and j
N : Total number of spots.

We performed ablation tests, training a model for every
combination of model extension described in the Methods
section. These results are displayed below, with Table 2
showing the ARI for generated clusters for each sample and
Table 3 showing the average Moran’s I for each gene iden-
tified as an SVG per sample. Visually, we can see the simi-
larities between the clusters generated by the best model for
each sample and the ground truth pathologist annotations in
Figure 3. We can also see the average Moran’s I for each
cluster for every sample across model types in Figure 4.

ARI by Model Type
Sample KL, avg. KL, decay JS, avg. JS, decay

1 0.297 0.304 0.306 0.300
2 0.261 0.302 0.270 0.284
3 0.101 0.101 0.101 0.101
4 0.140 0.136 0.138 0.139
5 0.210 0.211 0.236 0.226
6 0.413 0.261 0.412 0.262
7 0.217 0.210 0.217 0.217
8 0.288 0.287 0.303 0.300
9 0.342 0.209 0.339 0.205
10 0.302 0.297 0.303 0.298
11 0.234 0.158 0.238 0.187
12 0.180 0.170 0.152 0.177
13 0.456 0.462 0.456 0.462
14 0.278 0.248 0.251 0.244

Table 2: Comparison of ARI (Adjusted Rand Index) for dif-
ferent model types. Best model for each sample bolded.
KL = Kullback-Leibler Divergence, JS = Jensen-Shannon
Divergence, avg. = average pixel weight function, decay =
distance decay weight function. Refer to Appendix for sam-
ple names corresponding with sample numbers (Table 4).

Of note is that we exclude results from the extension of
semi-supervised learning with pathologist annotations, as
these ARIs and M.I.s were largely the same when including
pathologist annotations as without. However, upon analy-
sis, this can be attributed to the goal of the pathologist an-
notations’ loss term. Unfortunately, from our debugging,
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Figure 3: Best model clustering results compared to ground truth annotations for all 14 samples
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(a) KL Divergence loss with avg. pixel weight (b) KL Divergence loss with distance decay pixel weight

(c) JS Divergence loss with avg. pixel weight (d) JS Divergence loss with distance decay pixel weight

Figure 4: Average Moran’s I for each cluster within samples for all 4 model types

we realized that the membership of clusters did not vary
much between iterations of training from the initially gen-
erated ones during the initialization step (either Louvain’s
method or K-means). This means that spots typically got
assigned a cluster to begin with and stuck to them. Thus,
it was difficult for the cross entropy loss for the pathologist
annotations to impact the model, since that loss term would
be pretty much the same value from the starting to ending
iteration of the training step. Thus, this added loss term
did not have a recognizable impact on our various models.
However, the domain knowledge gained from being able to
add an experts annotations into a clustering model is still an
important biological insight that biological clustering mod-
els should have but that is currently lacking in the field. Our
proposed method, though ineffective due to our choice of
baseline model, could still be generalized and applied to
other unsupersived biological methods where some domain
expert annotations may exist.

As shown quantitatively, the JS Divergence loss outper-
forms or performs equivalently on 7/14 samples on the clus-
tering task, and on 6/14 samples on the SVG generation
task, indicating significant improvement over the baseline
KL Divergence. We believe that this can largely be at-

tributed to a more nuanced approach for the two probability
distributions generated iteratively during training, since we
no longer assume that exactly one of them is the target, or
"true," distribution and the other is just the predicted distri-
bution.

Further, the distance decay pixel weighting function
demonstrated improvement on 4/14 samples on the cluster-
ing task and on 5/14 samples on the SVG generation task,
indicating its ability to provide a better metric for incorpo-
rating image data into this multimodal model. Biologically,
this is intuitive given spatial autocorrelation of genes, as one
would expect cells that are spatially correlated to express
similar genes and have similar function.

We visualize the generated clusters against the ground
truth annotations for all samples in Figure 4. Qualitatively,
can see that while the generated clusters are not as granular
as the pathologist annotations, they are generally separated
along the same boundaries for many samples. For exam-
ple in SN048_A121573_Rep2, pathologists identify differ-
ential regions along the outside of the tumor slice versus in
the inner portion. The outputted SpaGCN clusters follow a
similar delineation with clear separation of spatial domains
into ones that fall towards the edges of the tumor slice ver-
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Moran’s I by Model Type
Sample KL, avg. KL, decay JS, avg. JS, decay

1 0.388 0.385 0.377 0.376
2 0.309 0.339 0.321 0.349
3 0.290 0.286 0.290 0.286
4 0.265 0.259 0.255 ——-
5 0.280 0.276 0.268 0.256
6 0.370 0.339 0.365 0.348
7 0.404 0.420 0.385 0.422
8 0.358 0.365 0.356 0.362
9 0.338 0.353 0.339 0.351
10 0.480 0.474 0.480 0.474
11 0.321 0.424 0.324 0.402
12 0.229 0.230 0.245 0.229
13 0.339 0.337 0.339 0.337
14 0.455 0.447 0.375 0.447

Table 3: Comparison of Moran’s I for different samples.
Best model for each sample bolded. Sample 4 for JS, decay
excluded due to SpaGCN architecture error. Refer to Ap-
pendix for sample names corresponding with sample num-
bers (Table 4).

sus ones that fall towards the inner portion.
On the other hand, the SpaGCN generate clusters for

SN048_A416371_Rep1 struggled to match the pathologists
annotations, with an ARI of 0.101. This is likely becacuse
this sample had very busy ground truth annotations without
many clearly separated regions, a level of granularity that
SpaGCN is not able to cluster to.

In examining the SVGs, we can see a high average
Moran’s I for sample SN123_A938797_Rep1 of 0.480 for
KL loss with average pixel weighting. Upon qualita-
tive examination of the clusters for this sample, we can
see that there are distinct subregions, which biologically
would correlate with distinct cell types and a high spa-
tial autocorrelation. For one of the lowest Moran’s I sam-
ples, SN048_A416371_Rep2 for JS loss with average pixel
weighting, we can see that there is more intermingling of
the generated clusters, which we would expect to have a
lower spatial autocorrelation.

For further downstream biological analysis, we chose
sample 9 (SN123_A798015_Rep1) that had both a high
ARI of 0.342 and a high Moran’s I of 0.356. A visual in-
spection shows that the generated clusters are able to differ-
entiate between connective tissue annotated regions towards
the right and epithelium regions towards the left. Based on
the heatmap in Figure 5, we can see that cluster 1 strongly
houses squamous epithelium cells while cluster 6, 7, 8 show
high amounts of lamina propia (type of connective tissue)
and mixtures of connective tissue and fibroblasts. From
these findings we can see that connective tissue cells seem
to have high spatial correlation. These types of cells are of-

Figure 5: Heatmap of the proportion of different tumor re-
gions in generated clusters for sample 9

ten associated with cancer metastasis and further character-
ization into these initial patterns could lead to a greater un-
derstanding of the mechanisms of cancer proliferation and
how this can inform treatment.

6. Conclusion/Future Work

Identifying tumor subregions is an important problem
in treating heterogenous cancers such as colorectal cancer.
Further, state-of-the-art methods such as spatially resolved
transcriptomics could benefit from integration with deep
learning or computer vision methods. Utilizing SpaGCN as
a baseline, we demonstrate success in making architectural
modifications that show improvement in both cluster gener-
ation and detection of spatially-variable genes. Our modifi-
cations specifically focus on image data, involving incorpo-
rating distance decay pixel weighting and a JS Divergence
loss function harnessing multimodal inputs. Downstream,
this type of methodology could offer unique insights into
genes or cell types to target with therapeutic development.

In the future, we would like to run an extensive hyperpa-
rameter search on all combinations of our model modifica-
tions to determine the best ones per model, rather than us-
ing those that worked best at baseline. We suspect that this
search would allow for clearer trends in the varying perfor-
mances of the different models, since it’s quite likely that
the best hyperparameters for the baseline model are not the
best for other models. In addition, we would like to con-
sider other ways of clustering the spots that could allow for
more movement between the spots. This should allow us
to better investigate the value of our extension of including
ground-truth pathologist annotations to make the training
semi-supervised instead of unsupervised, which we believe
should help performance, as discussed above.
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7. Appendix
7.1. Spotlight of Interest Work
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Figure 6: Spotlight of Interest diagram

7.2. Map of Sample Identifier to Sample Name

Sample Identifier Sample Name
1 SN048_A121573_Rep1
2 SN048_A121573_Rep2
3 SN048_A416371_Rep1
4 SN048_A416371_Rep2
5 SN84_A120838_Rep1
6 SN84_A120838_Rep2
7 SN123_A551763_Rep1
8 SN123_A595688_Rep1
9 SN123_A798015_Rep1
10 SN123_A938797_Rep1
11 SN124_A551763_Rep2
12 SN124_A595688_Rep2
13 SN124_A798015_Rep2
14 SN124_A938797_Rep2

Table 4: Mapping from sample identifier to sample name.
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